JPS59178310A - Position aligning apparatus for calibrating coordinates system of multi-joint robot - Google Patents

Position aligning apparatus for calibrating coordinates system of multi-joint robot

Info

Publication number
JPS59178310A
JPS59178310A JP5253783A JP5253783A JPS59178310A JP S59178310 A JPS59178310 A JP S59178310A JP 5253783 A JP5253783 A JP 5253783A JP 5253783 A JP5253783 A JP 5253783A JP S59178310 A JPS59178310 A JP S59178310A
Authority
JP
Japan
Prior art keywords
displacement
detecting
conical hole
leaf spring
contact element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5253783A
Other languages
Japanese (ja)
Inventor
Makoto Araki
誠 荒木
Susumu Kawakami
進 川上
Takashi Uchiyama
隆 内山
Kazuo Asakawa
浅川 和雄
Fumiaki Akitani
秋谷 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5253783A priority Critical patent/JPS59178310A/en
Publication of JPS59178310A publication Critical patent/JPS59178310A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To simply and certainly obtain data required in a coordinates system calibrating method, by constituting a leaf spring assembly for detecting the displacement of a contact element in X, Y and Z directions respectively crossing at right angles from parallel leaf springs for detecting the displacement in the X-direction, parallel leaf springs for detecting the displacement in the Y-direction and a cross spring for detecting the displacement in the Z-direction. CONSTITUTION:A leaf spring assembly 8 is constituted of a pair of parallel leaf springs 10 for detecting displacement in an X-direction which have flat surface parts arranged vertically to the X-direction and is displaceable to said X-direction, a pair of parallel leaf spring 11 for detecting displacement in a Y-direction which have flat surface parts arranged vertically to the Y-direction and is displaceable to the Y-direction and a cross spring 9 for detecting displacement in a Z-direction which has a flat surface part arranged vertically to the Z-direction and is displaceable to the Z-direction. A spherical contact element 12 is fixed to the central part of the cross spring 9 through a rigid support rod 8 and inserted into the conical hole 17 of a reference plate 7 when data is measured. By moving the conical hole 17 so as to always bring the contact element 12 with the conical hole 17 even if the position and the angle of the reference plate 17 are changed in order to bring the contact element 12 made spherical into engagement with the conical hole, the detection of a central position is enabled. In addition, a strain gauge is adhered to each leaf spring.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は多関節ロボットに関し、特にそのロボットアー
ムの座標系較正用位置合せ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an articulated robot, and particularly to an alignment device for calibrating a coordinate system of a robot arm.

(2)技術の背景 産業用ロボットは、溶接・塗装・組立作業など広い範囲
にわたって用いられてきておυ、その動作には最近特に
、高い精度が要求されている。ロボットに求められる精
度としては、予め教えた位置への再現精度(くシ返し精
度:ロボット先端の位置及び姿勢をマニーアル・コント
ロールで実際に動かして教示し、その位置への位置決め
全多数回試行した時の位置の・ぐラツキ)とロボットに
定義された絶対固定座標系における位置決め精度(絶対
精度:ロボット先端の指令位置及び姿勢と実際にロボッ
トが到達した位置及び姿勢との差)が上げられる。教示
・再生型のロボットでは、ロボッ)k所定位置へ動かし
て、その位置を教えるため、高いくυ返し精度が要求さ
れるが、絶対精度はあまシ求められていない。しかし、
ロゼツト言語でグログラミングした作業やロボットシミ
ュレータで作成した作業をロボットに実行させる場合、
あるいは、TV右カメラを用いた視覚認識装置により検
知された物体の位置データに基いて口がットにハンドリ
ングさせる場合などでは、くり返し祠屁と併せて絶対精
度が要求される。
(2) Background of the technology Industrial robots have been used in a wide range of tasks such as welding, painting, and assembly, and recently, particularly high precision has been required for their operations. The precision required of a robot is the repeatability of a previously taught position (return accuracy: the position and orientation of the robot tip is taught by actually moving it using manual control, and the positioning at that position is attempted a total number of times. This increases the positioning accuracy (absolute accuracy: the difference between the commanded position and orientation of the robot tip and the position and orientation actually reached by the robot) in the absolutely fixed coordinate system defined for the robot. In a teaching/reproducing type robot, a high degree of repetition accuracy is required because the robot is moved to a predetermined position and the position is taught, but absolute accuracy is not required. but,
When you want a robot to perform tasks that are programmed using the Rosetsu language or created using a robot simulator,
Alternatively, absolute precision is required in addition to repeated farts in cases where the object is handled by mouth based on position data of an object detected by a visual recognition device using a TV right camera.

多関節ロボットは複数の回転及び屈曲運動可能な関節ユ
ニットから構成される。上記した作業のように多関節ロ
ボット全絶対座標系上で制御する場合、先端の位置・姿
勢から所望の関節角度へ変換する演算ヲ行なう。この変
換式には、各アームの長さ及び関節原点からの各関節の
回転角度が・セラメータとして含まれている。ここで、
ロボット製作時の構成部品の加工においてアームの長さ
は設計値に対して偏差をもっている。また、一ビット組
立時に各(関節の取付は誤差が生ずる。そのために、設
計時の関節原点、アーム長さを用いてロボット全制御し
ても指令値に対して所望の動作が実現できない。この欠
点全改良する方法として、加工精度を上げることによっ
てアームを正確に製造したわ、各関節の取付は時に正確
に調整するといったことも考えられるが、コスト高にな
らざるを得ない。
An articulated robot is composed of a plurality of joint units capable of rotating and bending movements. When controlling an articulated robot on a total absolute coordinate system as in the above-described work, calculations are performed to convert the position and orientation of the tip into desired joint angles. This conversion formula includes the length of each arm and the rotation angle of each joint from the joint origin as a cerameter. here,
During the machining of component parts during robot manufacturing, the length of the arm has a deviation from the design value. Also, when assembling one bit, errors occur in the installation of each joint. Therefore, even if the robot is fully controlled using the joint origin and arm length at the time of design, the desired movement cannot be achieved with respect to the command value. As a way to improve all the drawbacks, it is possible to manufacture the arm accurately by increasing the processing precision, and sometimes to adjust the attachment of each joint accurately, but this would inevitably increase the cost.

このような欠点ヲ鑑みて、ロボット組立完了後にアーム
長の偏差、各関節の取付は誠差金求め、アームの英寸や
実際の各関節の原点を決定するロゼツトアーム座標系の
較正方法が本願出願人より提案されている(特願昭57
−43778号、および特願昭57−43779号参照
)。
In view of these shortcomings, the applicant proposed a method for calibrating the rosette arm coordinate system that determines the arm length deviation and the installation of each joint after robot assembly is completed, and determines the arm's English dimensions and the actual origin of each joint. It has been proposed (patent application 1982)
-43778 and Japanese Patent Application No. 57-43779).

特願昭57−43778号に示す座標系較正方法におい
ては、アーム先端全1点に位置付けした状態でアームの
姿勢を変え、複数個の姿勢に位置付けした時の各姿勢に
おける各関節ユニットの回転角度位置あるいは屈曲角度
位置のデータが必要である。
In the coordinate system calibration method shown in Japanese Patent Application No. 57-43778, the posture of the arm is changed with the arm tip positioned at one point, and the rotation angle of each joint unit in each posture is calculated when the arm is positioned in multiple postures. Data on position or bending angle position is required.

特願昭57−43778号に示す座標系較正方法におい
ては、アーム先端を複数個の点に位置付けした時の各位
置・姿勢における各関節ユニットの回転角度位置あるい
は屈曲角度位置のデータが必要である。
The coordinate system calibration method shown in Japanese Patent Application No. 57-43778 requires data on the rotation angle position or bending angle position of each joint unit at each position and posture when the arm tip is positioned at multiple points. .

(3)発明の目的 本発明は上述の多関節ロボットの座標系較正方法に必要
なデータを簡単に確実に得ることができる座標系較正用
位置合せ装置の提供を目的とする。
(3) Object of the Invention The object of the present invention is to provide an alignment device for coordinate system calibration that can easily and reliably obtain the data necessary for the above-mentioned method of calibrating the coordinate system of an articulated robot.

(4)発明の1,3成 この目的全達成するため、不発すIJでは、較正すべき
ロゼツトアーム先端の基準位置に鴬に接触する接触子と
該接触子の各々直交するX、y、X方向の変位検出用板
バネ組体と會備え、該板バネ組体は、平面部<X方向に
垂直に配置したX方向変位構出用平行板バネと、平面部
iY方向に鳩直に配置したY方向変位検出用平行板バネ
と、平面部全X方向に垂直に配置し、中央に上記接触子
全固定した2方向度位検出用十字バネとにより構成した
多関節ロボットの座標系較正用位置合せ装置を提供する
(4) Achievements 1 and 3 of the invention In order to achieve all of the above objects, in the case of an IJ that does not fire, there is a contact element that contacts the needle at the reference position of the tip of the rosette arm to be calibrated, and a The plate spring assembly has a parallel plate spring for displacing in the X direction arranged perpendicularly to the plane part < Position for coordinate system calibration of an articulated robot configured with a parallel plate spring for Y-direction displacement detection and a cross spring for two-direction degree detection, which is arranged perpendicular to the X direction on the entire plane part and has the above-mentioned contact fully fixed in the center. Provide a matching device.

(5)  発明の実施例 多関節ロボッ)30は、矢印A方向に回転運動可能な第
1関節ユニッ)1と、矢印B方向に屈曲運動可能な第2
関節ユニット2と、矢印C方向に屈曲運動可能な第3関
節ユニット3と、矢印り方向に回転運動可能な第4曲節
ユニット4と、矢印E方向に屈曲運動可能な第5関節ユ
ニット5と、矢印Y方向に回転運動可能な第6関節ユニ
ット6とによシfイ成され、第6関節ユニット6の先端
には本j&明に係る座標系較正用データを得るだめの基
準板7が矢印Y方向に回転可能に取付けられる。
(5) Embodiment of the Invention The multi-jointed robot (30) has a first joint unit (1) capable of rotational movement in the direction of arrow A, and a second joint unit) capable of bending movement in the direction of arrow B.
A joint unit 2, a third joint unit 3 capable of bending movement in the direction of arrow C, a fourth joint unit 4 capable of rotational movement in the direction of arrow A, and a fifth joint unit 5 capable of bending movement in the direction of arrow E. , and a sixth joint unit 6 which is rotatably movable in the direction of arrow Y, and at the tip of the sixth joint unit 6 is a reference plate 7 for obtaining coordinate system calibration data according to the present invention. It is mounted rotatably in the direction of arrow Y.

基準板7の中央には円錐孔17が形成される。この基準
板7の円錐孔17の中心位置の変位全検出し較正用デー
タを取得するための位置合せ装置は、仮バネ、組体8に
よ)構成さルる。この板バネ組体8は、平σfj部(i
=X方向に垂直に配置しX方向に変位i+J能な一対の
対面するX方向変位侠出用平行板バネ10と、平面部i
Y方向に垂直に配置しY方向に変位可能な一対の対面す
るY方向変位検出用平行板バネ11と、平面部を2方向
に垂直に配置し2方向に変位可能な2方向度位2λ出用
十字バネ9とにより、構成される。十字バネ9の中央部
には剛体支持俸工8を介して球状接触子12が固定され
る。この接触子12はデータ測定時には第2図に示すよ
うに基準板170円錐孔17内に挿入さ九る。このよう
に接触子12を球状としこれを円錐孔内に係合させるた
め基準板17の位置、角度が変化しても接触子12を常
に円錐孔17内に接触させるように円錐孔17全!ゆか
すことによってその中心位it k検出可能とする。板
バネ組体8の各板バネには板バネの変位に対応した歪を
検出するための歪r−ノ13が貼付される。板バネ組体
はx、y、z方向に独立して変位し各方向の歪が相互に
影響しないため各方向の正確な変位置が検知される。歪
ゲージの貼付位置は、例えば第3図に示すように、各板
バネの(+)側の歪と(−)側の歪とを同時に検出でき
るように、平行バネ10の一方の板バネの外側表面に2
枚の歪ゲージ13a、13b’に貼付し、対面する板バ
ネの外側表面に2枚の歪ケ゛−ジ13c、13d’(z
貼付し、平行バネ11の両外側教面にも同様にして歪ゲ
ージを貼付し、十字バネ9の上面には2枚の歪ゲージ1
9a 、19cを貼付し、下面には2枚の歪ゲージ19
b、19d全貼付する。この時、各歪ゲージは歪量が最
大となる位置、即ち、十字バネ9の中心部近傍および平
行バネの上縁部又は下縁部に設けることが望ましい。歪
r−)貼付枚数をさらに増やし、測定精度を向上させて
もよい。また、各平行板バネの内面にも歪ケ9−ジを貼
付してもよい。平行バネ10の歪ゲージ1:3a、1’
3b。
A conical hole 17 is formed in the center of the reference plate 7. A positioning device for detecting the entire displacement of the center position of the conical hole 17 of the reference plate 7 and acquiring calibration data is constituted by the temporary spring assembly 8. This leaf spring assembly 8 has a flat σfj portion (i
= A pair of facing parallel plate springs 10 for displacing in the X direction and capable of displacing i+J in the X direction, and a flat part i
A pair of facing parallel plate springs 11 for detecting Y-direction displacement arranged perpendicularly to the Y direction and movable in the Y direction, and a two-direction degree 2λ output whose flat parts are arranged perpendicular to two directions and movable in two directions. It is constituted by a cross spring 9 for use. A spherical contact 12 is fixed to the center of the cross spring 9 via a rigid support shaft 8. When measuring data, this contactor 12 is inserted into the reference plate 170 and the conical hole 17 as shown in FIG. In this way, since the contact 12 is made spherical and is engaged in the conical hole, the conical hole 17 is fixed so that the contact 12 is always brought into contact with the conical hole 17 even if the position and angle of the reference plate 17 change. By moving it, the center position can be detected. A strain r-no 13 is attached to each leaf spring of the leaf spring assembly 8 to detect strain corresponding to the displacement of the leaf spring. Since the leaf spring assembly is displaced independently in the x, y, and z directions, and strains in each direction do not affect each other, accurate displacement positions in each direction can be detected. For example, as shown in FIG. 3, the strain gauge is attached to one of the parallel springs 10 so that the strain on the (+) side and the strain on the (-) side of each leaf spring can be detected simultaneously. 2 on the outer surface
Two strain gauges 13c, 13d' (z
Similarly, strain gauges are attached to both outer surfaces of the parallel spring 11, and two strain gauges 1 are attached to the upper surface of the cross spring 9.
9a and 19c are attached, and two strain gauges 19 are attached to the bottom surface.
b, Paste all 19d. At this time, it is desirable to provide each strain gauge at a position where the amount of strain is maximum, that is, near the center of the cross spring 9 and at the upper or lower edge of the parallel spring. Distortion r-) The number of sheets to be pasted may be further increased to improve measurement accuracy. Further, a strain cage may also be attached to the inner surface of each parallel leaf spring. Strain gauge 1 for parallel spring 10: 3a, 1'
3b.

13c、7.3dは第4図に示すブリッジ回路を構成す
ることにより、端子21より入力′電圧が印加され端子
20よりX方向変位に対応した出力゛電圧が得られる。
13c and 7.3d constitute a bridge circuit shown in FIG. 4, so that an input voltage is applied from the terminal 21 and an output voltage corresponding to the displacement in the X direction is obtained from the terminal 20.

Y方向変位に対応した出力電圧も同様にして得られる。The output voltage corresponding to the displacement in the Y direction is also obtained in the same manner.

十字バネ9の歪rr19a。Distortion rr19a of cross spring 9.

19b、19c、19dは第5図に示すブリツノ回路を
構成することにより、端子21より入力電圧が印加され
端子20よ、6z方向変位に対応した出力Bt、圧が得
られる。各歪ゲージはこのようなブリッジ回路からなる
歪検出回路14(第1図)に連結されアンプ15を介し
てオシロスコープ16に接続され出力が表示される。
19b, 19c, and 19d form the Blitzo circuit shown in FIG. 5, so that an input voltage is applied from the terminal 21 and an output Bt and pressure corresponding to the displacement in the 6z direction are obtained from the terminal 20. Each strain gauge is connected to a strain detection circuit 14 (FIG. 1) consisting of such a bridge circuit, and connected to an oscilloscope 16 via an amplifier 15, so that the output is displayed.

較正用データ測定は以下のようにして行う。まず、予め
定められた接触子12の位@fX 、 Y 。
Calibration data measurement is performed as follows. First, the positions of the contacts 12 are determined in advance @fX, Y.

2座標系で指定してロボットアーム全駆動しアーム先端
の基準板7の円錐孔17内に接触子12が入るように円
錐孔17を接触子12の位置に合わせる。この状態では
アーム長の偏差、関節原点の誤差などの1こめ円錐孔(
ri接触子の位置に完全には一枚せず板バネ組体8が歪
む。次に、板バネ組体8に貼付した歪ケ゛−ジの出力を
オンロスコーグで観察しながらx、y、zの各変位方向
の歪ゲージの出力が零になるように口がアトアーム21
M動する。X、Y、Z方向の変位が零になった状態でロ
ボットアーム全溝成する第1.第2.第3.第4゜第5
.第6関節ユニット1,2,3,4,5.6の回転角度
位置および屈曲角度位置を各関節に設けられた図示しな
いロータリーエンコーダから検出し、較正用データを得
る。次にアーム先端の基準板の円錐孔位置は変えずにア
ームの姿勢だけを変える指令値によυロボットアーム全
駆動する。
The robot arm is fully driven by specifying the two coordinate systems, and the conical hole 17 is aligned with the position of the contact 12 so that the contact 12 enters the conical hole 17 of the reference plate 7 at the tip of the arm. In this state, deviations in the arm length, errors in the joint origin, etc.
The leaf spring assembly 8 is distorted because it is not completely aligned at the position of the ri contact. Next, while observing the output of the strain gauge attached to the leaf spring assembly 8 with an Onroscog, the opening is adjusted to the at arm 21 so that the output of the strain gauge in each of the x, y, and z displacement directions becomes zero.
M moves. The robot arm is fully grooved when the displacement in the X, Y, and Z directions is zero. Second. Third. 4th゜5th
.. The rotation angle positions and bending angle positions of the sixth joint units 1, 2, 3, 4, 5.6 are detected from rotary encoders (not shown) provided at each joint, and calibration data is obtained. Next, the υ robot arm is fully driven using a command value that changes only the posture of the arm without changing the position of the conical hole in the reference plate at the tip of the arm.

姿勢が質素ると再びアーム長の偏差、関節原点の誤差な
どのため円錐孔は変位し板バネ組体8が歪む。この歪音
オシロスコープで観察しなからX。
If the posture is sloppy, the conical hole will be displaced again due to a deviation in the arm length, an error in the joint origin, etc., and the leaf spring assembly 8 will be distorted. I'll have to observe it with this distorted sound oscilloscope.

Y、Z方向の変位が零になるようにロボットアーム全駆
動し、変位が零になった状態で上記較正用データを得る
。このようfi 611定を口がットアームの姿勢?変
えて複数回繰9返し必要な数だけ座標系較正用データを
得る。
The robot arm is fully driven so that the displacement in the Y and Z directions becomes zero, and the above calibration data is obtained in a state where the displacement becomes zero. Is this the fi 611 position with the mouth open? Repeat this several times to obtain the required number of coordinate system calibration data.

座頭系較正方法に、アーム先端全所定距離だけ移動させ
た状態で得た做正用データ會用いる場合のデータは第6
図に示す位置合せ装置によって得られる。この位置合せ
装置は、X方向の位置決め可能なマイクロメータ21を
備えたX−ステージ23と、Y方向の位置決め可能なマ
イクロメータ22を備えたY−ステージ24と、2方向
の位置決め可能なマイクロメータ20を備えた2−ステ
ージ25′?:具備する。その他の構成は前記実施例と
同様である。弦正用データを得るには、X−ステージ2
3、Y−ステージ24および2−ステージ25を所定距
NJ’cけ移動させるとともに口?ットアームを所定距
離だけ移動するように連動する。
The data when using the calibration data obtained with the entire tip of the arm moved by a predetermined distance in the seat head system calibration method is shown in the sixth column.
obtained by the alignment device shown in the figure. This alignment device comprises an 2-stage 25' with 20? : Equipped. The other configurations are the same as those of the previous embodiment. To obtain chord data, use X-stage 2
3. Move the Y-stage 24 and the 2-stage 25 by a predetermined distance NJ'c, and Interlocks to move the cut arm a predetermined distance.

このときロボットアームの製造誤差等による位置ずれに
基き板バネ組体が変位する。前述の例と同様にこの変位
全零にするようにアーム全駆動し変位が零となった状態
で較正用データを測定する。
At this time, the base plate spring assembly is displaced due to positional deviation due to manufacturing errors of the robot arm. As in the previous example, the arm is fully driven to make this displacement completely zero, and the calibration data is measured in a state where the displacement is zero.

接触子の位置を数回移動して必要な較正用データ金得る
Move the contact position several times to obtain the necessary calibration data.

(6)発明の詳細 な説明したように、本発明においては、簡単な構造で、
X、Y、Z方向の変位を独立して検出できるため、信頼
性の茜い較正用データが得られる。
(6) As described in detail, the present invention has a simple structure,
Since displacements in the X, Y, and Z directions can be detected independently, highly reliable calibration data can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る位置合せ装置の斜視図、第2図は
第1図の位置合せ装置の使用時の側面図、第3図は本発
明に係る板バネ組体の一部を示す斜視図、填4図および
第5図は各々本発明に係る位置合せ装置のX方向および
2方向の変位検出用ブリッジ回路図、第6図は本発明に
係る位置合せ装置の別の例の斜視図である。 7・・・基準板、8・・・板バネ組体、9・・・十字バ
ネ、10 、11−・・平行バネ、13 + 13 a
 、13 b 。 13c、13d、19a、19b、19c、19d・・
・歪ゲージ、12・・・接触子。 第4団 /U 第 5図
FIG. 1 is a perspective view of the alignment device according to the present invention, FIG. 2 is a side view of the alignment device of FIG. 1 in use, and FIG. 3 shows a part of the leaf spring assembly according to the present invention. A perspective view, FIG. 4, and FIG. 5 are bridge circuit diagrams for detecting displacement in the X direction and two directions, respectively, of the positioning device according to the present invention, and FIG. 6 is a perspective view of another example of the positioning device according to the present invention. It is a diagram. 7... Reference plate, 8... Leaf spring assembly, 9... Cross spring, 10, 11-... Parallel spring, 13 + 13 a
, 13b. 13c, 13d, 19a, 19b, 19c, 19d...
・Strain gauge, 12...contact. Group 4/U Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、較正すべきロボットアーム先端の基準位置に常に接
触する接触子と該接触子の各々直交するX、Y、Z方向
の変位検出用板バネ組体とを備え、該板バネ組体は、平
面部全X方向に垂直に配置したX方向変位検出用平行板
バネと、平面部iY方向に垂直に配置したY方向変位検
出用平行板バネと、平面部をZ方向に垂直に配置し、中
央に上記接触子を固定した2方向度位検出用十字バネと
によシ構成した多関節ロボットの座標系較正用位置合せ
装置。
1. A contact element that constantly contacts a reference position at the tip of a robot arm to be calibrated, and a plate spring assembly for detecting displacement in X, Y, and Z directions orthogonal to each of the contact elements, the plate spring assembly: A parallel plate spring for detecting displacement in the X direction, which is arranged perpendicularly to the X direction of the entire plane part, a parallel plate spring for detecting displacement in the Y direction, which is arranged perpendicularly to the Y direction of the plane part, and a plane part arranged perpendicularly to the Z direction, A positioning device for calibrating a coordinate system of an articulated robot, which includes a cross spring for detecting the degree in two directions, with the above-mentioned contactor fixed in the center.
JP5253783A 1983-03-30 1983-03-30 Position aligning apparatus for calibrating coordinates system of multi-joint robot Pending JPS59178310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253783A JPS59178310A (en) 1983-03-30 1983-03-30 Position aligning apparatus for calibrating coordinates system of multi-joint robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253783A JPS59178310A (en) 1983-03-30 1983-03-30 Position aligning apparatus for calibrating coordinates system of multi-joint robot

Publications (1)

Publication Number Publication Date
JPS59178310A true JPS59178310A (en) 1984-10-09

Family

ID=12917517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253783A Pending JPS59178310A (en) 1983-03-30 1983-03-30 Position aligning apparatus for calibrating coordinates system of multi-joint robot

Country Status (1)

Country Link
JP (1) JPS59178310A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263807A (en) * 1985-09-13 1987-03-20 Canon Inc Three-dimensional accuracy measuring method for robot
JPS62218808A (en) * 1986-03-20 1987-09-26 Tokyo Boeki Kk Accuracy correction for 3-d measuring robot
US5187874A (en) * 1989-04-28 1993-02-23 Mitutoyo Corporation Coordinate measuring machine with protected origin point blocks
FR2706999A1 (en) * 1993-06-21 1994-12-30 Peugeot Calibration method for determining a transfer matrix between sensor means and an object, such as one or more hinges of a motor vehicle body, and device for implementing this method
EP0734816A1 (en) * 1994-09-19 1996-10-02 Kabushiki Kaisha Yaskawa Denki Method of determining reference position of industrial robot
FR2811253A1 (en) * 2000-07-05 2002-01-11 Renault Automation Comau DEVICE FOR CONTROLLING THE POSITION OF A ROBOT FLANGE IN ITS SURROUNDING AREA
US7913537B2 (en) * 2005-11-17 2011-03-29 Hexagon Metrology Ab Adjustment device for a measuring head
CN106123817A (en) * 2016-06-14 2016-11-16 昆明理工大学 A kind of calibration system based on any space length and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263807A (en) * 1985-09-13 1987-03-20 Canon Inc Three-dimensional accuracy measuring method for robot
JPH0469725B2 (en) * 1985-09-13 1992-11-09 Canon Kk
JPS62218808A (en) * 1986-03-20 1987-09-26 Tokyo Boeki Kk Accuracy correction for 3-d measuring robot
JPH052168B2 (en) * 1986-03-20 1993-01-11 Tokyo Boeki Kk
US5187874A (en) * 1989-04-28 1993-02-23 Mitutoyo Corporation Coordinate measuring machine with protected origin point blocks
FR2706999A1 (en) * 1993-06-21 1994-12-30 Peugeot Calibration method for determining a transfer matrix between sensor means and an object, such as one or more hinges of a motor vehicle body, and device for implementing this method
EP0734816A1 (en) * 1994-09-19 1996-10-02 Kabushiki Kaisha Yaskawa Denki Method of determining reference position of industrial robot
EP0734816A4 (en) * 1994-09-19 1997-03-19 Yaskawa Denki Seisakusho Kk Method of determining reference position of industrial robot
FR2811253A1 (en) * 2000-07-05 2002-01-11 Renault Automation Comau DEVICE FOR CONTROLLING THE POSITION OF A ROBOT FLANGE IN ITS SURROUNDING AREA
EP1172184A1 (en) * 2000-07-05 2002-01-16 Renault Automation Comau Apparatus for controlling the position of a robot flange in its environment
US7913537B2 (en) * 2005-11-17 2011-03-29 Hexagon Metrology Ab Adjustment device for a measuring head
CN106123817A (en) * 2016-06-14 2016-11-16 昆明理工大学 A kind of calibration system based on any space length and method

Similar Documents

Publication Publication Date Title
US6317699B1 (en) Device and method for calibrating a robot
US7904202B2 (en) Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination
US6772619B2 (en) Measuring apparatus and method for correcting errors in a machine
US11273554B2 (en) Method and device for evaluating calibration precision
DE102017206571A1 (en) Error identification method of a machine tool and error identification system thereof
US10981276B2 (en) Tool calibration apparatus for robotic arm
US4702665A (en) Method and device for determining the reference positions of an industrial robot
US5418890A (en) Arm origin calibrating method for an articulated robot
CN113618738B (en) Mechanical arm kinematics parameter calibration method and system
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
JPS6025680A (en) Method of compensating positioning error of robot gripper
CN110614635A (en) SCARA robot kinematic parameter identification method
JPS59178310A (en) Position aligning apparatus for calibrating coordinates system of multi-joint robot
JP3304251B2 (en) Automatic teaching method and device for assembly robot
CN111958603A (en) Mechanical arm kinematic parameter separation measuring device and identification method
JPS6228808A (en) Calibrating method for robot coordinate system
WO2012176649A1 (en) Method for correcting tool parameter of robot
JPH0774964B2 (en) Robot positioning error correction method
KR100214677B1 (en) Calibration apparatus and the method for industrial robot
JPS60262215A (en) Robot teaching method
JP3107163B2 (en) Robot zeroing method
JP2538287B2 (en) Origin adjustment method for horizontal joint robot
JPS6228809A (en) Calibrating method for robot coordinate system
JP2931381B2 (en) Processing inspection method
JP2760934B2 (en) Origin calibration method for articulated robots