JPS59177121A - Isotope separation apparatus - Google Patents

Isotope separation apparatus

Info

Publication number
JPS59177121A
JPS59177121A JP4864283A JP4864283A JPS59177121A JP S59177121 A JPS59177121 A JP S59177121A JP 4864283 A JP4864283 A JP 4864283A JP 4864283 A JP4864283 A JP 4864283A JP S59177121 A JPS59177121 A JP S59177121A
Authority
JP
Japan
Prior art keywords
uranium
high frequency
gas
frequency source
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4864283A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kazawa
加澤 義彰
Akitsugu Maekawa
前川 明嗣
Takao Suzuki
鈴木 登夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP4864283A priority Critical patent/JPS59177121A/en
Publication of JPS59177121A publication Critical patent/JPS59177121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide the titled apparatus low in power consumption and easy to handle, constituted so as to separate an isotope by allowing gas in a plasma state ionized by a high frequency source for an electronic cyclotron to resonate to the electromagnetic wave of the high frequency source of the electronic cyclotron. CONSTITUTION:In an isotope separation apparatus wherein a DC magnetic field is generated by the super-conductive coil 1 provided around a cylindrical vacuum container 7, the gas generating part 11 for generating gas containing an atom to be separated such as uranium provided in the above-mentioned container 7 is heated by an electromagnetic induction heating coil 21 and laser 20 and an electromagnetic wave is applied to the gas in the generated magnetic field through an antenna 13 by the high frequency source of resonance frequency or the higher harmonic thereof of an electronic cyclotron to generate ionized plasma which is, in turn, resonated to the electromagnetic wave applied through an antenna 15 by the high frequency source 14 of ion cyclotron resonance frequency or the higher harmonic thereof and isotopes having different masses such as uranium 235 or 238 are respectively separated by collectors 5, 6.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はカス状物質の同位体分離装置に係り、特に、プ
ラズマ状態での同位体分離に好適な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an isotope separation device for dregs-like substances, and particularly to a device suitable for isotope separation in a plasma state.

〔従来技術〕[Prior art]

従来の同位体分離装置には、ウラン同位体の分離に実用
化されているガス拡散法と遠心分離法がある。
Conventional isotope separation devices include the gas diffusion method and the centrifugation method, both of which have been put into practical use to separate uranium isotopes.

最近、米国中心に同位体分離法の見直しが進められてい
る。 American Nuclear  5oci
ety  発行のConference Procee
dings  on UraniumFuel  5u
pply  at Monterey  on Jan
 。
Recently, a review of isotope separation methods has been underway, mainly in the United States. American Nuclear 5oci
Conference Proceedings published by ety
dings on UraniumFuel 5u
pply at Monterrey on Jan.
.

23−26.1977のP、332に記載された米国T
FLW社の評価によると、プラズマ分離方式は、ガス拡
散法や遠心分離法の分離原価の1/4以下であり、設備
費も1/4以下であるとされている。
23-26.1977 P, 332
According to FLW's evaluation, the plasma separation method is less than 1/4 of the separation cost of the gas diffusion method and centrifugation method, and the equipment cost is also less than 1/4.

その詳細は明らかでないが、同資料350頁の図による
と、以下に述べる原理である。
The details are not clear, but according to the figure on page 350 of the same document, the principle is as follows.

第1図はその原理図である。円筒型真空容器7の周囲に
直流磁場発生用超電導コイル1’!i=設置する。真空
容器7内の破線8は、発生した磁力線に示す。図の左側
にウラン用イオン源があり、ウランイオンが、真空容器
7内に打込まれる。破線8は磁力線である。ウランイオ
ンは磁力線8に沿って進行する。ここで磁力線8と交叉
する高周波電界を印加する。高周波の周波数−1l−f
i(H2)、磁場の強さt BT (Te5la)、イ
オンの質量数FM、 荷電数衾Zとすると、 の関係’1ffAたすとき、共振現象が起って回転半径
が増大する。ここでnは整数でちる。n=lのときのf
iはイオンサイクロトロン共振周波数と言われ、n=2
以上のときは、その高調波と言われる。
FIG. 1 is a diagram showing its principle. A superconducting coil 1' for generating a DC magnetic field is placed around the cylindrical vacuum vessel 7! i=install. Broken lines 8 in the vacuum vessel 7 indicate lines of magnetic force generated. There is a uranium ion source on the left side of the figure, and uranium ions are implanted into the vacuum vessel 7. Broken lines 8 are lines of magnetic force. Uranium ions travel along magnetic lines of force 8. Here, a high frequency electric field crossing the lines of magnetic force 8 is applied. High frequency frequency -1l-f
i(H2), the strength of the magnetic field tBT (Te5la), the mass number FM of the ion, and the number of charges Z, the relationship is '1ffA When 1ffA is added, a resonance phenomenon occurs and the radius of rotation increases. Here n is an integer. f when n=l
i is said to be the ion cyclotron resonance frequency, and n=2
When it is above, it is called its harmonic.

第1図の3は、イオンサイクロトロン共振周波数、2は
その高調波に共振するイオンの運動?示し、4はそれ以
外の周波数で共振するイオンの運動?示す。ウラン23
5に対して、式(1)k満たす、同波数の電界ケ印加し
たとき衾考える。ウラン235とウラン238の混合イ
オンの場合、コレクタ6に到達するのはウラン238が
多く、コレクタ5に到達するのはウラン235が多い。
3 in Figure 1 is the ion cyclotron resonance frequency, and 2 is the movement of ions that resonates with its harmonics? 4 is the motion of ions that resonate at other frequencies? show. uranium-23
5, when an electric field of the same wave number that satisfies equation (1) k is applied. In the case of mixed ions of uranium-235 and uranium-238, most of the uranium-238 reaches the collector 6 , and most of the uranium-235 reaches the collector 5 .

プラズマ分離法は、上記のようにして、ウランの同位体
分離奢実現する。
The plasma separation method achieves the isotope separation of uranium as described above.

このプラズマ分離法では、イオン源に用いてイオンを入
射する。しかし、大電流イオン源は、ガス効率(イオン
収量/ガス流入量)が悪いので、犬@量真空ポンプを必
要とする。また、イオン源の発熱対策として水冷衾必費
としたり、フィラメントの交換、引出し電極の汚れなど
、稼動率奢下げる要素や、電力効率を下げる要素が多い
In this plasma separation method, an ion source is used to inject ions. However, high current ion sources require a vacuum pump due to poor gas efficiency (ion yield/gas inflow). In addition, there are many factors that reduce operating efficiency and power efficiency, such as requiring water cooling to counter heat generated by the ion source, replacing filaments, and soiling extraction electrodes.

大電流イオン源の引出し電圧は、少なくともIK、V以
上の電圧全装するので、例えば、100Aのイオンビー
ムの発生には、少なくとも、100に、W以上の電源人
力全景する。
Since the extraction voltage of the large current ion source is fully equipped with a voltage of at least IK, V or more, for example, to generate an ion beam of 100 A, a power source of at least 100 W or more is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマ分離法において、効率や稼動
率管下げるイオン源全不要とする新規な装置全提供する
にある。
An object of the present invention is to provide a novel apparatus for plasma separation that eliminates the need for an ion source that reduces efficiency and availability.

〔発明の概要〕[Summary of the invention]

本発明の要点は、ガスからイオン源を用いてイオン全発
生する代わりに、磁場中のガスに電子イオンサイクロト
ロン共振周波数、もしくは、その高調波の高周波?印加
して、電離させることにより、ガスよりプラズマ状態の
イオンを発生させるにある。
The key point of the present invention is that instead of generating all ions from a gas using an ion source, the electron-ion cyclotron resonance frequency or the high frequency of its harmonics is generated in the gas in a magnetic field. The purpose is to generate ions in a plasma state from the gas by applying and ionizing the gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例全第2図により説明する。円筒
型X空容器7の周囲に直流磁場発生用超電導コイル1を
設置する。発生する磁力線は第1図に類似する。図の下
側に、ウラン等の分離原子全台むガス発生部11がある
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. A superconducting coil 1 for generating a DC magnetic field is installed around the cylindrical X-empty container 7. The magnetic field lines generated are similar to FIG. At the bottom of the figure is a gas generating section 11 containing all separated atoms such as uranium.

金属ウランの飽和蒸気圧全第3図に示す。縦軸は飽和蒸
気圧1 mm Hg ) 、横軸は絶対温度(0K)で
ある。
The saturated vapor pressure of metallic uranium is shown in Figure 3. The vertical axis is the saturated vapor pressure (1 mm Hg), and the horizontal axis is the absolute temperature (0K).

金属ウランを気化するために、真空容器7の頂部に加熱
用レーザ20に設け、そのレーザ光でガス発生部lit
加熱する。ガス発生部11は、電磁誘導加熱コイル21
により予熱されている。
In order to vaporize metallic uranium, a heating laser 20 is installed at the top of the vacuum container 7, and the laser light is used to heat the gas generating part lit.
Heat. The gas generating section 11 includes an electromagnetic induction heating coil 21
It is preheated by.

fe= 2.8X10”mBT     ・”(2)の
関係全溝たす電子サイクロトロン用高筒波諒12より、
そのアンテナ13全経て、高周波が真空容器7に入れら
れ、ウラン235及びウラン238のガスが電離される
。ここでrTlは整数である。
fe = 2.8X10"mBT ・" (2) From Ryo Takatsutsuha 12 for electron cyclotrons with all grooves,
High frequency waves are introduced into the vacuum vessel 7 through the entire antenna 13, and the uranium-235 and uranium-238 gases are ionized. Here rTl is an integer.

Il+−1のときのfeは電子ザイクロトロン共振固波
数、m =’ 2のときのfeはその高調波とそれぞr
L言われる。
When Il+-1, fe is the electronic cyclotron resonance wave number, and when m = '2, fe is its harmonic and r
L is said.

ガス全電子サイクロトロン共振周波数又はその高調波で
電離させる場合、個々のイオンの生成には、冬目に見て
100eVのエネルギーがあれば充分である。二種類以
上のガスの混合物の場合は、電子サイクロトロン共振に
より電離したイオンとガスとが衝突して、電子サイクロ
トロン共鳴しないガスも電離される。
When ionizing at the gas all-electron cyclotron resonance frequency or its harmonics, an energy of 100 eV is sufficient in winter to generate individual ions. In the case of a mixture of two or more types of gas, ions ionized by electron cyclotron resonance collide with the gas, and gases that do not have electron cyclotron resonance are also ionized.

この100 eVのエネルギーは、イオン源の引出し電
圧IKV以上に比べて、−桁低いエネルギーである。こ
のことは、イオン源方式の装置に比べて、電子サイクロ
トロン共振方式は電離に要する電力が一桁低くて良いこ
と奢意味する。
This energy of 100 eV is an order of magnitude lower than the extraction voltage IKV of the ion source. This means that compared to an ion source type device, the electron cyclotron resonance type requires an order of magnitude less power for ionization.

第2図の14は、ウラン235のイオンサイクロトロン
共振周波数、又はその高調波の周波数fiO尚周波源で
あり、15はその負荷としてのアンテナである。このア
ンテナ内でウラン235の回転半径は大きくなってコレ
クタ5に到着するウラン235が増す。一方、ウラン2
38はコレクタ6に到達する分が多い8 コレクタ5に到達したウランのd!に縮度が目標値に達
しないときには、本装置衾再度利用するか、本装置に類
似したプロセスを必要に応じ複数段用いる。こうしてウ
ランの同位体分離全なし得る。
Reference numeral 14 in FIG. 2 is a frequency source having a frequency fiO of the ion cyclotron resonance frequency of uranium-235 or its harmonics, and 15 is an antenna as its load. The radius of rotation of the uranium 235 within this antenna increases, and more uranium 235 reaches the collector 5. On the other hand, uranium 2
38 has a large amount reaching collector 6 8 d of uranium that reached collector 5! If the degree of shrinkage does not reach the target value, this device may be used again, or a process similar to this device may be used in multiple stages as necessary. In this way, complete isotopic separation of uranium is possible.

前述の説明では、イオンサイクロトロン用高周波源の負
荷として、ヘリカルコイルアンテナの例全示したが、ア
ンテナには、サイクロトロン加速器で用いられる、いわ
ゆる、°゛ディ〜型電極″全用いても良いし、核融合プ
ラズマ実験装置で用いられている、いわゆる、゛′ルー
プ型アンテナ”や”導波管型アンテナ″ヲ用いても良い
In the above explanation, all examples of helical coil antennas were shown as loads for high-frequency sources for ion cyclotrons, but the antennas may also use all the so-called "D-type electrodes" used in cyclotron accelerators. A so-called "loop antenna" or "waveguide antenna" used in nuclear fusion plasma experimental equipment may also be used.

また、分離する同位体として、ウラン235と’77ン
238の例全示したが、それに限定されることはなく、
例えば、水素、重水素、三重水素などの分離に適用して
も良い。
In addition, although all examples of uranium-235 and '77-238 are shown as isotopes to be separated, the present invention is not limited to these.
For example, it may be applied to the separation of hydrogen, deuterium, tritium, etc.

なお、第2図では金属ウランの加熱には電磁誘導加熱コ
イル21とレーザ20と全周いたが、本発明はそれに限
定されることなく、従来既知の加熱方法、例えば、電、
気抵抗直接加熱、電気抵抗間接加熱、誘導加熱、太陽熱
加熱、化学反応熱など音用いても良い。
In FIG. 2, the electromagnetic induction heating coil 21 and the laser 20 are used all around the uranium to heat the metal uranium, but the present invention is not limited thereto, and conventionally known heating methods such as electric,
Sound may also be used, such as air resistance direct heating, electric resistance indirect heating, induction heating, solar heating, and chemical reaction heat.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、効率が悪く、取扱いの面倒な大容量イ
オン源?用いる代わりに、−桁下の消費電力で済み、取
扱いの容易な電子サイクロトロン用高周波源及びアンテ
ナを用いた同位体分離装置全実現できる。
According to the present invention, a large-capacity ion source that is inefficient and difficult to handle? Instead, it is possible to realize an entire isotope separation device using a radio frequency source and antenna for an electron cyclotron, which consumes less power and is easy to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のイオン源を用いたプラズマ分離方式の原
理図、第2図は本発明のプラズマ分離装置の断面図、第
3図は金属ウランの温度対飽和蒸気圧線図である。 12・・・電子サイクロトロン共振周波数又はその高調
波の高周波源、14・・・イオンサイクロトロン共弔/
図 ゴ  な
FIG. 1 is a principle diagram of a plasma separation method using a conventional ion source, FIG. 2 is a sectional view of a plasma separation apparatus of the present invention, and FIG. 3 is a temperature versus saturated vapor pressure diagram of metallic uranium. 12... High frequency source of electron cyclotron resonance frequency or its harmonics, 14... Ion cyclotron resonance/
Illustration

Claims (1)

【特許請求の範囲】[Claims] 1、磁場内の気体状物質全、電子サイクロトン共振周波
数の電磁波、又は、その高調波の周波数帯の電磁波で電
離する手段と生じたプラズマk、イオンサイクロトロン
共振周波数の電磁波、又は、その高調波の周波数帯の電
磁波で共振させる手段とからなること全特徴とする同位
体分離装置。
1. All gaseous substances in a magnetic field, means for ionizing with electromagnetic waves at the electron cyclotron resonance frequency, or electromagnetic waves in the harmonic frequency band thereof, plasma k generated, electromagnetic waves at the ion cyclotron resonance frequency, or harmonics thereof. An isotope separation device characterized by comprising means for resonating with electromagnetic waves in the frequency band.
JP4864283A 1983-03-25 1983-03-25 Isotope separation apparatus Pending JPS59177121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4864283A JPS59177121A (en) 1983-03-25 1983-03-25 Isotope separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864283A JPS59177121A (en) 1983-03-25 1983-03-25 Isotope separation apparatus

Publications (1)

Publication Number Publication Date
JPS59177121A true JPS59177121A (en) 1984-10-06

Family

ID=12809019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864283A Pending JPS59177121A (en) 1983-03-25 1983-03-25 Isotope separation apparatus

Country Status (1)

Country Link
JP (1) JPS59177121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101408A3 (en) * 2009-03-03 2010-12-09 ㈜에이알텍 Cell resonator for an atom resonator
CN108479394A (en) * 2018-03-14 2018-09-04 中国科学院近代物理研究所 trace gas isotope enrichment system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101408A3 (en) * 2009-03-03 2010-12-09 ㈜에이알텍 Cell resonator for an atom resonator
CN108479394A (en) * 2018-03-14 2018-09-04 中国科学院近代物理研究所 trace gas isotope enrichment system and method

Similar Documents

Publication Publication Date Title
Ehst et al. Approximate formula for radiofrequency current drive efficiency with magnetic trapping
Knoepfel et al. Runaway electrons in toroidal discharges
US3778343A (en) Device for plasma confinement and heating by high currents and non-classical plasma transport properties
Goertz Proton aurora on Jupiter's nightside
US3088894A (en) Confinement of high temperature plasma
Abs et al. Multimegawatt DAE $\delta $ ALUS Cyclotrons for Neutrino Physics
Golovato et al. Alfvén-wave heating in the Proto-Cleo stellarator
JPS59177121A (en) Isotope separation apparatus
Guest et al. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating
US3668068A (en) Plasma confinement apparatus
US20240021326A1 (en) Systems, Methods and Apparatus of an Experimental Nuclear Fusion Reactor having a Hollow Toroidal Interior Chamber with a Rifled Interior Surface
US3085058A (en) Plasma heating
Koički et al. Accelerator installation at the Boris Kidrič Institute in Belgrade-conceptual and technical study
Roychowdhury et al. Simultaneous heating and confinement of two ion species for fusion by ion cyclotron resonance
Petržílka Variations of helicon wave-induced radial plasma transport in different experimental conditions
Shani Instrumentation, Particle Accelerators, and Particle and Radiation Detection
Toyama Hybrid resonance due to two-ion species in a plasma
Wu et al. Acceleration of ions and electrons by wave-particle interactions
Andrukhina et al. Laser plasma containment in the Tor-1 stellarator
Dodo Formation of a Plasma by Low Energy Ion Injection and Cyclotron Heating
Bakai et al. Excitation of difference-frequency waves in interaction of microwaves at the upper hybrid resonance
Stenzel Method of and apparatus for the electrostatic excitation of ions
RU2120704C1 (en) Antenna
Kobayashi et al. Oscillations in a duoplasmatron ion source
Skosyrev et al. Electromagnetic fields in a plasma produced during heating near the lower hybrid frequency