JPS5917588B2 - infrared imaging device - Google Patents

infrared imaging device

Info

Publication number
JPS5917588B2
JPS5917588B2 JP53134358A JP13435878A JPS5917588B2 JP S5917588 B2 JPS5917588 B2 JP S5917588B2 JP 53134358 A JP53134358 A JP 53134358A JP 13435878 A JP13435878 A JP 13435878A JP S5917588 B2 JPS5917588 B2 JP S5917588B2
Authority
JP
Japan
Prior art keywords
narcissus
infrared
imaging device
spot
infrared imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53134358A
Other languages
Japanese (ja)
Other versions
JPS5561173A (en
Inventor
純一郎 山下
倫正 近藤
克能 伊東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP53134358A priority Critical patent/JPS5917588B2/en
Publication of JPS5561173A publication Critical patent/JPS5561173A/en
Publication of JPS5917588B2 publication Critical patent/JPS5917588B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

【発明の詳細な説明】 この発明は、赤外線光学系、スキャナを持ち、低温に冷
却された赤外線検出器で映像信号を得る赤外線撮像装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared imaging device that has an infrared optical system and a scanner and obtains a video signal with an infrared detector cooled to a low temperature.

第1図は従来の赤外線撮像装置の構成図である。FIG. 1 is a block diagram of a conventional infrared imaging device.

信号赤外光1は受光光学系2により集光され、スキャナ
3で走査されて赤外線検出器4に入射する。赤外線検出
器4より生ずる映像信号は、映像信号増幅器5により、
処理・増幅された後、画像ディスプレイ6に供給される
。同期信号肯制御回路Tはスキャナ3の動きと画像ディ
スプレイ6の表示を制御するものである。フ 第2図は
、屈折式受光光学系を持つた赤外線撮像装置における赤
外光の光路を表わす図である。
The signal infrared light 1 is collected by a light receiving optical system 2, scanned by a scanner 3, and incident on an infrared detector 4. The video signal generated from the infrared detector 4 is processed by the video signal amplifier 5.
After being processed and amplified, it is supplied to an image display 6. The synchronization signal control circuit T controls the movement of the scanner 3 and the display on the image display 6. FIG. 2 is a diagram showing the optical path of infrared light in an infrared imaging device having a refractive light receiving optical system.

波長10μm近辺の赤外光を対象とする赤外線撮像装置
のレンズ材料としては価格、耐久性などの点でゲルマニ
ウムが用いられることが多いが、ゲ5 ルマニウムの屈
折率は約4で生地のままでは表面反射が極めて大きい。
従つて通常は表面に反射防止膜を施して用いられるが、
現在の技術では赤外線撮像装置が対象とする広い波長範
囲にわたつて充分な反射防止効果を持ち、しかも耐久性
のある0 反射防止膜を作ることは困難であり、レンズ
表面での赤外光の反射は可視光の光学系の場合に比べは
るかに大きいのが現状である。このことから装置内部よ
り放射される赤外光8も受光光学系レンズ表面9で反射
され、赤外線検出器4に入射し、5 赤外線検出器4に
対する入射赤外光は信号赤外光1と装置内部より放射さ
れる赤外光8の和となり、受光光学系レンズ表面9での
反射が大きいほど装置内部より放射される赤外光8の成
分が多くなる。装置内部より放射される赤外光8の強度
は装置内i0部の温度分布に依存するが、装置内部の大
部分は通常、常温で一様の温度分布を持つている。しか
し、赤外線検出器4は多くの場合極めて低い温度に冷却
されており、ここから放射される赤外光強度は他の部分
からのものに比べ非常に小さい。従j5つて赤外線検出
器4が受光光学系レンズ表面9に赤外線検出器4自身を
見るような角度にスキャナ3が向いていると、赤外線検
出器4に対する入射赤外光はほとんど信号赤外光1成分
のみとなり、スキャナが他の角度を向いているときに比
べ少なくなる。第3図は従来の赤外線撮像装置で得られ
る画像の例で、画像の中心附近は赤外線検出器が自分自
身を見るような角度にスキヤナが向くため他の部分より
輝度レベルが低く表示され、通常、ある面積を持つた暗
点のように見える。
Germanium is often used as a lens material for infrared imaging devices that target infrared light with a wavelength of around 10 μm due to its cost and durability. Surface reflection is extremely large.
Therefore, it is usually used with an anti-reflection coating applied to the surface.
With current technology, it is difficult to create a durable anti-reflection film that has a sufficient anti-reflection effect over the wide wavelength range targeted by infrared imaging devices, and it is difficult to create an anti-reflection film that is durable enough to have sufficient anti-reflection effects over the wide wavelength range targeted by infrared imaging devices. At present, the reflection is much larger than in the case of visible light optical systems. Therefore, the infrared light 8 emitted from inside the device is also reflected by the receiving optical system lens surface 9 and enters the infrared detector 4. This is the sum of the infrared light 8 emitted from the inside, and the greater the reflection on the receiving optical system lens surface 9, the more components of the infrared light 8 emitted from the inside of the device. The intensity of the infrared light 8 emitted from inside the device depends on the temperature distribution in the i0 part of the device, but most of the inside of the device usually has a uniform temperature distribution at room temperature. However, the infrared detector 4 is often cooled to an extremely low temperature, and the intensity of the infrared light emitted from it is very small compared to that from other parts. When the scanner 3 is oriented at such an angle that the infrared detector 4 sees itself on the receiving optical system lens surface 9, most of the infrared light incident on the infrared detector 4 is the signal infrared light 1. component, which is smaller than when the scanner is facing other angles. Figure 3 is an example of an image obtained with a conventional infrared imaging device.The image near the center of the image is displayed at a lower brightness level than other parts because the scanner is oriented at an angle where the infrared detector looks at itself. , it looks like a scotoma with a certain area.

これはナルシサススポツト10と呼ばれる。なお、以上
の説明は屈折式受光光学系を持つ赤外線撮像装置につい
て説明したが、カセグレン式などの反射式受光光学系を
持つ装置についても、装置内部より放射される赤外光が
スキヤナを通して赤外線検出器に入射する構造になつて
いる場合には屈折式光学系を持つ装置と同様にナルシサ
ススポツトが生ずる。
This is called Narcissus Spot 10. The above explanation has been about an infrared imaging device with a refractive receiving optical system, but infrared imaging devices with a reflective receiving optical system such as the Cassegrain type can also be detected by infrared light emitted from inside the device through a scanner. If the structure is such that the light enters the device, Narcissus spots will occur, similar to devices with refractive optical systems.

このナルシサススポツトは画像の中心附近の情報を損な
うため、従来の赤外線撮像装置の大きな欠点となつてい
た。この発明は、この欠点を除去するために、従来の映
像信号増幅器にナルシサススポツト除去回路を付け加え
、表示される画像からナルシサススポツトを除去したも
ので、以下図面について詳細に説明する。
This Narcissus spot has been a major drawback of conventional infrared imaging devices because it destroys information near the center of the image. In order to eliminate this drawback, the present invention adds a Narcissus spot removal circuit to the conventional video signal amplifier to remove Narcissus spots from the displayed image, and will be described in detail below with reference to the drawings.

第4図はこの発明の実施例で、赤外線検出器4より得ら
れる信号は映像信号増幅回路5で増幅・処理された後、
ナルシサス除去回路11でナルシサススポツトを打消す
電圧波形を重ね合わせ、画像デイスプレイ6に供給され
て画像が表示される。
FIG. 4 shows an embodiment of the present invention, in which the signal obtained from the infrared detector 4 is amplified and processed by the video signal amplification circuit 5, and then
The voltage waveforms for canceling the Narcissus spot are superimposed in the Narcissus removal circuit 11, and the superimposed voltage waveforms are supplied to the image display 6 to display an image.

第5図はナルシサススポツトのビデオ波形12とナルシ
サススポツトを打消すのに必要な電圧波形13の対応を
示す図で、ナルシサススポツトのビデオ波形12は信号
赤外光が無いとき、又は、一様な風景を撮像したときの
赤外線検出器出力の信号波形を測定することにより得ら
れる。ナルシサススポツトを打消すのに必要な電圧波形
13は、このナルシサススポツトのビデオ波形12と交
流的に大きいが等しく、符号が逆のものでなければなら
ない。第6図はナルシサススポツトを打消すのに必要な
電圧波形を近似的に発生する回路の例である。
FIG. 5 is a diagram showing the correspondence between the video waveform 12 of the Narcissus spot and the voltage waveform 13 necessary to cancel the Narcissus spot. It is obtained by measuring the signal waveform of the output of an infrared detector when capturing an image of a landscape. The voltage waveform 13 required to cancel the Narcissus spot must be equal in alternating current to the video waveform 12 of the Narcissus spot, but opposite in sign. FIG. 6 is an example of a circuit that approximately generates the voltage waveform necessary to cancel the Narcissus spot.

この回路は、画像デイスプレイで輝点を横方向(X方向
)、縦方向(Y方向)に掃引する際に用いる鋸歯状の掃
引信号を入力とする。例えばX方向掃引信号14は、ナ
ルシサススポツトの中心で電圧が0となるように引算器
15で直流レベル調整を行なつた後、入力電圧の2乗に
比例した電圧を出力する2乗器16に供給され、同様に
処理されたY方向掃引信号17と加算器18で加算され
る。ナルシサススポツトの中心で電圧がOとなるように
直流レベル調整を行なつたX方向、Y方向の掃引信号電
圧瞬時値をそれぞれX.yとすると加算器18の出力電
圧Zはとなる。
This circuit receives as input a sawtooth sweep signal used to sweep a bright spot in the horizontal direction (X direction) and vertical direction (Y direction) on an image display. For example, the X-direction sweep signal 14 is subjected to a DC level adjustment using a subtracter 15 so that the voltage becomes 0 at the center of the Narcissus spot, and then a squarer 16 that outputs a voltage proportional to the square of the input voltage. The Y-direction sweep signal 17 and the similarly processed Y-direction sweep signal 17 are added by an adder 18. The instantaneous voltage values of the sweep signal in the X direction and the Y direction are respectively expressed by adjusting the DC level so that the voltage becomes O at the center of the Narcissus spot. If y, the output voltage Z of the adder 18 will be.

ここでA.bは2乗器16、加算器18により決まる定
数である。(1)式より明らかなように加算器18出力
はナルシサススポツトの中心を中心とする放物面状に変
化する。加算器18の出力はクリツパ19であるレベル
以上の信号のみを取り出し、増幅器20で増幅した後、
元の波形に出力加算器21で加算することにより、ナル
シサス消去信号22が得られる。ナルシサス除去回路は
第6図に示した電圧発生回路を含み、ナルシサス消去信
号22と映像信号を加算することにより、映像信号から
ナルシサススポツトの成分を取り除く。第7図は第6図
に示した回路の各部波形をX方向掃引信号のみが入力さ
れたときについて示したものである。
Here A. b is a constant determined by the squarer 16 and the adder 18. As is clear from equation (1), the output of the adder 18 changes in a parabolic shape centered on the center of the Narcissus spot. From the output of the adder 18, a clipper 19 extracts only the signal above a certain level, and after amplifying it with an amplifier 20,
By adding the original waveform with the output adder 21, the Narcissus cancellation signal 22 is obtained. The Narcissus removal circuit includes the voltage generating circuit shown in FIG. 6, and removes the Narcissus spot component from the video signal by adding the Narcissus elimination signal 22 and the video signal. FIG. 7 shows waveforms of various parts of the circuit shown in FIG. 6 when only the X-direction sweep signal is input.

図の上段からそれぞれ、X方向掃弓信号14、直流レベ
ル調整を行なつたX方向掃引信号23、加算器出力24
、クリツパ出力25、ナルシサス消去信号21を示す。
第8図はこの発明による赤外線撮像装置で得られる画像
の例である。
From the top of the figure, the X-direction sweep signal 14, the DC level-adjusted X-direction sweep signal 23, and the adder output 24
, clipper output 25, and Narcissus erase signal 21.
FIG. 8 is an example of an image obtained by the infrared imaging device according to the present invention.

第3図に示した従来の赤外線撮像装置で得られる画像で
見られたナルシサススポツトがなく、画質が向上してい
る。なお、ナルシサススポツトの形、ナルシサススポツ
トのビデオ波形は赤外線撮像装置の構造により種々の形
のものが生じ、ナルシサススポツトを打消すのに必要な
電圧波形は第6図に示したような回路で近似できない場
合もあり得るが、その場合には第6図の回路のクリツパ
を多段化する、2乗器を他のベキ乗器、又は、指数関数
器に変えるかもしくはこれらの組合わせを用いるといつ
た方法で近似精度を上げることは容易に可能である。
There are no narcissus spots seen in the image obtained with the conventional infrared imaging device shown in FIG. 3, and the image quality is improved. The shape of the Narcissus spot and the video waveform of the Narcissus spot may vary depending on the structure of the infrared imaging device, and the voltage waveform required to cancel the Narcissus spot can be approximated by the circuit shown in Figure 6. There may be cases where this is not possible, but in that case, you can make the clipper in the circuit shown in Figure 6 multi-stage, change the squarer to another power generator or an exponential function generator, or use a combination of these. It is easily possible to improve the approximation accuracy using the following method.

なお、以上は赤外線撮像装置のナルシサススポツト除去
の場合について説明したが、この発明はこれに限らず可
視光の撮像装置においてもシエーデイングが生ずる場合
にはその除去に応用できる。以上のように、この発明に
係る赤外線撮像装置では、アナログ方式で構成されたナ
ルシサス除去回路の働らきにより、受光レンズの反射防
止膜の特性を改善することなく、また比較的簡単な回路
構成でナルシサススポツトの無い赤外像が得られる。ま
た、ナルシサス除去信号の発生は像デイスプレイで用い
られる掃引信号を用いているため、スキヤナの向きと掃
引信号が正確に対応していればたとえ、スキヤナが時間
的に非直線的な走査を行なつても誤差の無いナルシサス
除去信号が得られる。なお以上はナルシサス除去信号の
発生は掃引信号を入力とする関数発生器によるものにつ
いて説明したが、走査同期信号を入力する関数発生器を
構成することも容易である。
Although the above description has been made regarding the case of removing Narcissus spots from an infrared imaging device, the present invention is not limited thereto, and can be applied to the removal of shading when it occurs in a visible light imaging device. As described above, in the infrared imaging device according to the present invention, due to the function of the Narcissus removal circuit configured in an analog manner, the characteristics of the antireflection film of the light receiving lens are not improved, and the circuit configuration is relatively simple. An infrared image without Narcissus spots can be obtained. Furthermore, since the generation of the Narcissus removal signal uses a sweep signal used in an image display, even if the scanner direction and the sweep signal correspond accurately, even if the scanner performs non-linear scanning in time. A Narcissus-removed signal with no errors can be obtained even if the Although the generation of the Narcissus removal signal has been described above using a function generator that receives a sweep signal as input, it is also easy to configure a function generator that receives a scan synchronization signal as input.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線撮像装置の構成図、第2図は赤外
線撮像装置における赤外光の光路を表わす図、第3図は
従来の赤外線撮像装置で得られる画像の例を示す図、第
4図はこの発明の実施例を示す図、第5図はナルシサス
スポツトのビデオ波形とナルシサススポツトを打消すの
に必要な電圧波形の対応を示す図、第6図はナルシサス
スポツトを打消すのに必要な電圧波形を近似的に発生す
る回路の例を示す図、第7図は第6図に示した回路の各
部波形図、第8図はこの発明による赤外線撮像装置で得
られる画像の例を示す図である。
Fig. 1 is a block diagram of a conventional infrared imaging device, Fig. 2 is a diagram showing the optical path of infrared light in the infrared imaging device, Fig. 3 is a diagram showing an example of an image obtained by a conventional infrared imaging device, Figure 4 is a diagram showing an embodiment of the present invention, Figure 5 is a diagram showing the correspondence between the video waveform of the Narcissus spot and the voltage waveform required to cancel the Narcissus spot, and Figure 6 is a diagram showing the correspondence between the video waveform of the Narcissus spot and the voltage waveform required to cancel the Narcissus spot. A diagram showing an example of a circuit that approximately generates a necessary voltage waveform, FIG. 7 is a waveform diagram of each part of the circuit shown in FIG. 6, and FIG. 8 is an example of an image obtained by an infrared imaging device according to the present invention. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 赤外線光学系とスキャナと、低温に冷却された赤外
線検出器とを有し映像信号を得る赤外線撮像装置におい
て、横方向及び縦方向の掃引信号を入力としてナルシサ
ススポツトの映像信号に近似した関数を発生するアナロ
グ式の関数発生器と、この関数発生器から生ずる近似関
数の符号を反転して映像信号に加算する加算器とから構
成されるナルシサススポツト除去回路を備えたことを特
徴とする赤外線撮像装置。
1. In an infrared imaging device that has an infrared optical system, a scanner, and an infrared detector cooled to a low temperature and obtains a video signal, a function that approximates the video signal of the Narcissus spot is calculated using horizontal and vertical sweep signals as input. An infrared imaging device comprising a Narcissus spot removal circuit comprising an analog function generator and an adder that inverts the sign of an approximate function generated from the function generator and adds it to a video signal. Device.
JP53134358A 1978-10-31 1978-10-31 infrared imaging device Expired JPS5917588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53134358A JPS5917588B2 (en) 1978-10-31 1978-10-31 infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53134358A JPS5917588B2 (en) 1978-10-31 1978-10-31 infrared imaging device

Publications (2)

Publication Number Publication Date
JPS5561173A JPS5561173A (en) 1980-05-08
JPS5917588B2 true JPS5917588B2 (en) 1984-04-21

Family

ID=15126494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53134358A Expired JPS5917588B2 (en) 1978-10-31 1978-10-31 infrared imaging device

Country Status (1)

Country Link
JP (1) JPS5917588B2 (en)

Also Published As

Publication number Publication date
JPS5561173A (en) 1980-05-08

Similar Documents

Publication Publication Date Title
US20060077121A1 (en) Optical scanning system with variable focus lens
CA2110962A1 (en) Nonlinear scanning to optimize sector scan electro-optic reconnaissance system performance
ATE235717T1 (en) IMAGE RECORDING SYSTEM
EP0324925A2 (en) Infrared video camera shading correction device
US3576945A (en) Apparatus for optically insetting one image into another image
JPH0481178A (en) Dc offset correction method for irccd detector
JP3017140B2 (en) How to calibrate the focal plane array
GB1324323A (en) Automatic focusing of an optical image
ES550396A0 (en) A MULTIPLE VISUAL FIELD SENSOR DEVICE.
EP0647064B1 (en) Optical system including focal plane array compensation technique
US3495036A (en) Line-illuminating apparatus and method for television
US4255028A (en) Focus detecting device in camera
US4682222A (en) Stimulated scanning infrared imaging system
US3800084A (en) System for scanning planar images with coherent light for facsimile reproduction via telephone connection
JPS5917588B2 (en) infrared imaging device
US2905757A (en) Light correcting apparatus for electron pick-up tubes
US3465094A (en) Television camera dynamic compensation apparatus for controlling the effect of light variations within a scene
GB1562872A (en) Infrared pick-up device
US5144356A (en) Temperature compensated infrared optical imaging system
JPS61166510A (en) Automatic focus adjuster
JPH0732467B2 (en) Shading correction device for infrared video camera
US3003026A (en) Scanning detector and electric processing system
US5687004A (en) Apparatus for scanners system having an infrared ray source
US20030080275A1 (en) Means for protecting optical focal plane sensor arrays against excessive irradiation
RU2055371C1 (en) Adaptive telescope