JPS59175563A - Manufacture of manganese dry cell - Google Patents
Manufacture of manganese dry cellInfo
- Publication number
- JPS59175563A JPS59175563A JP58049490A JP4949083A JPS59175563A JP S59175563 A JPS59175563 A JP S59175563A JP 58049490 A JP58049490 A JP 58049490A JP 4949083 A JP4949083 A JP 4949083A JP S59175563 A JPS59175563 A JP S59175563A
- Authority
- JP
- Japan
- Prior art keywords
- manganese dioxide
- water
- battery
- solution
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、水洗または中和処理を行った電解二酸化マン
ガンをアルミニウム塩水溶液等で処理した後止な活物側
として用いるマンガン乾電池の製造法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a manganese dry battery using electrolytic manganese dioxide that has been washed or neutralized as a live material after being treated with an aqueous aluminum salt solution or the like.
二酸化マンガンを正極活物質、亜鉛を負極活物袈、塩化
亜鉛と塩化アンモニウムの混合物もしくは塩化亜鉛を主
体とする電解液を用いたマンガン乾1.池において、正
極活物質には、アルカリ性水溶液を用いて中和処理を行
い、所定のpHに調整した電解二酸化マンガンが用いら
れている。この二酸化マンガンに電尋利としてアセチレ
ンブラックを加え、さらに電解液を加えて攪拌混合し正
極合剤を調製しているが、この際電池電圧を調整するた
めに少i、の酸化亜鉛を添加するのが普通でおる、酸化
亜鉛の添加量は使用する電解二酸化マンガンのpH1お
よび要求する電池の電圧によって異なるが二酸化マンガ
ンに対して普通1重量%以下である。Manganese drying using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and a mixture of zinc chloride and ammonium chloride or an electrolyte mainly containing zinc chloride 1. In the pond, electrolytic manganese dioxide, which has been neutralized using an alkaline aqueous solution and adjusted to a predetermined pH, is used as the positive electrode active material. Acetylene black is added to this manganese dioxide as an electrolyte, and then an electrolyte is added and mixed with stirring to prepare a positive electrode mixture. At this time, a small amount of zinc oxide is added to adjust the battery voltage. The amount of zinc oxide added varies depending on the pH 1 of the electrolytic manganese dioxide used and the required battery voltage, but is usually 1% by weight or less based on the manganese dioxide.
硫酸酸性硫酸マンガン浴から電解析出させた二酸化マン
ガンを水洗し7だ後1例えば苛性ソーダ、炭酸ソーダ水
溶液あるいは水酸化アンモニウム水溶液で処理すると、
遮断の硫酸が中和されると共に、二酸化マンガン表面の
プロトンはナトリウムイオンもしくはアンモニウムイオ
ンと交換される。When manganese dioxide electrolytically deposited from a sulfuric acid manganese sulfate bath is washed with water and then treated with, for example, an aqueous solution of caustic soda, aqueous soda carbonate, or an aqueous ammonium hydroxide solution,
As the blocking sulfuric acid is neutralized, protons on the manganese dioxide surface are exchanged with sodium or ammonium ions.
すなわちプロトンは液中に放出され、ナトリウムイオン
もしくはアンモニウムイオンが吸着される。That is, protons are released into the liquid and sodium ions or ammonium ions are adsorbed.
このため二酸化マンガンのpHは高い方に移行する。Therefore, the pH of manganese dioxide shifts to a higher level.
このような電、解二酸化マンガンを使用して乾電池を製
造すると、二酸化マンガン表面のプロトン、ナトリウム
イオンもしくはアンモニウムイオンは電解液中のカチオ
ンの影響を受ける。影響の度合は二酸化マンガンに吸着
されているカチオンの種類と量、電解液中に含まれてい
るカチオンの称類と量、電解液のpHによって変る。中
和処理後の電解二酸化マンガンのpHが低い場合、つま
り二酸化マンガンのプロトンと中和処理液のカチオンと
の交換量が少ない場合は、電池絹立後藏解液中のカチオ
ンとプロトンとの交換によりプロトンが電、解液中に放
出されるので、電解液のpHは酸性側に移行し、電池の
電圧は高くなる。@1N液の酸性が強くなると電池を長
期貯越した場合、負極亜鉛の腐食を促進することになる
。中和処理後の電解二酸化マンガンのpHが高い場合、
つまり二酸化マンガンのプロトンと中和処理液、のカチ
オンとの交換量が多い場合は、電池組立後は電解液中へ
のプロトンの放出は少なく電池電圧もそれ程高くならな
いが、二酸化マンガンの活性が小さくカシ、電池の放電
性能が悪くなる。このような電解二酸化マンガンのpH
の差異による電池電圧への影響を少くするために、正極
合剤配合時に少量の酸化亜鉛を添加しているが、二酸化
マンガンのpHに応じた添加量の管理がむづかしく、電
池電圧の制御には成る程度の効果はあるが、添加量が適
量を越えると放電中の電池電圧の降下、インピーダンス
の増大等′電池性能に悪影響をおよぼすことになる。特
に中負荷から重負荷にかけての放電、中に重負荷のパル
ス放電を重畳するような用途の場合、放電中期からの内
部抵抗の増大が大きくなる。When a dry battery is manufactured using such electrolytic manganese dioxide, protons, sodium ions, or ammonium ions on the surface of manganese dioxide are affected by cations in the electrolyte. The degree of influence varies depending on the type and amount of cations adsorbed on manganese dioxide, the type and amount of cations contained in the electrolyte, and the pH of the electrolyte. If the pH of the electrolytic manganese dioxide after neutralization is low, that is, if the amount of exchange between protons in manganese dioxide and cations in the neutralization treatment solution is small, the exchange rate between cations and protons in the decomposition solution after battery rise is low. As a result, protons are released into the electrolyte, the pH of the electrolyte shifts to the acidic side, and the voltage of the battery increases. If the acidity of the @1N solution becomes strong, corrosion of the negative electrode zinc will be promoted if the battery is stored for a long time. If the pH of electrolytic manganese dioxide after neutralization treatment is high,
In other words, if the amount of exchange between manganese dioxide protons and cations in the neutralization treatment solution is large, there will be few protons released into the electrolyte after battery assembly, and the battery voltage will not become so high, but the activity of manganese dioxide will be low. Otherwise, the discharge performance of the battery will deteriorate. The pH of such electrolytic manganese dioxide
In order to reduce the effect on battery voltage due to differences in manganese dioxide, a small amount of zinc oxide is added when formulating the positive electrode mix, but it is difficult to control the amount added according to the pH of manganese dioxide, making it difficult to control battery voltage. However, if the amount added exceeds an appropriate amount, it will adversely affect battery performance, such as a drop in battery voltage during discharge and an increase in impedance. Particularly in the case of discharge from medium load to heavy load, in which heavy load pulse discharge is superimposed, the internal resistance increases significantly from the middle stage of discharge.
本発明の目的は従来のこのような欠点を除き、特に電池
の放電性能の向上を図ったものである。The object of the present invention is to eliminate such drawbacks of the conventional technology and particularly to improve the discharge performance of the battery.
マンガン乾電池を放電すると電池の電圧は徐々に低下す
るがこの原因の大部分は正極側で認められる。正極の二
酸化マンガンは次の式に従って放電が進行する。When a manganese dry battery is discharged, the voltage of the battery gradually decreases, and most of this is observed on the positive electrode side. Discharge of manganese dioxide at the positive electrode progresses according to the following equation.
十 −
Mn02+ H十e = Mn00H−(1)二酸化
マンガンはMn(I)(c還元され、それに伴つて二酸
化マンガン近傍ではH+が消費されるのでpl(は上昇
する。生成したMn(III)は次の不均化反応によっ
てMn を溶出する。10 − Mn02+ H0e = Mn00H − (1) Manganese dioxide is reduced by Mn(I)(c, and H+ is consumed near manganese dioxide, so pl( increases. The generated Mn(III) Mn is eluted by the following disproportionation reaction.
2 Mn0OH+2H−) MnO2+ Mn2++
2H20・= (2)またマンガン乾電池電解液中での
二酸化マンガン極の雷1位−pH関係は交点が存在する
2つの直線がらなり、交点から酸性側のpH領域では上
記(2)の不、増化反応により生成したMn2+が存在
し、pH当り−0,118Vの理論電位に近い!、極宵
位を示す。また交点より塩基性側のpH領域ではMn
イオンの溶出が殆どおきないため、pE(当り−0,
059Vの理飾〕雷1位に近い電極電位が得られる。2 Mn0OH+2H-) MnO2+ Mn2++
2H20・= (2) In addition, the lightning position-pH relationship of the manganese dioxide electrode in the electrolyte of a manganese dry battery consists of two straight lines with an intersection, and in the pH region on the acidic side from the intersection, the above (2) is not satisfied. There is Mn2+ produced by the enrichment reaction, and the potential is close to the theoretical potential of -0,118V per pH! , indicating the polar position. In addition, in the pH region on the basic side of the intersection, Mn
Since there is almost no elution of ions, the pE (per -0,
059V] An electrode potential close to that of lightning can be obtained.
放電反応の進行に伴い、(1)、(2)式に示す如く二
酸化マンガン近傍ではpHは上昇し、1ν1n の溶
出がおこる。駕1位−pH直ネ♀の交点を出来るだけ酸
性側に移行させれば、仄1ApH領域に亘ってMn
の溶出を抑制し、pHM りの官位変化を小さくするこ
とが出来る。これによシミ池の放電中の電圧の低下を抑
制し、特に放電中期からのインピーダンスの増加を防止
することが出来る。As the discharge reaction progresses, the pH increases in the vicinity of manganese dioxide as shown in equations (1) and (2), and elution of 1v1n occurs. If the intersection of 1st position - pH straight ♀ is moved to the acidic side as much as possible, Mn
It is possible to suppress the elution of pHM and to reduce the change in position due to pHM. This can suppress a drop in voltage during discharge of the stain battery, and can prevent an increase in impedance, particularly from the middle stage of discharge.
本発明は、水洗、またはナトリウムあるいはアンモニウ
ムのアルカリ性水溶液で中和処理した電解二酸化マンガ
ンをアルミニウム塩水溶液で処理して、二酸化マンガン
表面のプロトン、ナトリウムイオンあるいはアンモニウ
ムイオンを3価のアルミニウムイオンで交換することに
ょシ、二酸化マンガンの電位−pH直紗の交点は酸性側
に移行し、広いpH範囲で低い電位変化を示すことがわ
かった。In the present invention, electrolytic manganese dioxide that has been washed with water or neutralized with an alkaline aqueous solution of sodium or ammonium is treated with an aqueous aluminum salt solution to exchange protons, sodium ions, or ammonium ions on the surface of manganese dioxide with trivalent aluminum ions. In particular, it was found that the potential-pH line intersection of manganese dioxide shifted to the acidic side and showed a low potential change over a wide pH range.
またこの二酸化マンガンを用いたマンガン乾電池は放電
中期からの電圧の降下が少なく、特にインピーダンスの
増加が殆ど々いすぐれた放電性能を示すことがわかった
〇
実施例
電解二酸化マンガンを水洗後、N40.水溶液で中和処
理を行った。この二酸化マンガンのpHはJIS K
1467に従って測定したところ42であった。In addition, it was found that the manganese dry battery using this manganese dioxide has a small voltage drop from the middle stage of discharge, and in particular, an increase in impedance shows almost excellent discharge performance.Example After washing electrolytic manganese dioxide with water, N40. Neutralization treatment was performed with an aqueous solution. The pH of this manganese dioxide is JIS K
It was 42 when measured according to 1467.
この二酸化マンガン10重量部に対し0.1 M )d
cll 、溶液50重量部の割合で室温で2時間振とう
した。振とう終了後上澄液を拾で、水で5回洗浄後P週
し乾燥した。この二酸化マンガンを用いて塩化亜鉛タイ
プのマンガン乾電池SILM−3をっくシ本発明による
電池(A)としだ。MCl3溶液処理をせず、中和処理
だけの電解二酸化マンガンを用いて、二酸化マンガンに
対し0.8重量%の酸化亜鉛を添加し、その他は電池(
A)と同じにして8uM −3をっくシ従来例電池(B
)とした。電池の放電、試験結果を図面に示した。本発
明′b池(A)を1.2にΩの負荷抵抗で連続放電した
ときの端子電圧の変化をA、インピーダンス(電池内部
抵抗)の変化を■で示した。また1、2KO連続放電中
に1N1回5Ω印秒間のパルス放電を重畳して行い、そ
の時の端子筒、圧の変化をAとして示しだ。同じ〈従来
例電池(B)についても同様の試験を行い、夫々B、■
、Bとして示した。図面から明らかな如く、本発明電池
は放電中期からの端子型5池の降下が少なく、しかも放
電中期からのインピーダンスの増加は殆どみられない。0.1 M)d for 10 parts by weight of this manganese dioxide
cll and 50 parts by weight of the solution were shaken at room temperature for 2 hours. After shaking, the supernatant was collected, washed 5 times with water, and dried for P weeks. Using this manganese dioxide, a zinc chloride type manganese dry cell SILM-3 was constructed as a battery (A) according to the present invention. Using electrolytic manganese dioxide that has only been neutralized without MCl3 solution treatment, 0.8% by weight of zinc oxide is added to the manganese dioxide, and the rest is battery (
Same as A) but 8uM-3.
). The battery discharge and test results are shown in the drawing. The change in terminal voltage when the cell (A) of the present invention'b was continuously discharged with a load resistance of 1.2 Ω is shown as A, and the change in impedance (internal battery resistance) is shown as ■. In addition, during the 1 and 2 KO continuous discharges, a pulse discharge of 1 N for 5 Ω impression seconds was superimposed, and the change in terminal tube pressure at that time is shown as A. A similar test was conducted on the same conventional battery (B), and B and ■
, shown as B. As is clear from the drawings, in the battery of the present invention, the drop of the terminal type 5 battery from the middle stage of discharge is small, and there is hardly any increase in impedance from the middle stage of discharge.
また5Ωのパルス放電を重畳した場合の電圧の降下は従
来’Ffjfbhにくらべて極めて少々いことがわかる
。このように本発明電池は従来電池にくらべて極めてす
ぐれた放電特性を得ることが出来る。SqM−3電池に
対し1.2にΩ放電という中負荷放電についての例を示
したが、これよシ負荷抵抗の小さい重負荷放雷について
も本発明電池は従来電池にくらべてすぐれた放電性能を
示すことがわかった。Further, it can be seen that the voltage drop when a 5Ω pulse discharge is superimposed is extremely small compared to the conventional 'Ffjfbh. As described above, the battery of the present invention can obtain extremely superior discharge characteristics compared to conventional batteries. An example of a medium load discharge of 1.2Ω discharge was shown for an SqM-3 battery, but the battery of the present invention has superior discharge performance compared to conventional batteries even under heavy load lightning strikes with low load resistance. It was found that
また、本発明の実施例はアルミニウム塩水溶液で処理を
しているが、アルミニウムの水酸化物と水とに混合して
処理しても同様の効果を得られるし、アルミニウムの硝
酸塩、硫酸塩を用いることもできる。In addition, although the embodiment of the present invention uses an aqueous aluminum salt solution, the same effect can be obtained by mixing aluminum hydroxide and water, or using aluminum nitrate or sulfate. It can also be used.
図は本発明電池と従来型、池との放電曲線とインピーダ
ンス曲線の比較図である。
A、A・・本発明電池の放電曲線
■ 〃 インピーダンス
B、B・・・従来電池の放電曲線
■・・・ 〃 インピーダンス特許出願人の名
称
東芝電池株式会社
代表孟−一−呈呈−立The figure is a comparison diagram of the discharge curve and impedance curve of the battery of the present invention and a conventional battery. A, A... Discharge curve of the battery according to the present invention ■〃 Impedance B, B... Discharge curve of the conventional battery ■... Name of the impedance patent applicant
Claims (2)
ルカリ性水溶液で中和処理した電解二酸化マンガンを、
アルミニウム塩水溶液、もしくはアルミニウムの水酸化
物と水と、に混合し処理して、正極活物質として用いる
ことを特徴とするマンガン乾電池の製造法。(1) Electrolytic manganese dioxide that has been washed with water or neutralized with an alkaline aqueous solution of sodium or ammonia,
A method for manufacturing a manganese dry battery, which comprises mixing an aluminum salt aqueous solution or an aluminum hydroxide with water and treating the mixture for use as a positive electrode active material.
あることを特徴とする特許請求の範囲法1項記載のマン
ガン乾電池の製造法。(2) The method for producing a manganese dry battery according to claim 1, wherein the aluminum salt is a chloride, nitrate, or sulfate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58049490A JPS59175563A (en) | 1983-03-24 | 1983-03-24 | Manufacture of manganese dry cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58049490A JPS59175563A (en) | 1983-03-24 | 1983-03-24 | Manufacture of manganese dry cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59175563A true JPS59175563A (en) | 1984-10-04 |
JPH0343747B2 JPH0343747B2 (en) | 1991-07-03 |
Family
ID=12832589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58049490A Granted JPS59175563A (en) | 1983-03-24 | 1983-03-24 | Manufacture of manganese dry cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59175563A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483930A (en) * | 1987-09-24 | 1989-03-29 | Mita Industrial Co Ltd | Electromagnetic control spring clutch mechanism |
WO2019181192A1 (en) * | 2018-03-22 | 2019-09-26 | Fdk株式会社 | Method for producing battery electrode material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011016908A1 (en) | 2009-08-03 | 2011-02-10 | Illinois Tool Works Inc. | Optical interruption sensor with opposed light emitting diodes |
-
1983
- 1983-03-24 JP JP58049490A patent/JPS59175563A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483930A (en) * | 1987-09-24 | 1989-03-29 | Mita Industrial Co Ltd | Electromagnetic control spring clutch mechanism |
WO2019181192A1 (en) * | 2018-03-22 | 2019-09-26 | Fdk株式会社 | Method for producing battery electrode material |
JP2019169306A (en) * | 2018-03-22 | 2019-10-03 | Fdk株式会社 | Method for producing battery electrode material |
US11404691B2 (en) | 2018-03-22 | 2022-08-02 | Fdk Corporation | Method of manufacturing battery electrode material |
Also Published As
Publication number | Publication date |
---|---|
JPH0343747B2 (en) | 1991-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2621930C2 (en) | Electrochemical cell | |
CN104241633A (en) | Gradient-doping positive material of lithium ion battery and preparation method of gradient-doping positive material of lithium ion battery | |
WO2011024765A1 (en) | Electrolytic manganese dioxide, method for producing same, and use of same | |
JP2001102086A (en) | Water system of lithium ion cell | |
US2399127A (en) | Dry cell | |
JPS59175563A (en) | Manufacture of manganese dry cell | |
JPWO2006001210A1 (en) | Alkaline battery | |
JPH0750606B2 (en) | Non-aqueous electrolyte battery and method for producing positive electrode active material thereof | |
JPS59194355A (en) | Manufacture of manganese dry battery | |
JPS5717564A (en) | Silver-oxide lithium aqueous-solution battery | |
JPH0343746B2 (en) | ||
JPS59194356A (en) | Manufacture of manganese dry battery | |
US3761317A (en) | Corrosion inhibitor for magnesium cells | |
JP2638624B2 (en) | Method for producing positive electrode mixture for manganese battery | |
JPS59194357A (en) | Manufacture of manganese dry battery | |
JPWO2022064883A5 (en) | ||
CN105932312B (en) | Carbon battery with low gas evolution amount and preparation method thereof | |
JPH07105225B2 (en) | Manganese battery | |
Våland | The molybdenum trioxide doped manganese dioxide electrode: 1. Use as low temperature battery cathodes | |
KR20050054870A (en) | Active substance of positive electrode for battery, process for producing the same and battery therefrom | |
JP2737233B2 (en) | Zinc alkaline battery | |
JPH07335227A (en) | Alkaline battery | |
US1459698A (en) | Depolarizer | |
DE2714074C3 (en) | Process for the catalytic reduction of pollutants which can be reducible with reducing agents in an aqueous solution | |
US1425573A (en) | Electric battery |