JPS59174552A - Inorganic hardened body - Google Patents

Inorganic hardened body

Info

Publication number
JPS59174552A
JPS59174552A JP58046885A JP4688583A JPS59174552A JP S59174552 A JPS59174552 A JP S59174552A JP 58046885 A JP58046885 A JP 58046885A JP 4688583 A JP4688583 A JP 4688583A JP S59174552 A JPS59174552 A JP S59174552A
Authority
JP
Japan
Prior art keywords
fibers
pva
fiber
cement
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046885A
Other languages
Japanese (ja)
Inventor
保 赤阪
武 村上
曽田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58046885A priority Critical patent/JPS59174552A/en
Publication of JPS59174552A publication Critical patent/JPS59174552A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、セメントなどの如き無機バインダーとの密
着性にすぐれた補強用ポリビニルアルコール繊維(ビニ
ロンともいう。以下PVA繊維と略記する)を含有する
無機硬化体に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to an inorganic hardened fiber containing reinforcing polyvinyl alcohol fiber (also referred to as vinylon, hereinafter abbreviated as PVA fiber) that has excellent adhesion to an inorganic binder such as cement. Regarding the body.

〔背景技術〕[Background technology]

従来、セメント、石膏、ケイ酸カルシウム等の水硬性原
料(無機バインダー)を用いて建築用材料や製品を作る
場合、繊維等の補強材としては石綿が代表的なものとし
て使用されてきた。近年、石綿の、公害衛生上からみた
人体への悪影響の問題や、天然物である関係上資源的に
入手難等の理由により、石綿の代替としてスチールファ
イバー、ガラス繊維、カーボンファイバー等の無機繊維
やJポリプロピレン、ポリアミド、PVAなとの有機繊
維を、単独または組み合わせて補強繊維として使用する
ことが検討されている。
Conventionally, when building materials and products are made using hydraulic raw materials (inorganic binders) such as cement, gypsum, and calcium silicate, asbestos has been typically used as a reinforcing material for fibers and the like. In recent years, inorganic fibers such as steel fibers, glass fibers, and carbon fibers have been used as substitutes for asbestos due to problems such as the negative effects of asbestos on the human body from the standpoint of pollution and hygiene, and the difficulty in obtaining resources because it is a natural product. The use of organic fibers such as J-polypropylene, polyamide, and PVA, alone or in combination, as reinforcing fibers is being considered.

上記の代替補強繊維類は、いずれも一長一短があって完
全に石綿に置きかえるような技術は完成されたとは云え
ない。そのような中では、PVA′繊維が末端に水酸基
を有するのでマトリックスとのなじみが良く、かつ補強
効果および経済性の面よりすぐれている。しかし、従来
のように単に、PVA繊′維をセメントと一緒に混ぜる
というだけでは、PVA繊維の存する高いヤング率が未
だ充分に生かされているとは云えない。すなわち、セメ
ントとPVA&&維との接着性が未だ十分とは云えず、
この点を改良することにより、より性能のすぐれた材料
、製品が得られるものと推察できる。この様な点に鑑み
て、PVA繊維に凹部を設けてセメントの接着性をアッ
プさせようと試みた特許が開示されている(特開昭56
−149374、特開昭56−140113.特開昭5
6125270、特開昭56−140112等)。
All of the above-mentioned alternative reinforcing fibers have advantages and disadvantages, and it cannot be said that the technology to completely replace asbestos has been completed. Among these, PVA' fibers have hydroxyl groups at the ends, so they are compatible with the matrix, and are superior in terms of reinforcing effect and economical efficiency. However, by simply mixing PVA fibers with cement as in the past, the high Young's modulus of PVA fibers cannot be fully utilized. In other words, the adhesion between cement and PVA&& fiber is still not sufficient.
It can be inferred that by improving this point, materials and products with even better performance can be obtained. In view of these points, a patent has been disclosed in which an attempt was made to improve the adhesion of cement by providing recesses in PVA fibers (Japanese Unexamined Patent Publication No. 1983-1999).
-149374, JP-A-56-140113. Japanese Patent Application Publication No. 5
6125270, JP-A-56-140112, etc.).

しかしながら、前記開示された技術はいづれもPVAI
Jli維に凹部を設けたものであり、元の繊維径より太
い部分が無く、凹部の径は元の繊維径より細い。したが
って、繊維の引張強度が低下するという問題点がある上
に、セメントとの接着強度をアップさせるという観点か
らも効果が今一つである。すなわち、一度マトリックス
から抜は出すと、PVA繊維に引掛り部分が無いだけに
簡単に抜けてしまうといった欠点があった。
However, all of the disclosed techniques are based on PVAI.
This is a Jli fiber with a recessed part, and there is no part that is thicker than the original fiber diameter, and the diameter of the recessed part is smaller than the original fiber diameter. Therefore, there is a problem that the tensile strength of the fibers is reduced, and the effect is not so good from the viewpoint of increasing the adhesive strength with cement. That is, once pulled out from the matrix, there was a drawback that the PVA fibers easily pulled out because there was no hooking part.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みなされたもので、補
強用繊維としてのPVA繊維のマトリックスとの接着強
度を向上させることにより強度のすぐれた無機硬化体を
提供することを目的とする〔発明の開示〕 発明者らは、無機硬化体の強化に際し、補強繊維の形状
、構造について鋭意検討した結果、ところどころに幅も
しくは径の大きくなった部分をもつPVA繊維を用いる
こととすれば、上記の目的を達成し得ることを確認し、
この発明を完成するに至った。
This invention was made in view of the above circumstances, and an object thereof is to provide an inorganic cured product with excellent strength by improving the adhesive strength with a matrix of PVA fibers as reinforcing fibers. [Disclosure] As a result of intensive study on the shape and structure of reinforcing fibers when reinforcing an inorganic cured product, the inventors found that if PVA fibers with enlarged width or diameter portions are used here and there, the above-mentioned Confirm that the purpose can be achieved,
This invention was completed.

したがって、この発明は、補強繊維としてところどころ
に幅もしくは径の大きくなった部分をもつPVA繊維が
用いられていることを特徴とする無機硬化体をその要旨
としている。以下にこれについて詳細に説明する。
Therefore, the gist of the present invention is an inorganic cured product characterized in that PVA fibers having enlarged width or diameter portions are used here and there as reinforcing fibers. This will be explained in detail below.

この発明にかかる無機硬化体の製造原料としては、無機
バインダーと補強繊維が必須のものとして用いられる。
As raw materials for producing the inorganic cured product according to the present invention, an inorganic binder and reinforcing fibers are essential.

この発明で使用する無機バインダーとは、広義には、水
硬性物質、狭義にはセメント11をいう。すなわち、水
硬性物質とは、セメント類、スラグ頻1石膏類2石灰類
、炭酸マグネシウム類等をいう。セメント類とは、普通
ポルトランドセメント、アルミナセメント、早強セメン
ト、ジェットセメント、高炉セメント、フライアッシュ
セメント等をいう。また、補強繊維としては、親水性で
あるPVA繊維が用いられる。PVA繊維は、湿式紡糸
法、乾式紡糸法などによって紡糸されたものを、熱処理
時に型付けして、ところどころに幅もしくは径の大きく
なったものにして使用する。
The inorganic binder used in this invention refers to a hydraulic substance in a broad sense, and refers to cement 11 in a narrow sense. That is, hydraulic substances include cements, slags, gypsums, limes, magnesium carbonates, and the like. Cement refers to ordinary Portland cement, alumina cement, early strength cement, jet cement, blast furnace cement, fly ash cement, etc. Further, as the reinforcing fibers, hydrophilic PVA fibers are used. PVA fibers are spun by a wet spinning method, a dry spinning method, etc., and are shaped during heat treatment so that the width or diameter becomes larger in some places.

第1図はこの発明にかかる無機硬化体に使用するPVA
繊維の形態モデルをあられす斜視図、第2図は第1図を
矢印A側より見た側面図、第3図は第1図を矢印B側よ
り見た側面図である。これらの図にみるように、PVA
繊維lば、繊維軸方向にところどころに幅の大きくなっ
た部分2を有している。これらの部分2は、少なくとも
一方の面から眺めて、第2図の如く幅が大きくなったも
のである。つまり、PVA繊維が加熱時型付けによって
押し付けられて巾が広くなった部分2は、繊維によじれ
が生じているのが、通常であることから、眺める角度に
よって第2図の如く幅広くみえたり、第3図の如く偏平
にみえたりするからである。しかし、このモデル図に示
すものに限定されるものではなく、どの角度からみても
径の太いものであっても使用できる。第4図および第5
図は、PVA繊維の顕微鏡写真をあられすものであって
第4図は型付前の側面図、第5図は熱処理型付後の側面
図である。第5図にもみられるように、熱処理型付後は
、ところどころに幅または径の大きい部分2が形成され
ている。部分2の繊維径(tl)と、元の繊維径(t2
)は、tl >ttの関係になっている。部分2は、繊
維軸方向に規則正しく配列させる必要はない。部分2の
径は、好ましくは元の繊維径(t2)に対し2〜3倍程
度であるが、特にこれに限定されない。また、部分の個
数は、好ましくは繊維長50〜200μに対して、長さ
20〜100μ位の部分を一個所有すればよい。この部
分はセメントマトリックスとの界面での接着性を向上さ
せる作用をする。したがって、このような部分を有する
PVA繊維をセメントマトリックス中に混合して得られ
た硬化体は、通常のPVA繊維の使用に比べて著しく強
度(曲げ強度、衝撃強度等)が増大する。この強度発現
の機構は未だ明らかでないが、この発明の場合、PVA
繊維の断面積を減少させることなく、その表面積を増大
させることが出来ているために、セメントマトリックス
との接着面積が増大すると共に、部分により繊維が抜け
にくくなったことが原因と推察される。断面積が全く減
少しないため、繊維自体の強度低下もない。部分2を有
するPVA繊維の含有量は原料固型分全重量に対し0゜
5〜5重量%とすることが好ましい。0.5重量%未満
では補強の効果が顕著でなく、5重量%を越えると繊維
の分散がむつかしく、逆に強度低下の原因となる場合が
ある。なお、この発明にかかる無機硬化体は、必要に応
じて他の添加物、例えば、無機フィラー(粘土系、シリ
カ粉末、炭酸カルシウム粉末等)、繊維類(ロックウー
ル、スチールファイバー等)、凝集剤、*水剤などの樹
脂物を添加することができる。
Figure 1 shows PVA used in the inorganic cured body according to this invention.
FIG. 2 is a side view of FIG. 1 viewed from the arrow A side, and FIG. 3 is a side view of FIG. 1 viewed from the arrow B side. As seen in these figures, PVA
The fiber 1 has portions 2 which are widened here and there in the fiber axis direction. These portions 2 have increased widths as shown in FIG. 2 when viewed from at least one side. In other words, it is normal for the fibers to be twisted in the part 2 where the PVA fibers are pressed and widened by shaping during heating. This is because it looks flat as shown in Figure 3. However, it is not limited to what is shown in this model diagram, and any diameter can be used even if it is viewed from any angle. Figures 4 and 5
The figures show microscopic photographs of PVA fibers, with FIG. 4 being a side view before molding, and FIG. 5 being a side view after heat treatment molding. As can be seen in FIG. 5, after the heat treatment molding, portions 2 with large widths or diameters are formed here and there. The fiber diameter of part 2 (tl) and the original fiber diameter (t2
) has the relationship tl > tt. The portions 2 do not need to be regularly arranged in the fiber axis direction. The diameter of the portion 2 is preferably about 2 to 3 times the original fiber diameter (t2), but is not particularly limited to this. As for the number of parts, preferably one part with a length of about 20 to 100 microns is provided for each fiber length of 50 to 200 microns. This portion functions to improve adhesion at the interface with the cement matrix. Therefore, a cured product obtained by mixing PVA fibers having such portions into a cement matrix has significantly increased strength (flexural strength, impact strength, etc.) compared to the use of ordinary PVA fibers. Although the mechanism of this strength development is not yet clear, in the case of this invention, PVA
This is thought to be because the surface area of the fibers could be increased without decreasing their cross-sectional area, which increased the area of adhesion with the cement matrix and made it difficult for the fibers to come off in some areas. Since the cross-sectional area does not decrease at all, there is no decrease in the strength of the fiber itself. The content of the PVA fiber having the portion 2 is preferably 0.5 to 5% by weight based on the total weight of the raw material solids. If it is less than 0.5% by weight, the reinforcing effect will not be significant, and if it exceeds 5% by weight, it will be difficult to disperse the fibers, which may conversely cause a decrease in strength. The inorganic cured product according to the present invention may contain other additives as necessary, such as inorganic fillers (clay-based, silica powder, calcium carbonate powder, etc.), fibers (rock wool, steel fiber, etc.), and flocculants. , *Resin substances such as water agents can be added.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる無機硬化体は、補強繊維としてところ
どころに幅もしくは径の大きくなった部分をもつPVA
繊維を含有させているので、通常のPVA@維を補強繊
維として使用したものに比較して著しく強度(曲げ強度
、衝撃強度など)の増大した無機硬化体となっている。
The inorganic cured body according to the present invention is made of PVA having parts with increased width or diameter in some places as reinforcing fibers.
Since it contains fibers, it is an inorganic cured product with significantly increased strength (flexural strength, impact strength, etc.) compared to those using ordinary PVA@fibers as reinforcing fibers.

以下、実施例に、ついて比較例と併せて説明する〔実施
例1〜3〕 まず、補強繊維として、通常の湿式紡糸法により得られ
たPVA#a維を、第1表に示した条件にしたがって熱
処理しながら型付して第5図の如き部分2設けたものを
準備した。
Examples will be described below along with comparative examples [Examples 1 to 3] First, as reinforcing fibers, PVA#a fibers obtained by a normal wet spinning method were subjected to the conditions shown in Table 1. Therefore, a mold was prepared while heat-treating, and a portion 2 as shown in FIG. 5 was provided.

〔比較例1〕 補強繊維として、熱処理型付けしない第4図の如きPV
A繊維を準備した。
[Comparative Example 1] PV as shown in Fig. 4 without heat treatment was used as reinforcing fiber.
A fiber was prepared.

〔比較例2〕 補強繊維として、特開昭56−140113に類似した
方法で、表面に凹部を形成したPVAt8維を準備した
[Comparative Example 2] As reinforcing fibers, PVAt8 fibers with concave portions formed on the surface were prepared using a method similar to JP-A-56-140113.

これら実施例1〜3.比較例1〜2で準備したPVA繊
維を用いて、第1表に示した配合割合でセメントスラリ
ーを作り、同じく第1表に示した抄造条件で、ハチニッ
ク抄造(丸網抄造)を実施1      し、さらに、
第1表に示した条件で養生を行ない、厚み7Iの平板状
の無機硬化体を得た。各無機硬化体の物性値を第2表に
示した。
These Examples 1 to 3. Using the PVA fibers prepared in Comparative Examples 1 and 2, a cement slurry was made with the mixing ratio shown in Table 1, and honeynic papermaking (round net papermaking) was carried out under the papermaking conditions also shown in Table 1. ,moreover,
Curing was performed under the conditions shown in Table 1 to obtain a flat inorganic cured product with a thickness of 7I. Table 2 shows the physical properties of each inorganic cured product.

(以下余白) 第  1   表 ■ 第    2    表 実施例1〜3は、比較例1〜2に比し、曲げ強度。(Margin below) Table 1 ■ Table 2 Examples 1 to 3 have better bending strength than Comparative Examples 1 to 2.

衝撃強度、眉間密着強度にすぐれた無機硬化体であった
It was an inorganic cured product with excellent impact strength and glabella adhesion strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる無機硬化体に使用するPVA
繊維の形態モデルをあられす斜視図、第2図は第1図を
矢印A側より見た側面図、第3図は第1図を矢印B側よ
り見た側面図、第4図および第5図はpv八織繊維顕微
鏡写真をあられすものであって、第4図は型付前の側面
図、第5図は熱処理型付後の側面図である。 1・・・PVA繊維 2・・・幅もしくは径の大きくな
った部分 代理人 弁理士  松 本 武 彦 第2図 第3図
Figure 1 shows PVA used in the inorganic cured body according to this invention.
Figure 2 is a side view of Figure 1 viewed from the arrow A side, Figure 3 is a side view of Figure 1 viewed from the arrow B side, Figures 4 and 5 are a perspective view of the fiber morphology model. The figures show microscopic photographs of the PV Yaori fiber, in which Figure 4 is a side view before molding, and Figure 5 is a side view after heat treatment molding. 1... PVA fiber 2... Partial agent with increased width or diameter Patent attorney Takehiko Matsumoto Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  補強繊維としてところどころに幅もしくは径
の大きくなった部分をもつポリビニルアルコール繊維が
用いられていることを特徴とする無機硬化体。
(1) An inorganic cured product characterized by using polyvinyl alcohol fibers having enlarged width or diameter portions here and there as reinforcing fibers.
(2)  ポリビニルアルコール繊維が、繊維のところ
どころが押しつぶされて幅が太くなったものである特許
請求の範囲第1項記載の無機硬化体。
(2) The inorganic cured product according to claim 1, wherein the polyvinyl alcohol fiber is made thicker by being crushed in some places.
(3)ポリビニルアルコール繊維が、原料固型分重量に
対して0.5〜5重量%含まれている特許請求の範囲第
1項または第2項記載の無機硬化体。
(3) The inorganic cured product according to claim 1 or 2, wherein the polyvinyl alcohol fiber is contained in an amount of 0.5 to 5% by weight based on the solid weight of the raw material.
JP58046885A 1983-03-18 1983-03-18 Inorganic hardened body Pending JPS59174552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046885A JPS59174552A (en) 1983-03-18 1983-03-18 Inorganic hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046885A JPS59174552A (en) 1983-03-18 1983-03-18 Inorganic hardened body

Publications (1)

Publication Number Publication Date
JPS59174552A true JPS59174552A (en) 1984-10-03

Family

ID=12759809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046885A Pending JPS59174552A (en) 1983-03-18 1983-03-18 Inorganic hardened body

Country Status (1)

Country Link
JP (1) JPS59174552A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163149A (en) * 1985-01-09 1986-07-23 東レ株式会社 Acrylic fiber for reinforcement
JPS61168140U (en) * 1985-04-05 1986-10-18
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.
KR200456953Y1 (en) * 2009-01-05 2011-11-30 (주)청조엔지니어링 fiber for reinforcing concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585457A (en) * 1978-12-20 1980-06-27 Mitsui Petrochemical Ind Core material for waterrsetting substance reinforcement
JPS569267A (en) * 1979-07-04 1981-01-30 Mitsui Petrochemical Ind Manufacture of cement blend
JPS56125264A (en) * 1980-03-06 1981-10-01 Kuraray Co Fiber reinforced cement product
JPS56149374A (en) * 1980-04-17 1981-11-19 Kuraray Co Fiber reinforced cement material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585457A (en) * 1978-12-20 1980-06-27 Mitsui Petrochemical Ind Core material for waterrsetting substance reinforcement
JPS569267A (en) * 1979-07-04 1981-01-30 Mitsui Petrochemical Ind Manufacture of cement blend
JPS56125264A (en) * 1980-03-06 1981-10-01 Kuraray Co Fiber reinforced cement product
JPS56149374A (en) * 1980-04-17 1981-11-19 Kuraray Co Fiber reinforced cement material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163149A (en) * 1985-01-09 1986-07-23 東レ株式会社 Acrylic fiber for reinforcement
JPS61168140U (en) * 1985-04-05 1986-10-18
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.
KR200456953Y1 (en) * 2009-01-05 2011-11-30 (주)청조엔지니어링 fiber for reinforcing concrete

Similar Documents

Publication Publication Date Title
JP3265183B2 (en) Manufacturing method of inorganic plate
JPS59174552A (en) Inorganic hardened body
JP2000109380A (en) Lightweight inorganic board
JPS60176976A (en) Manufacture of inorganic cured body
JPH1192202A (en) Production of inorganic hardened molded form
JPH0216257B2 (en)
JPS6126544A (en) Hydraulic inorganic papering product and manufacture
JPH0138065B2 (en)
JP2004010402A (en) Fiber-containing gypsum board and its manufacturing process
JP2003252668A (en) Hydraulic sheet for water storage tank wall material and water storage tank wall material using it
JP2006069807A (en) Inorganic board and its manufacturing method
JP2006069806A (en) Inorganic board and its manufacturing method
JPS598653A (en) Manufacture of fiber reinforced cement board
JP2863110B2 (en) Continuously vented lightweight solidified material containing latent hydraulic particles
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JPS5934673B2 (en) fiber reinforced cement material
JPS5957946A (en) Manufacture of inorganic hardened body
JP2863112B2 (en) Light-weight solid containing latent hydraulic particles
JPS598654A (en) Manufacture of fiber reinforced cement hardened body
JP4198868B2 (en) Manufacturing method of fiber reinforced inorganic board
JPH07308909A (en) Preparation of fiber-reinforced cement hardened material
JPH09136314A (en) Manufacture of fiber reinforced cement molding
JPH06219801A (en) Production of fiber reinforced concrete
JP4008171B2 (en) Inorganic board and method for producing the same
JP4559716B2 (en) Cement composite