JPS59173670A - Refrigerant flow controller for refrigerator - Google Patents

Refrigerant flow controller for refrigerator

Info

Publication number
JPS59173670A
JPS59173670A JP4975383A JP4975383A JPS59173670A JP S59173670 A JPS59173670 A JP S59173670A JP 4975383 A JP4975383 A JP 4975383A JP 4975383 A JP4975383 A JP 4975383A JP S59173670 A JPS59173670 A JP S59173670A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant flow
flow rate
refrigerator
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4975383A
Other languages
Japanese (ja)
Inventor
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4975383A priority Critical patent/JPS59173670A/en
Publication of JPS59173670A publication Critical patent/JPS59173670A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は電気的に制御を行う冷凍機用冷媒流量制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant flow rate control device for a refrigerator that performs electrical control.

従来、この種の制御装置として、第1図に示すように、
冷凍サイクル中の凝縮器と蒸発器との間に設置する温度
式膨張弁があった。この膨張弁は、弁本体l/に冷媒人
口/コと冷媒用E1/3が設けられ、弁本体llの内部
には弁口/ダの開度制御用の弁体部を有するスピンドル
/lと、スピンドルl!rにばね力を作用させるスプリ
ング16とが収納されている。上記スピンドル/3一端
部は感温筒室77内に取付けたダイヤフラム/gに連結
されている。
Conventionally, as this type of control device, as shown in Fig. 1,
There was a thermostatic expansion valve installed between the condenser and evaporator in the refrigeration cycle. This expansion valve is provided with a refrigerant port/co and a refrigerant E1/3 in the valve body l/, and a spindle/l having a valve body part for controlling the opening degree of the valve port/da inside the valve body l/. , spindle l! A spring 16 that applies a spring force to r is housed. One end of the spindle /3 is connected to a diaphragm /g installed inside the temperature-sensitive cylinder chamber 77.

そして、ダイヤフラム1gの上下移動により、スピンド
ル13が移動して弁口llIの開度が制御されるように
構成されている。
The spindle 13 is moved by the vertical movement of the diaphragm 1g, and the opening degree of the valve port III is controlled.

以上のように構成された従来の冷凍機用冷媒流量制御装
置は、冷媒が気化した状態を熱的に間接的に感知し、さ
らにこれを圧力に変換して機械的に作動させているため
、応答が遅れて弁の開き過ぎや、ハンチング現象を生じ
る欠点があった。
The conventional refrigerant flow control device for a refrigerator configured as described above thermally and indirectly senses the vaporized state of the refrigerant, and further converts this into pressure and operates it mechanically. This has the disadvantage that the response is delayed, causing the valve to open too much and a hunting phenomenon.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、温度式自動膨張弁とは全く異っ
た新規な制御方式を用いて、冷媒気化状態に対する応答
が早く、また精度の高い冷凍機用冷媒流量制御装置を提
供することを目的よしている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and uses a new control method that is completely different from that of thermostatic automatic expansion valves to achieve quick response to the refrigerant vaporization state. The purpose is to provide a highly accurate refrigerant flow rate control device for a refrigerator.

すなわち、この発明による冷凍機用冷媒流量制押装置は
、冷凍サイクルの蒸発器の出口付近の配管を流れる冷媒
の気液状態を電気的に判別する検出器と・この検出器か
らの信号に従って一定周波数でのデユーティ比を制御す
る制御器と、冷凍サイクルの凝縮器と蒸発器の間に設け
られて上記制御器の平均出力電流によって比例的に冷媒
流量を制御する膨張弁とを備えたことを特徴としている
That is, the refrigerant flow control device for a refrigerator according to the present invention includes a detector that electrically determines the gas-liquid state of the refrigerant flowing in the pipe near the outlet of the evaporator of the refrigeration cycle; A controller that controls a duty ratio at a frequency, and an expansion valve that is provided between a condenser and an evaporator of a refrigeration cycle and that proportionally controls a refrigerant flow rate based on the average output current of the controller. It is a feature.

以下、この発明に−よる冷媒流量制御装置を備えた冷凍
サイクルの一例を第2.図によって説明する。
Hereinafter, an example of a refrigeration cycle equipped with a refrigerant flow rate control device according to the present invention will be described in Section 2. This will be explained using figures.

この冷凍サイクルでは、圧縮機コlから吐出された高温
高圧の冷媒ガスは凝縮器ココで凝縮液化され、比例電磁
弁を開いた膨張弁、23を経て低温低圧にされて蒸発器
、24’に送られ、この蒸発器コクで蒸発気化して再び
上記圧縮機コlに吸入される。
In this refrigeration cycle, high-temperature, high-pressure refrigerant gas discharged from the compressor is condensed and liquefied in the condenser, passed through the expansion valve 23, which opens the proportional solenoid valve, and is made low-temperature and low-pressure to the evaporator 24'. It is sent to the evaporator, where it is evaporated and vaporized, and then sucked into the compressor again.

第2図中、コS、コロは温度検出器であり、温度検出器
コSは蒸発器コクに設けられ′C冷媒の蒸発温度を検出
し、温度検出器コtは圧縮機、2/への吸入冷媒ガス温
度を検出し1再検両温度の湿度差すなわち過熱度の信号
を制御器−7に入力させる。
In Fig. 2, ko S and ko are temperature detectors, the temperature sensor ko S is installed in the evaporator koku to detect the evaporation temperature of the refrigerant, and the temperature detector ko t is installed in the compressor, 2/ The temperature of the suction refrigerant gas is detected, and a signal representing the humidity difference between the two re-tested temperatures, that is, the degree of superheat, is input to the controller-7.

制御器コクは、これへの入力信号に応じて一定周波数に
おけるデユーティ比を上記膨張弁コ3に出力して冷媒流
量を制御するように構成されている。
The controller is configured to control the refrigerant flow rate by outputting a duty ratio at a constant frequency to the expansion valve 3 in response to an input signal thereto.

上記膨張弁、23の構造を第3図について説明する。膨
張弁コ3のボディ31には冷媒流量を制御する弁座3/
aと、ニードルパルプ3コの軸受部とが形成され、ボデ
ィ3/の下部に設けた冷媒配管3/コが蒸発器コクに連
通され、水平方向に設けた冷媒配管、3//が凝縮器コ
コに連通されている。上記ボディ3/の上部にパイプ3
6が固着されてボディ31上に突出し、パイプ36の上
部にコア33力f嵌合固定され、コア3Sの下部とプラ
ンジャ33上部の間にこれを下方に押圧するスプリング
3ダが介在されている。プランジャ33はパイプ3ルの
下部に上下方′向に移動可能に嵌合され、プランジャ3
3にニードルパルプ3コの上部に設けたねじ部が締結さ
れている。コア3Sの上端にはほば倒立椀状のケース3
9がねじ3/3で締結され、ケース3q内にはボビン3
7に着装された電磁コイル3gが挿入され、上記ボビン
37はパイプ36の外周に嵌合されている。上記ケース
39の下端開口が端壁部材310で閉塞され・この端壁
部材310は外周部がケース39の下縁部に固定されて
、パイプ36がこれとほげ同径の貫通孔に嵌挿されてい
る。
The structure of the expansion valve 23 will be explained with reference to FIG. The body 31 of the expansion valve 3 has a valve seat 3/3 for controlling the refrigerant flow rate.
A and bearing parts for three needle pulps are formed, refrigerant pipes 3// provided at the bottom of body 3/ are connected to the evaporator body, refrigerant pipes provided horizontally, and 3// are connected to the condenser. It is connected to here. Pipe 3 at the top of the above body 3/
6 is fixed and protrudes above the body 31, the core 33 is fitted and fixed to the upper part of the pipe 36, and a spring 3D is interposed between the lower part of the core 3S and the upper part of the plunger 33 to press it downward. . The plunger 33 is fitted into the lower part of the pipe 3 so as to be movable in the vertical direction.
3 is fastened with a threaded portion provided at the top of the three needle pulps. At the upper end of the core 3S is a case 3 shaped like an inverted bowl.
9 is fastened with 3/3 screw, and the bobbin 3 is inside the case 3q.
The electromagnetic coil 3g attached to the pipe 7 is inserted, and the bobbin 37 is fitted onto the outer periphery of the pipe 36. The lower end opening of the case 39 is closed by an end wall member 310, and the outer circumference of the end wall member 310 is fixed to the lower edge of the case 39, and the pipe 36 is fitted into a through hole having the same diameter as the end wall member 310. ing.

次に、以上のように構成されたものの動作について説明
する。凝縮器ココから流出する冷媒をよ、冷媒配管3/
/からボディ31内の筒状空間へ導入されて弁座J/a
上に達する。なお、この時パイプ36内も冷媒で満たさ
れる。こζで、電磁コイル3gに給電されていない時に
は、スプリング、?lIでニードルパルプ3コがボディ
31に押圧すれて弁座、?/aに接合されているため、
膨張弁、23は閉塞されて冷媒の流れが阻止される。そ
して、制御器、27から電磁コイル3gに給電されると
、端壁部材310.ケース3g、コア3Sおよびプラン
ジャ33によって構成される磁路に磁束が流通し、プラ
ンジャ3Jがコア3.tK向って給電電流に応じた吸引
力とスプリング、?4Cのばね力とが平衡する位置まで
移動する。この移動に伴ってニードルパルプ3コが移動
して弁座j/aとの接合が外れ、冷媒はボディ31内の
筒状空間から弁座3/a部を経て蒸発器コクに連通して
いる冷媒配管31コに流出する。この流出冷媒量はニー
ドルパルプ3.2の移動量に依存するため、電流に応じ
たプランジャ33の移動量による冷媒量の制御が可能と
なる。また、電磁コイル3gの電流に応じテ移動する二
=ドルパルプ32はボディ31に軸支され、軸受部の内
孔周壁に沿って移動するため、ニードルパルプ3コとボ
ディ31との間に摩擦力が生じ、電流に対するニードル
バルブ3.2の移動量にヒステリシスを生じる。このた
め、電磁コイル3gには、制御器コクにより一定周波数
のデユーティ比□を制御子ることで、平均出力電流を制
御して給電し、ニードルパルプ3コとボディ31の摺動
摩擦力をディザ効果により軽減し、平均出力電流に対し
てニードルパルプ3コの移動量を正確に制御し、冷媒流
量制御装置を安価に向上させることができる。
Next, the operation of the device configured as described above will be explained. Take the refrigerant flowing out from the condenser, refrigerant pipe 3/
/ into the cylindrical space in the body 31 and the valve seat J/a
reach the top. Note that at this time, the inside of the pipe 36 is also filled with refrigerant. With this ζ, when power is not supplied to the electromagnetic coil 3g, the spring, ? With lI, the three needle pulps press against the body 31 and the valve seat, ? Since it is joined to /a,
The expansion valve, 23, is closed to prevent refrigerant flow. When power is supplied from the controller 27 to the electromagnetic coil 3g, the end wall member 310. A magnetic flux flows through a magnetic path formed by the case 3g, the core 3S, and the plunger 33, and the plunger 3J connects the core 3. Attraction force and spring according to the power supply current towards tK? Move to a position where the spring force of 4C is balanced. Along with this movement, the three needle pulps move and are disconnected from the valve seat j/a, and the refrigerant is communicated from the cylindrical space in the body 31 through the valve seat 3/a to the evaporator body. It flows out into 31 refrigerant pipes. Since the amount of refrigerant flowing out depends on the amount of movement of the needle pulp 3.2, the amount of refrigerant can be controlled by the amount of movement of the plunger 33 in accordance with the current. In addition, the needle pulp 32, which moves according to the current of the electromagnetic coil 3g, is supported by the body 31 and moves along the circumferential wall of the inner hole of the bearing part, so there is a frictional force between the three needle pulps and the body 31. This causes hysteresis in the amount of movement of the needle valve 3.2 relative to the current. For this reason, the electromagnetic coil 3g is supplied with power by controlling the average output current by controlling the duty ratio □ of a constant frequency using the controller Koku, and the sliding friction force between the 3 needle pulps and the body 31 is controlled by the dither effect. The amount of movement of the three needle pulps can be accurately controlled with respect to the average output current, and the refrigerant flow rate control device can be improved at low cost.

以上説明したように、この発明は、蒸発器の出口配管付
近を流れる冷媒の気液状態を電気的に検出し、冷媒流量
を一定周波数におけるデユーティ比によって直線的に比
例制御し、蒸発器の負荷変動に対する冷媒流量の制御を
、精度よくしかも応答性よく行うことができる冷凍機用
冷媒流量制御装置を安価に提供できるという効果がある
As explained above, the present invention electrically detects the gas-liquid state of the refrigerant flowing near the outlet piping of the evaporator, linearly and proportionally controls the refrigerant flow rate using the duty ratio at a constant frequency, and reduces the load on the evaporator. The present invention has the advantage that a refrigerant flow rate control device for a refrigerator that can control the refrigerant flow rate with high accuracy and responsiveness in response to fluctuations can be provided at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度式自動膨張弁の一例を示す正面断面
図、第2図はこの発明による冷媒流量制御装置を備えた
冷媒サイクルの構成図、第3図はこの発明による冷媒流
量制御装置の膨張弁を示す正面断面図である。 //・・・弁本体、/2・・・冷媒入口、/、?・・・
冷媒出口、/り・・・弁口、/S・・・スピンドル、/
A・・・スプリング、/り・・・感温筒室、lざ・・−
ダイヤフラム、コ/・・・圧縮機、−一・・・凝縮器、
コ3・・・膨張弁、コク・・・蒸発器、コS、コロ・・
・温度検出器、コク・・・制御器、31・・・ボディ、
3/a・・・弁座、3.2・・・ニードルバルブ、33
・・・プランジャ、3ダ・・・スプリング、3S・・・
コア、36・・・パイプ、37・・・ボビン、3g・・
・電磁コイル、39・・・ケース、3/θ・・・端壁部
材、3//、3/コ・・・冷媒配管。 代理人 葛 野 信 −(ほか1名) 手続補正耳(自発) 26発明の名称 冷凍機用冷媒流量制御装置 3 補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二」′目2番;3
号名 称  (601)三菱電機株式会社代表者片山仁
八部 6゜補正の対象 (1)明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第6頁17行目に[冷媒流量制御装置を」
とあると「冷媒流量制御装置の精度を」と補正する。
FIG. 1 is a front sectional view showing an example of a conventional thermostatic automatic expansion valve, FIG. 2 is a configuration diagram of a refrigerant cycle equipped with a refrigerant flow rate control device according to the present invention, and FIG. 3 is a refrigerant flow rate control device according to the present invention. It is a front sectional view showing an expansion valve of. //... Valve body, /2... Refrigerant inlet, /,? ...
Refrigerant outlet, /R...valve port, /S...spindle, /
A...Spring, /ri...Temperature-sensitive tube chamber, lza...-
diaphragm, -1...compressor, -1...condenser,
3...Expansion valve, Koku...Evaporator, K-S, Colo...
・Temperature detector, body...controller, 31...body,
3/a... Valve seat, 3.2... Needle valve, 33
...Plunger, 3D...Spring, 3S...
Core, 36...pipe, 37...bobbin, 3g...
- Electromagnetic coil, 39... Case, 3/θ... End wall member, 3//, 3/Co... Refrigerant piping. Agent: Makoto Kuzuno - (and 1 other person) Procedural amendment hearing (voluntary) 26 Name of invention Refrigerant flow control device for refrigerator 3 Relationship to the case of the person making the amendment Patent applicant address: 2 Marunouchi, Chiyoda-ku, Tokyo Eye 2; 3
Name Title (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 6° Subject of amendment (1) Column 6 of detailed explanation of the invention in the specification, Contents of amendment (1) Page 6, line 17 of the specification [Refrigerant flow control device]
If it says, "accuracy of the refrigerant flow rate control device" is corrected.

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクルの蒸発器の出口付近の配管°を流れる冷媒
の気液状態を電気的に判別する検出器と、この検出器か
らの信号に従って一定周波数でのデユーティ比を制御す
る制御器と、冷凍サイクルの凝縮器と蒸発器の間に設け
られて上記制御器の平均出力電流によって比例的に冷媒
流量を制御する膨張弁とを備えたことを特徴とする冷凍
機用冷媒流量制御装置。
A detector that electrically determines the gas-liquid state of the refrigerant flowing through the pipe near the outlet of the evaporator of the refrigeration cycle, a controller that controls the duty ratio at a constant frequency according to the signal from this detector, and the refrigeration cycle. A refrigerant flow rate control device for a refrigerator, comprising: an expansion valve that is provided between the condenser and the evaporator to proportionally control the refrigerant flow rate based on the average output current of the controller.
JP4975383A 1983-03-23 1983-03-23 Refrigerant flow controller for refrigerator Pending JPS59173670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4975383A JPS59173670A (en) 1983-03-23 1983-03-23 Refrigerant flow controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4975383A JPS59173670A (en) 1983-03-23 1983-03-23 Refrigerant flow controller for refrigerator

Publications (1)

Publication Number Publication Date
JPS59173670A true JPS59173670A (en) 1984-10-01

Family

ID=12839939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4975383A Pending JPS59173670A (en) 1983-03-23 1983-03-23 Refrigerant flow controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS59173670A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330060A (en) * 1976-09-01 1978-03-20 Hitachi Ltd Flow rate control valve for refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330060A (en) * 1976-09-01 1978-03-20 Hitachi Ltd Flow rate control valve for refrigerator

Similar Documents

Publication Publication Date Title
JPS585163Y2 (en) Reversible electric expansion valve
RU2658443C1 (en) Electronic expansion valve and methods for calibration of electronic expansion valve
JPH0571860B2 (en)
JP2011043102A (en) Control valve for variable displacement compressor
US7434419B2 (en) Pressure control valve for refrigeration cycle
JP2004076920A (en) Differential pressure control valve
JPS59173670A (en) Refrigerant flow controller for refrigerator
US3054273A (en) Thermal expansion valve
US3884663A (en) Refrigerator system with refrigerant expansion through capillary tubes of adjustable length
JP2010145027A (en) Expansion valve and refrigerating cycle
JP3507616B2 (en) Expansion valve
JP4259891B2 (en) Superheat control method
JPH08210733A (en) Expansion valve with solenoid-operated valve
JP6064185B2 (en) Control valve for variable capacity compressor
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
JP4351622B2 (en) Flow control valve, expansion valve for refrigeration cycle apparatus, and refrigeration cycle apparatus
JPS595267Y2 (en) Automatic expansion valve for refrigerator
JP2011038411A (en) Control valve for variable displacement compressor
JPH05196324A (en) Expansion valve for refrigerating cycle
JP3858393B2 (en) Expansion valve with differential pressure valve
JPH081421Y2 (en) Expansion valve
JP2541659B2 (en) Temperature expansion valve
JP3213440B2 (en) Expansion valve
JPH0340309B2 (en)
JP3530865B2 (en) Thermal expansion valve