JPS59173256A - Continuous molten zinc alloy plating method - Google Patents

Continuous molten zinc alloy plating method

Info

Publication number
JPS59173256A
JPS59173256A JP58046688A JP4668883A JPS59173256A JP S59173256 A JPS59173256 A JP S59173256A JP 58046688 A JP58046688 A JP 58046688A JP 4668883 A JP4668883 A JP 4668883A JP S59173256 A JPS59173256 A JP S59173256A
Authority
JP
Japan
Prior art keywords
alloy
iron
bath
plating
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046688A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
謙一 佐藤
Satoru Takano
悟 高野
Takeshi Miyazaki
健史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58046688A priority Critical patent/JPS59173256A/en
Publication of JPS59173256A publication Critical patent/JPS59173256A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To impart excellent heat resistance, in applying melt-plating to a long material comprising iron, steel or an iron alloy by subjecting the same to flux treatment while continuously immersing the treated material in a Zn-alloy bath containing a specific amount of Al, by supplying an alloy wire having the same compositional range as the alloy bath to the immersion port of the alloy bath. CONSTITUTION:After a long material comprising iron, steel or an iron alloy is subjected to flux treatment, the treated material is immersed in a Zn-alloy bath 2 containing 0.2-14% of Al by a sinker roll 3 and drawn up through a squeeze apparatus 4 to obtain a Zn-Al alloy plated material 5. At this time, a Zn-alloy wire 6 containing 0.2-14% Al is continuously supplied to the immersion port of the plating bath 2 from a supply apparatus 7 to be melted.

Description

【発明の詳細な説明】 (技術分野) 本発明は、鉄、鋼又は鉄合金(以下、鉄系と称す)より
成る長尺椙に溶融Zn−Aβ合金めつきを連続的に施す
方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for continuously applying molten Zn-Aβ alloy plating to a long piece of iron, steel, or iron alloy (hereinafter referred to as iron-based). It is.

(背景技術) 従来より亜鉛めっきは主として耐食性を目的として用い
られて来たか、近年、例えは送電容量増大のための面1
熱鋼心アルミニウム撚線(v、下、面1熱AC3Rと称
す)用の鋼心として亜鉛めっき鉄系線か用いられるよう
になり、耐食性の他に酊j熱性か要求されるようになっ
た。
(Background technology) Zinc plating has traditionally been used mainly for corrosion resistance, and in recent years, zinc plating has been used mainly for the purpose of increasing power transmission capacity.
Galvanized iron wire came to be used as the steel core for hot steel core aluminum stranded wire (referred to as V, bottom, side 1 heat AC3R), and heat resistance was required in addition to corrosion resistance. .

しかし亜鉛めつき鉄系線は加熱されるに従って鉄系とZ
nの界if]](fc Fe −Zn合金層を生成して
、めっきの剥離を生じ、耐熱性が悪い欠点があった。
However, as galvanized iron wire is heated, it becomes iron-based and Z
n boundary if]] (fc Fe-Zn alloy layer is formed, plating peels off, and heat resistance is poor.

この耐熱性の改善のため、本発明者らは、溶融Zn−A
β合金めっきを施すことが界面のZn−Fe合金層の成
長を抑制して耐熱性を向上することを見出した。
In order to improve this heat resistance, the present inventors developed molten Zn-A
It has been found that applying β alloy plating suppresses the growth of the Zn-Fe alloy layer at the interface and improves heat resistance.

しかし、鉄系線をZn−Aj’(合金浴に連続的に浸漬
して溶融めっきを施す場合、線をNH4Cl−ZnCl
2などのフラックス処理を施した後溶融めっき浴に浸漬
するが、このめっき浴の浸漬口において、Zn−A4合
金浴中のAeとフラックスの反応によりAβC召3が生
成し、このため合金浴中のAeの濃度が減少して、溶融
めっき時又は使用中の昇温時、界面に生成するFe−Z
n合金層の生成を防止することかできず、最も重要な特
性である耐熱性を劣化する問題点があった。
However, when hot-dipping the iron-based wire by continuously dipping it in a Zn-Aj' (alloy bath), the wire is coated with NH4Cl-ZnCl.
After performing flux treatment such as 2, it is immersed in a hot-dip plating bath, but at the immersion port of this plating bath, AβC 3 is generated due to the reaction between Ae in the Zn-A4 alloy bath and the flux, and therefore As the concentration of Ae decreases, Fe-Z is generated at the interface during hot-dip plating or when the temperature rises during use.
There was a problem that the formation of the n-alloy layer could not be prevented, and the most important characteristic, heat resistance, deteriorated.

(発明の開示) 本発明は、上述の問題点を解決するため、種々の方法を
検討した結果成されたもので、溶融めっき浴の浸漬口に
おけるAβ濃度を常に所望の濃度に制御して、耐熱性に
優れた溶融亜鉛合金めっき鉄系材を製造する方法を提供
せんとするものである。
(Disclosure of the Invention) The present invention was achieved as a result of examining various methods in order to solve the above-mentioned problems. The present invention aims to provide a method for producing hot-dip zinc alloy plated iron-based materials with excellent heat resistance.

本発明は、鉄、鋼又は鉄合金より成る長尺材をフラック
ス処理した後Aβ02〜14%を含有するZn合金浴に
連続的に浸漬して溶融めっきを施す方法において、前記
Zn合金浴の浸漬口に1102〜14%を含有するZn
合金線を連続的に供給することを特徴とする連続溶融亜
鉛合金めっき方法である。
The present invention provides a method in which a long material made of iron, steel, or an iron alloy is subjected to hot-dip plating by being continuously immersed in a Zn alloy bath containing 02 to 14% of Aβ after being subjected to flux treatment. Zn containing 1102-14% in mouth
This is a continuous hot-dip zinc alloy plating method characterized by continuously supplying alloy wire.

本発明に用いられる鉄、鋼又は鉄合金より成る長尺材は
、鉄、炭素鋼、他の合金元素を添加した特殊鋼又は鉄合
金等より成るものである。%に最近注目されている熱膨
張係数の小さなNi 35〜42%を含むFe−Ni系
合金等も用いることがてきる。
The elongated material made of iron, steel, or iron alloy used in the present invention is made of iron, carbon steel, special steel to which other alloying elements are added, or iron alloy. It is also possible to use a Fe--Ni alloy containing 35 to 42% of Ni, which has a small coefficient of thermal expansion and has recently been attracting attention.

又長尺材の形状は線、条、テープ、チューブ板等のいず
れても良い。
Further, the shape of the elongated material may be any of wires, strips, tapes, tube plates, etc.

本発明に徒いて、A402〜14%を含有するZn合金
浴を用いるのは、めっき時又は使用中の昇温時、鉄系と
Zn合金の界面VCFe−A(J合金層を優先的に生成
させて、めっきの剥離の原因となるFe−Zn合金層の
成長を抑制するためであり、p、Il量0296未満で
は合金層抑制に効果なく、Ae量が14%を越えると合
金層抑制効果が飽和するのみならず、7.n−J合金溶
湯の粘性か高くなり、めっきの外観不良か著しくなる。
According to the present invention, the use of a Zn alloy bath containing 2 to 14% of A40 allows the VCFe-A (J alloy layer to be formed preferentially at the interface between the iron system and the Zn alloy during plating or when the temperature is increased during use. This is to suppress the growth of the Fe-Zn alloy layer, which causes peeling of the plating. If the amount of p, Il is less than 0296, it is not effective in suppressing the alloy layer, and if the amount of Ae exceeds 14%, the effect of suppressing the alloy layer is Not only does this saturate, but the viscosity of the molten 7.n-J alloy increases, and the appearance of the plating becomes noticeably poor.

以下、本発明を図面を用いて実施例により説明する。図
は本発明方法の実施例を説明するための縦断面図である
。図において、■は例えはNH4(Jg、ZnCβ2の
混合フラックスなどで処理された長尺材て、Zn−AC
合金めっき浴2にシンカーロール3により浸漬され、絞
り装置4全通して引上げられてZn−17(1合金めっ
き材5とされる。Zn−A、g合金めっき浴2ばAβ0
,2〜14%を含有し、残部Znと不可避的な不純物と
から成るZn合金より成る。このitの状態では、めっ
き浴2の浸漬口においてフラックスと浴中のAβが反応
して多量のAlIcβ3を生成し、浸漬口のAβ濃度が
02%未満に低下し、前述の界面の合金層抑制効果がな
くなる。
Hereinafter, the present invention will be explained by examples using the drawings. The figure is a longitudinal sectional view for explaining an embodiment of the method of the present invention. In the figure, ■ is a long material treated with a mixed flux of NH4 (Jg, ZnCβ2, etc.).
The Zn-17 (1 alloy) is immersed in the alloy plating bath 2 by the sinker roll 3 and pulled up through the squeezing device 4 to form the Zn-17 (1 alloy plating material 5).
, 2 to 14%, and the remainder is Zn and unavoidable impurities. In this state, the flux reacts with Aβ in the bath at the immersion port of plating bath 2, producing a large amount of AlIcβ3, and the Aβ concentration at the immersion port decreases to less than 0.2%, suppressing the alloy layer at the interface described above. It becomes ineffective.

そこで本発明においては、めっき浴2の浸漬口にサプラ
イ装置7よりZn−A1合金線6を連続的に供給し、溶
融させる。Zn−A4合金線6はめっき浴2と同し組成
範囲より成るもので、上述のA〃のロスを考慮してA召
儂度全めっき浴より若干高くすることが望捷しい。
Therefore, in the present invention, the Zn-A1 alloy wire 6 is continuously supplied to the immersion port of the plating bath 2 from the supply device 7 and melted. The Zn-A4 alloy wire 6 has the same composition range as the plating bath 2, and in consideration of the above-mentioned loss of A, it is desirable to make the A content slightly higher than that of the entire plating bath.

供給するZn−Ap合金線6のAI濃度、線径、供給速
度は、実際に供給するめつき浴の大きさ、めっきされる
鉄系長尺拐の寸法、本数、めっき速度に応して適当に選
択することかてき、操業形態に応じた変更か容易にてき
る。
The AI concentration, wire diameter, and supply speed of the Zn-Ap alloy wire 6 to be supplied are appropriately determined depending on the size of the plating bath actually supplied, the dimensions, number, and plating speed of the iron-based long wires to be plated. It is easy to select and change according to the operating format.

このようにしてZn−A1合金線6を供給すると、めっ
き浴中に容易に溶解し、浸漬口における局1度を02〜
1496の範囲の所望のa朋に制御でき、全長に亘り均
一な高い耐熱性を有するZn−A4合金めっき材5が得
られる8 なお他の方法として、例えばめっき浴2の浸漬口に塊状
のA召を浮かへて常にΔβを供給する方法か考えられる
か、通常のめっき浴2の温度450°C前後では、Aβ
の溶融が遅く、又均−なAll濃度を保証することか不
可能である。
When the Zn-A1 alloy wire 6 is supplied in this way, it is easily dissolved in the plating bath, and the local temperature at the immersion port is 0.2 to 0.2 degrees.
It is possible to obtain a Zn-A4 alloy plated material 5 which can be controlled to a desired a value in the range of 1496 and has uniform high heat resistance over the entire length. Is there any way to constantly supply Δβ while keeping the temperature high?At a normal plating bath 2 temperature of around 450°C, Aβ
Melting is slow and it is impossible to guarantee a uniform All concentration.

本発明では、通常のめっき浴2の温度である450’C
前後で充分溶融するAla度に限定したZn −41合
金線6を供給するので、供給さi″′したZn−Aβ合
金線による成分の絹持か容易に可能である利点かある。
In the present invention, the temperature of the normal plating bath 2 is 450'C.
Since the Zn-41 alloy wire 6 is supplied with an Ala degree that is sufficiently melted at the front and rear ends, there is an advantage that the components can be easily retained by the supplied Zn-Aβ alloy wire.

(実施例) 図に示すような装置を用い、3.0 mm子のA’CS
 R用鋼線に溶融zn  A(4合金めっきを施した。
(Example) Using the device shown in the figure, A'CS of 3.0 mm
Hot-dip ZN A (4 alloy plating was applied to the R steel wire.

めっき浴2にはZn−0,35%AI合金を用い、浴温
全450°Cに保持した。装置に24本掛けて通し、線
速30m/分とし、フラックスとしてNH4Cβ、Zn
Cl2の混合フラックス全周いた。
A Zn-0, 35% AI alloy was used in plating bath 2, and the bath temperature was maintained at a total of 450°C. 24 wires were passed through the device at a linear speed of 30 m/min, and NH4Cβ, Zn were used as fluxes.
There was a mixed flux of Cl2 all around.

先ずZn−A/合金線6を供給せずに溶融めっきを行な
った所、約10時間後、めっき浴2の浸漬口に多量のA
βCβ3か晶出し、浸漬口直下のAβ濃度が015%に
低下すると共に、鉄系とZn合金の界面に平均26μ7
71の厚さのFe−Zn化合物層が生成した。
First, hot-dip plating was performed without supplying the Zn-A/alloy wire 6, and after about 10 hours, a large amount of A was deposited at the dipping port of the plating bath 2.
βCβ3 crystallizes, the Aβ concentration directly below the immersion port decreases to 0.15%, and an average of 26 μ7 at the interface between the iron system and the Zn alloy.
A Fe-Zn compound layer with a thickness of 71 mm was produced.

州られたZn合金めりき鋼線全300°Cて10時間の
加熱後、界面のFe−Zn化合物層を調査した結果、平
均5℃μmの厚さに成長しており、捻回試験においてめ
っきの剥離を生した。
After heating the pre-plated Zn alloy galvanized steel wire at 300°C for 10 hours, we investigated the Fe-Zn compound layer at the interface and found that it had grown to an average thickness of 5°C μm, and the twist test showed that the Fe-Zn compound layer had grown to an average thickness of 5°C μm. peeling occurred.

次に、上述と同し条件で、めっき浴2の各浸漬口におい
て、l 71H,fのZn−5%Al1合金線6全線速
1m/分 て連続的に供給して本発明方法を実施した所
、合金線6はめつき浴2に浸漬すると同時に溶融した。
Next, under the same conditions as described above, the method of the present invention was carried out by continuously supplying a Zn-5% Al1 alloy wire 6 of l71H, f at a total wire speed of 1 m/min at each immersion port of the plating bath 2. At this time, the alloy wire 6 was immersed in the plating bath 2 and melted at the same time.

めっき開始より10時間後、めっき浴2の浸漬口直下の
AI濃度を測定した結果、Aβ濃度は0.34%とめっ
き前と殆んと変化がなく、又めっきの捷まおよび300
°Cて10時間加熱した後の界面のFe−Zn合金層の
成長は共に認められず、加熱後の捻回試験においてもめ
っきの剥離を生しなかった。
10 hours after the start of plating, the AI concentration directly under the immersion port of plating bath 2 was measured. The Aβ concentration was 0.34%, which was almost unchanged from before plating.
No growth of the Fe-Zn alloy layer at the interface was observed after heating at °C for 10 hours, and no peeling of the plating occurred in the twisting test after heating.

(発明の効果) 」二連のように構成された本発明の連続溶融亜鉛合金め
っき方法は次のような効果かある。
(Effects of the Invention) The continuous hot-dip zinc alloy plating method of the present invention, which is configured in two series, has the following effects.

(イ) フラックスを用いる連続溶融Zn−A4合金め
っき方法においてス前記Zn合金浴の浸漬口にAIo、
2〜■4%を含有するZn合金線全連続的に供するから
、Zn合金浴の浸漬口において、合金線か容易に俗解し
、フラックス浴中のA(4が反応してへ匹召3か生成し
て消費されるAβがロスに応して常に補給され1、浸漬
口のAea度を02〜14%の範囲の用架の濃度に容易
に制御することができるだめ、溶融めっき時又は使用中
の昇温時、Zn合金中の、JKより、鉄釆とZn合金の
界面のFe−Zn合金層の成長を抑制するので、全長に
亘り高い耐熱性を有する溶融Zn−A(1合金めっき材
を製造し得る。
(b) In the continuous hot-dip Zn-A4 alloy plating method using flux, AIo,
Since the Zn alloy wire containing 2 to 4% is supplied continuously, it is easy to understand that the alloy wire is exposed at the immersion port of the Zn alloy bath, and the A (4) in the flux bath reacts and the The generated and consumed Aβ is constantly replenished according to the loss 1, and the Aea degree of the immersion port can be easily controlled to a concentration in the range of 02 to 14%, so it is possible to use it during hot-dip plating or use. When the temperature rises inside the Zn alloy, JK in the Zn alloy suppresses the growth of the Fe-Zn alloy layer at the interface between the iron pot and the Zn alloy. material can be manufactured.

(ロ)  Zn−Al合金線のAβ濃度、線径、供給速
度を選択することにより、種々のめっき条件に応した適
当な条件に容易に調節できるので、操業形態に応した変
更か容易である。
(b) By selecting the Aβ concentration, wire diameter, and supply rate of the Zn-Al alloy wire, it is possible to easily adjust the conditions to suit various plating conditions, so it is easy to make changes according to the operation mode. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法の実施例を説明するだめの縦断面図であ
る。 I 長尺材、2− Zn −Ag合金めっき浴、377
カーロール、4 絞り装置、5−・Z n  A(1合
金めっき材、6− Zn−Aβ合金線、7・・サプライ
装置。
The figure is a longitudinal sectional view for explaining an embodiment of the method of the present invention. I Long material, 2-Zn-Ag alloy plating bath, 377
Car roll, 4 drawing device, 5-.ZnA (1 alloy plating material, 6- Zn-Aβ alloy wire, 7. supply device.

Claims (1)

【特許請求の範囲】[Claims] (1)  鉄、鋼又は鉄合金より成る長尺材をフラ・ン
クス処理した後Al)、2−14%’を含有するZn合
金浴に連続的に浸漬して溶融めっきを施す方法において
、前記Zn@金浴の浸漬口にA102〜14%を含有す
るZn合金線を連続的に供給することを特徴とする連続
浴融亜鉛合金めっき方法。
(1) A method in which a long material made of iron, steel, or an iron alloy is subjected to hot-dip plating by being continuously immersed in a Zn alloy bath containing 2-14% of aluminum after being subjected to flux treatment. A continuous bath dip zinc alloy plating method characterized by continuously feeding a Zn alloy wire containing A102 to 14% to the immersion port of a Zn@gold bath.
JP58046688A 1983-03-18 1983-03-18 Continuous molten zinc alloy plating method Pending JPS59173256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046688A JPS59173256A (en) 1983-03-18 1983-03-18 Continuous molten zinc alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046688A JPS59173256A (en) 1983-03-18 1983-03-18 Continuous molten zinc alloy plating method

Publications (1)

Publication Number Publication Date
JPS59173256A true JPS59173256A (en) 1984-10-01

Family

ID=12754315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046688A Pending JPS59173256A (en) 1983-03-18 1983-03-18 Continuous molten zinc alloy plating method

Country Status (1)

Country Link
JP (1) JPS59173256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053184A2 (en) * 2002-12-09 2004-06-24 Specialty Minerals (Michigan) Inc. Method for adding solid zinc-aluminum to galvanizing baths
JP2018184630A (en) * 2017-04-25 2018-11-22 新日鐵住金株式会社 Zn-Al ALLOY SUPPLY METHOD INTO MOLTEN ZINC POT, AND Zn-Al ALLOY FEEDER
WO2020109849A1 (en) * 2018-11-30 2020-06-04 Arcelormittal Wire injection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053184A2 (en) * 2002-12-09 2004-06-24 Specialty Minerals (Michigan) Inc. Method for adding solid zinc-aluminum to galvanizing baths
WO2004053184A3 (en) * 2002-12-09 2004-08-05 Specialty Minerals Michigan Method for adding solid zinc-aluminum to galvanizing baths
JP2018184630A (en) * 2017-04-25 2018-11-22 新日鐵住金株式会社 Zn-Al ALLOY SUPPLY METHOD INTO MOLTEN ZINC POT, AND Zn-Al ALLOY FEEDER
WO2020109849A1 (en) * 2018-11-30 2020-06-04 Arcelormittal Wire injection
WO2020109931A1 (en) * 2018-11-30 2020-06-04 Arcelormittal Metal wire injection into a galvanizing bath

Similar Documents

Publication Publication Date Title
JP7162091B2 (en) metal coated steel strip
JPH10265926A (en) Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance
US3012310A (en) Bridge wire and method of making same
JPH0127147B2 (en)
JPS59173256A (en) Continuous molten zinc alloy plating method
JPS63157847A (en) Manufacture of alloying-galvanized steel sheet
JPH02259054A (en) Production of alloy plated steel wire
JP2004176181A (en) Method for manufacturing hot-dip al-zn alloy plated steel strip
JP2822107B2 (en) Zinc-aluminum alloy plated steel wire with good fatigue properties and method for producing the same
JPS63134653A (en) Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
JP2001107212A (en) HIGH CORROSION RESISTANT HOT-DIP Zn-Al-Mg BASE COATED STEEL SHEET EXCELLENT IN SURFACE CHARACTERISTIC
JPS59166664A (en) Heat resistant zinc alloy plated product
JPS6244563A (en) Manufacture of hot dip zinc-aluminum alloy coated steel wire
JPS63277733A (en) Zinc alloy for two bath galvanizing
JPH05263210A (en) Production of hot-dip zinc-aluminum alloy-plated steel sheet excellent in spot weldability
JPS62174360A (en) Manufacture of alloyed hot dip galvanized steel sheet
JPH05306453A (en) Production of high-strength plated steel wire
JPH0116565B2 (en)
JPS59159977A (en) Galvanized ferrous metallic product and its production
JPS61113753A (en) Manufacture of alloyed hot dip galvanized steel sheet with zinc alloy layer having superior workability
JP3528796B2 (en) Continuous hot metal plating method for metal strip
DE3047444A1 (en) Zinc alloy for hot dip galvanising steel - esp. silicon-contg. steel, contains antimony for uniform coating
JPS59166663A (en) Heat resistant zinc alloy plated ferrous metal product
JPS59166665A (en) Heat resistant zinc alloy plated product
JPS61213364A (en) Improvement of corrosion stripping resistance of hot dip galvanized steel sheet