JPS59173229A - Pre-reducing baking method of pellet - Google Patents

Pre-reducing baking method of pellet

Info

Publication number
JPS59173229A
JPS59173229A JP4752583A JP4752583A JPS59173229A JP S59173229 A JPS59173229 A JP S59173229A JP 4752583 A JP4752583 A JP 4752583A JP 4752583 A JP4752583 A JP 4752583A JP S59173229 A JPS59173229 A JP S59173229A
Authority
JP
Japan
Prior art keywords
pellet
chamber
gas
furnace
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4752583A
Other languages
Japanese (ja)
Other versions
JPH0259203B2 (en
Inventor
Toshio Matsuoka
松岡 俊雄
Shinichi Kuromame
黒豆 伸一
Yukio Furuyabu
古薮 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP4752583A priority Critical patent/JPS59173229A/en
Publication of JPS59173229A publication Critical patent/JPS59173229A/en
Publication of JPH0259203B2 publication Critical patent/JPH0259203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To perform the pre-reducing baking of a pellet in a high pre-reducing ratio at a relatively low temp., by successively performing drying, coking by thermal decomposition and hardening with respect to the pellet granulated by using a petroleum residue oil as a binder in a moving grate furnace. CONSTITUTION:In a moving grate furnace 2 consisting of a drying chamber 2A, a coking over 2B and a hardening chamber 2C, a powdery iron ore O is granulated by using a petroleum residue oil as a binder in a granulating apparatus 1 to form a pellet Pg which is, in turn, supplied to the above mentioned drying chamber 2A where the raw pellet Pg is dried at 200-350 deg.C by gas G1. Subsequently, the petroleum residue oil being the binder is thermally decomposed and coked at 550-650 deg.C by gas G2 in the coking oven 2B and the dried pellet is subjected to pre-reducing and further heated to 850-950 deg.C to promote reduction by the generated gas in the hardening chamber 2C while metal iron is formed on the surface of the pellet to obtain a high strength pre-reduced pellet Pc which is, in turn, supplied to a reducing furnace 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、石油残渣油を結合剤とした鉄鉱石ベレット
(石油残渣油ベレット)をロークリキルンあるいはシャ
フト炉などの還元炉に投入する前に、還元炉からの排ガ
スを熱源として移動グレート炉において予備還元および
予備焼成する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for reducing iron ore pellets using petroleum residue oil as a binder (petroleum residue oil pellets) before charging them into a reduction furnace such as a lorry kiln or a shaft furnace. This invention relates to a method for preliminary reduction and preliminary firing in a moving grate furnace using exhaust gas from a reduction furnace as a heat source.

〈従来技術〉 還元ペレット製造方法として、従来からシャフト炉方式
やロータリキルン法などが良く知られている。シャフト
炉の場合は、高いペレット強度が要求されるため、結合
剤としてベントナイトなど添加した酸化ペレットを使用
している。
<Prior Art> As methods for producing reduced pellets, shaft furnace methods, rotary kiln methods, and the like have been well known. In the case of a shaft furnace, high pellet strength is required, so oxidized pellets to which bentonite or the like is added as a binder are used.

両方式とも鉄鉱石の結合剤としてはベントナイト等が用
いられているが、このベントナイトは電炉溶解の際、ス
ラグとなり溶解効率を低下せしめる要因となる。
In both methods, bentonite or the like is used as a binder for iron ore, but this bentonite becomes slag during electric furnace melting and becomes a factor that reduces melting efficiency.

また、ロータリキルン法において、化ベレットを出発原
料とした場合、従来のベントナイト結合剤のペレットあ
るいは内炭型のペレットでは、還元炉での転動lこ耐え
るベレット強度(25に?以上/ペレット)を得るため
には、移動クレート炉において1000℃以上の焼成温
度が必要であった。
In addition, in the rotary kiln method, when pellets are used as a starting material, pellets with a conventional bentonite binder or internal coal type pellets have a pellet strength that can withstand rolling in a reduction furnace (25? or more/pellet). In order to obtain this, a firing temperature of 1000° C. or higher was required in a moving crate furnace.

この予備焼成法に関する特許の一例として、炭材内装生
ペレットの予備焼成法<*公F856−50580号公
報)のように、移動グレート炉においてベレットの水分
を除去した後、硬化帯において950℃以上、望ましく
は、1ooo℃以上に加熱し、才だ、ガス組成(酸化度
)fi:調整することにより内装炭材(固体炭素)を消
費させたり、予備還元して生じた金属鉄を再酸化させて
FeQによる焼結など発生させる方法がある。
As an example of a patent related to this pre-firing method, there is a method of pre-firing green pellets with carbonaceous material <*Publication F856-50580), in which water is removed from the pellets in a moving grate furnace, and then the temperature in the hardening zone is 950°C or higher. Preferably, the mixture is heated to 100° C. or higher, and the gas composition (oxidation degree) is adjusted to consume the internal carbonaceous material (solid carbon) or to reoxidize the metallic iron produced by preliminary reduction. There are methods to generate this, such as sintering using FeQ.

〈発明の目的〉 この発明は、このような事情に鑑みて提案されたもので
、その目的は、比較的低温で予備還元焼成を行なうこと
ができるとともに高強度のペレットを得ることのできる
予備還元焼成方法を提供することにある。
<Object of the Invention> The present invention was proposed in view of the above circumstances, and its purpose is to provide a method for pre-reduction that can perform pre-reduction firing at a relatively low temperature and produce high-strength pellets. The purpose of the present invention is to provide a firing method.

〈発明の構成〉 この発明に係る予備還元焼成方法は、 乾燥室、コークス化室、硬化室からなる移動グレート炉
におけるペレットの予備還元焼成方法であって、ペレッ
トに、高揮発分を有する液体炭素源である石油残渣油を
結合剤とした石油残渣油ペレットを使用し、乾燥室を2
00〜550℃、コークス化室を550〜650”C1
硬化室を850〜950℃とし、前記ベレットを前記゛
乾燥室で乾燥させた後、前記コークス化室で結合剤であ
る石油残渣油を熱分解させてコークス化し、さらに、前
記硬化室において硬化させ、比較的低温で高強度のベレ
ット’E得るようにしたものである。
<Structure of the Invention> The pre-reduction firing method according to the present invention is a method for pre-reducing and firing pellets in a moving grate furnace consisting of a drying chamber, a coking chamber, and a curing chamber, in which the pellets are coated with liquid carbon having a high volatile content. Using petroleum residue oil pellets with petroleum residue oil as a binder, the drying chamber is
00~550℃, coking chamber 550~650"C1
The curing chamber is set at 850 to 950° C., and the pellets are dried in the drying chamber, and then petroleum residue oil, which is a binder, is thermally decomposed to coke in the coking chamber, and further hardened in the curing chamber. , a high-strength pellet'E can be obtained at a relatively low temperature.

〈実施例〉 以下、この発明を図示する一実施例に基づいて説明する
。第1図に示すように、粉鉄鉱石Oが、造粒設備1にお
いて石油残渣油を結合剤として直径10〜15闘のベレ
ットPgに造粒される(これを生ペレットという)。
<Example> The present invention will be described below based on an illustrative example. As shown in FIG. 1, powdered iron ore O is granulated into pellets Pg having a diameter of 10 to 15 mm in a granulation equipment 1 using petroleum residue oil as a binder (these are called raw pellets).

この生ベレン) Pgは、移動グレート炉2の乾燥室2
Aに供給され、層厚100〜150闘の層で移動しなが
ら、200〜550℃のガス()Iにより乾燥される。
This raw belen) Pg is the drying chamber 2 of the moving grate furnace 2.
A and dried with gas (2) I at 200-550° C. while moving in layers with a layer thickness of 100-150°C.

次に、乾燥したペレットは、コークス化室2Bに入り、
550〜650’CのガスG2によりコーキングされる
。ここでは、結合剤である石油残渣油が熱分解され、熱
分解ガスGII(成分: lli、 02. N2. 
Co、 Cot、 OH4,02H4、CmHn)を発
生し、コークス化することにより結合力が高くなる。さ
らに、この時発生する還元ガス(主にH2)によって予
備還元される。
Next, the dried pellets enter the coking chamber 2B,
Coking is performed with gas G2 at 550-650'C. Here, petroleum residue oil, which is a binder, is pyrolyzed to produce pyrolysis gas GII (components: lli, 02.N2.
Co, Cot, OH4,02H4, CmHn) is generated and coked to increase the bonding strength. Furthermore, preliminary reduction is performed by the reducing gas (mainly H2) generated at this time.

続いて、コーキングされたベレットは、硬化室201こ
入り、9QQ”C以上のガス山 により加熱され硬化さ
れる。ここでは、ベレットを850℃以上、望ましくは
、875℃以上に加熱すること番こよって、結合剤の炭
材が消費され、発生する還元ガス(H2およびCOガス
)によってベレットが還元され、鉄鉱石粒子表面に金楓
鉄が住じて金属結合が生じ、高強度のベレン) Pc、
となる(第2図参照)0また、ここで発生する還元ガス
には、石油残渣油の高温揮発分としての水素が金談れて
いるので、900℃以下の低温でも容易に還元が進行し
、10〜20%という高い予備還元率となる。
Next, the caulked pellet enters a curing chamber 201 and is heated and cured by a gas pile of 9QQ"C or higher. Here, the pellet is heated to 850°C or higher, preferably 875°C or higher. Therefore, the carbonaceous material of the binder is consumed, the pellet is reduced by the generated reducing gas (H2 and CO gas), and the gold maple iron resides on the surface of the iron ore particles to form a metallic bond, resulting in a high-strength pellet (Pc). ,
(See Figure 2) 0 Also, the reducing gas generated here contains hydrogen as a high-temperature volatile component of petroleum residue oil, so reduction can easily proceed even at low temperatures below 900°C. , resulting in a high preliminary return rate of 10-20%.

このように予備還元された石油残渣油ベレットPc (
コーキングペレット)は、還元炉s内での転勤に耐え得
る高い強度(圧潰強度:50に9/P以上)を有し、還
元炉6において、同時に投入される外装還元剤(炭材)
により還元されて還元鉄となる。
The petroleum residue oil pellet Pc (
The coking pellets) have high strength (crushing strength: 50 to 9/P or more) that can withstand transfer in the reduction furnace s, and the external reducing agent (charcoal material) is simultaneously introduced into the reduction furnace 6.
It is reduced to reduced iron.

コークス化室2Bで発生した熱分解ガスGlは、循環フ
ァン4によってリサイクルされ、還元炉3からの排ガス
G7  とともにガス燃焼炉5において空気を添加して
燃焼され、900℃以上の熱ガスとなる。
The pyrolysis gas Gl generated in the coking chamber 2B is recycled by the circulation fan 4, and is combusted together with the exhaust gas G7 from the reduction furnace 3 in the gas combustion furnace 5 with the addition of air, resulting in hot gas of 900° C. or higher.

この熱ガスの一部aSは、硬化室2Cへ供給され、一部
G2は、低温ガスG1 と混合されコークス化室2Bへ
供給される。硬化室20の排ガスG6は、700〜80
0°Cの高温のため、撥熱ボイラ6によって熱回収され
た後、循環ファン7により乾燥室2人用の熱ガスG1 
として利用される。才だ、乾燥室2Aの排ガスG4は、
排ガス処理設備8へ送られる。
A portion aS of this hot gas is supplied to the curing chamber 2C, and a portion G2 is mixed with the low temperature gas G1 and supplied to the coking chamber 2B. The exhaust gas G6 in the curing chamber 20 is 700 to 80
Due to the high temperature of 0°C, after the heat is recovered by the heat repellent boiler 6, the hot gas G1 for two people in the drying room is generated by the circulation fan 7.
used as. The exhaust gas G4 of the drying room 2A is
It is sent to the exhaust gas treatment facility 8.

このような循環システムにおいて、ガス燃焼炉5に導入
される空気値および補助バーナ9に′  より燃焼制御
することにより硬化室2Cに導入する熱ガスG3の温度
および酸素濃度を容易に制御することができる。ここで
、熱ガスG3の酸素濃度は3%以下とするのが、奸才し
い。
In such a circulation system, the temperature and oxygen concentration of the hot gas G3 introduced into the curing chamber 2C can be easily controlled by controlling combustion based on the air value introduced into the gas combustion furnace 5 and the auxiliary burner 9. can. Here, it is wise to set the oxygen concentration of the hot gas G3 to 3% or less.

このような焼成方法においては、石油残渣油は、例えば
次のような成分であり、 ・′全炭素      :82.9チ j コンラドソンカーボン  :25.2チ、揮発分 
     ニア!1.9チ 1灰分       :0.08チ 第5図に示すように、従来の内装炭ベレット、ダストベ
レットに比較して比較的低温で高強度(y) ”< L
/フット得ることができる。
In such a firing method, the petroleum residue oil has, for example, the following components: Total carbon: 82.9 cm Conradson carbon: 25.2 cm, volatile content
near! 1.9chi 1 ash content: 0.08chi As shown in Figure 5, it has high strength (y) at a relatively low temperature compared to conventional internal charcoal pellets and dust pellets.
/ foot can be obtained.

〈発明の効果〉 前述のとおり、この発明によれば、石油残渣油ベレット
を使用することから次のような効果を奏する。
<Effects of the Invention> As described above, according to the present invention, the following effects are achieved due to the use of petroleum residue oil pellets.

■ 熱分解lこより発生する熱分解ガスは、水素、−酸
化炭素および炭化水素からなる還元性ガスであり、55
0〜650℃の低温でも予備還元が可能である。
■ The pyrolysis gas generated from pyrolysis is a reducing gas consisting of hydrogen, carbon oxide and hydrocarbons, and has a
Preliminary reduction is possible even at low temperatures of 0 to 650°C.

■ 硬化室では石油残渣油中に含まれる高温揮発分が発
生し、それに含まれる水素によって還元が進行し、また
、残った固体炭素も加熱ガス中のCotや勃と反応して
COガスを発生し還元を進行させ、これにより高い予備
還元率を得ることができる〇 ■ 鉄鉱石表面に金属鉄が発生し、鉄鉱石粒間が金属結
合重たは焼結を起こして強度の高いペレットとなる。
■ In the curing chamber, high-temperature volatile matter contained in petroleum residue oil is generated, and reduction progresses with the hydrogen contained in it, and the remaining solid carbon also reacts with Cot and carbon in the heated gas to generate CO gas. 〇■ Metallic iron is generated on the surface of the iron ore, and metal bonding or sintering occurs between the iron ore grains, resulting in a high-strength pellet. .

■ 結合剤として灰分の少ない石油残渣油を使用してい
るために、AJzOs 、 B10z 、 OaOなど
のスラグ成分が少なく、かつ、大部分が揮発分である上
、残留カーホンの消費が容易なため金属ポンドが生じや
すい。コーキング・ペレットの残留カーボンは、約0.
1%と非常に低い。(結合剤のカーホンは100チ近く
消費されている。) ■ 石油残渣油は、常温では固体に近く強粘性を有する
が、150℃以上に加熱すると流動化して鉄鉱石との接
触が非常に良くなる。
■ Because petroleum residue oil with low ash content is used as a binder, there are few slag components such as AJzOs, B10z, OaO, etc., and most of the slag components are volatile, and residual carphone can be easily consumed, making it difficult to use metals. Pounds are likely to occur. The residual carbon in caulking pellets is approximately 0.
Very low at 1%. (Nearly 100 units of carphone, a binder, are consumed.) ■ Petroleum residue oil is almost solid and has strong viscosity at room temperature, but when heated to 150°C or higher, it becomes fluid and has excellent contact with iron ore. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る予備還元焼成方法を実施する
ための装置を示す概略図、第2図は石油残渣油ベレット
の結合状況と圧潰強度を示すクラ7、第3図は同様のペ
レットの圧潰強度を従来ベレットと比較したクラ7であ
る。 1・・造粒設備、2・・移動クレート炉、2人 ・・乾
燥室、2B・・コークス化室、2C・・硬化室、3・・
還元炉、4・・循還ファン、5・・ガス燃焼炉、6・・
撥熱ボイラ、7・・循環ファン、8・・排カス処理設備
、9・・補助バーナ。
Fig. 1 is a schematic diagram showing an apparatus for carrying out the preliminary reduction firing method according to the present invention, Fig. 2 shows the bonding state and crushing strength of petroleum residue pellets, and Fig. 3 shows similar pellets. The crushing strength of Kula 7 was compared with that of a conventional pellet. 1... Granulation equipment, 2... Mobile crate furnace, 2 people... Drying room, 2B... Coking room, 2C... Curing room, 3...
Reduction furnace, 4. Circulation fan, 5. Gas combustion furnace, 6.
Heat repellent boiler, 7. Circulation fan, 8. Exhaust waste treatment equipment, 9. Auxiliary burner.

Claims (5)

【特許請求の範囲】[Claims] (1)乾燥室、コークス化室、硬化室からなる移動クレ
ート炉におけるペレットの予備還元焼成方法であって、
ペレットに、高揮発分を有する液体炭素源である石油残
渣油を結合剤とした石油残渣油ベレツ)%使用し、乾燥
室を200〜350℃、コークス化室を550〜650
℃、硬化室を850〜950°Cとし、前記ベレン)f
前記乾燥室で乾燥させた後、前記コークス化室で結合剤
である石油残渣油を熱分解させてコークス化し、さらに
、前記硬化室において硬化させることを特徴とするベレ
ットの予備還元焼成方法。
(1) A method for pre-reduction firing of pellets in a moving crate furnace consisting of a drying chamber, a coking chamber, and a curing chamber,
For the pellets, petroleum residue oil, which is a liquid carbon source with a high volatile content, is used as a binder.
℃, the curing chamber was set to 850-950°C, and the temperature was
After drying in the drying chamber, petroleum residue oil as a binder is thermally decomposed to coke in the coking chamber, and further hardened in the curing chamber.
(2)  コークス化室における石油残渣油の熱分解カ
スを、還元炉からの排カスとともにカス燃焼炉で燃焼さ
せ、移動グレート炉に必要な高温カスを得ることを特徴
とする特許請求の範囲第1項記載のベレットの予備還元
焼成方法。
(2) The pyrolysis residue of petroleum residue in the coking chamber is burned in a residue combustion furnace together with the waste residue from the reduction furnace to obtain high-temperature residue necessary for the moving grate furnace. The method for preliminary reduction firing of pellets according to item 1.
(3)  ガス燃焼炉における燃焼を制御することによ
り高温ガスの温度およびガス組成を制御することを特徴
とする特許請求の範囲第2項記載のベレットの予備還元
焼成方法。
(3) The pellet pre-reduction firing method according to claim 2, wherein the temperature and gas composition of the high-temperature gas are controlled by controlling combustion in a gas combustion furnace.
(4)  ガス燃焼炉の高温ガスの一部を硬化室へ、残
りを低温ガスと混合させてコークス化室へ導入すること
を特徴とする特許請求の範囲第6項記載のベレットの予
備還元焼成方法。
(4) Preliminary reduction firing of pellets according to claim 6, characterized in that a part of the high-temperature gas from the gas combustion furnace is introduced into the curing chamber, and the rest is mixed with low-temperature gas and introduced into the coking chamber. Method.
(5)硬化室へ導入される高温ガスの酸素濃度は3%以
下であることを特徴とする特許請求の範囲第4項記載の
ペレットの予備還元焼成方法。
(5) The pellet pre-reduction firing method according to claim 4, wherein the oxygen concentration of the high temperature gas introduced into the curing chamber is 3% or less.
JP4752583A 1983-03-22 1983-03-22 Pre-reducing baking method of pellet Granted JPS59173229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4752583A JPS59173229A (en) 1983-03-22 1983-03-22 Pre-reducing baking method of pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4752583A JPS59173229A (en) 1983-03-22 1983-03-22 Pre-reducing baking method of pellet

Publications (2)

Publication Number Publication Date
JPS59173229A true JPS59173229A (en) 1984-10-01
JPH0259203B2 JPH0259203B2 (en) 1990-12-11

Family

ID=12777533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4752583A Granted JPS59173229A (en) 1983-03-22 1983-03-22 Pre-reducing baking method of pellet

Country Status (1)

Country Link
JP (1) JPS59173229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028932A1 (en) * 2008-09-11 2010-03-18 Siemens Vai Metals Technologies Gmbh & Co Process for producing agglomerates of finely particulate iron carriers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028932A1 (en) * 2008-09-11 2010-03-18 Siemens Vai Metals Technologies Gmbh & Co Process for producing agglomerates of finely particulate iron carriers
US8641799B2 (en) 2008-09-11 2014-02-04 Siemens Vai Metals Technologies Gmbh Process for producing agglomerates of finely particulate iron carriers

Also Published As

Publication number Publication date
JPH0259203B2 (en) 1990-12-11

Similar Documents

Publication Publication Date Title
US20020005089A1 (en) Method of and apparatus for manufacturing the metallic iron
US3033673A (en) Process of reducing iron oxides
JP4191681B2 (en) Hot metal production apparatus with improved operation of fluidized reduction furnace and hot metal production method
CN115216574A (en) Direct reduction process and direct reduction device for iron-containing composite pellets
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
JP3043325B2 (en) Method for producing reduced iron pellets and reduced iron pellets produced by this method
EP2657320B1 (en) Method for manufacturing partially carbonized coal briquettes
JP6964692B2 (en) Method of manufacturing metallic iron
US3093474A (en) Process of reducing metal oxides
US3153586A (en) Slag coated ore compacts and process for making the same
JP2953938B2 (en) Method for producing molded coke for metallurgy by low-temperature carbonization
US3501288A (en) Method of prereducing sinters and pellets
JPS59173229A (en) Pre-reducing baking method of pellet
WO2012149668A1 (en) Process for producing reduced iron powder in two steps
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
JP2762913B2 (en) Method for reducing agglomerates of fine iron ore with a solid reducing agent
JPS648053B2 (en)
US3304168A (en) System for producing carbonized and prereduced iron ore pellets
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JP3004255B2 (en) Method for producing reduced iron
JPH10251723A (en) Production of reduced iron
KR100398278B1 (en) Method of reducing sinter with Low Oxidation Degree
CN105441619B (en) Combustion furnace and utilize its partial reduction iron method
SU1640184A1 (en) Method of producing metallized sinter
JPH1161217A (en) Production of reduced iron and device therefor