JPS59173080A - Stabilization of lipase - Google Patents

Stabilization of lipase

Info

Publication number
JPS59173080A
JPS59173080A JP4632983A JP4632983A JPS59173080A JP S59173080 A JPS59173080 A JP S59173080A JP 4632983 A JP4632983 A JP 4632983A JP 4632983 A JP4632983 A JP 4632983A JP S59173080 A JPS59173080 A JP S59173080A
Authority
JP
Japan
Prior art keywords
lipase
units
days
activity
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4632983A
Other languages
Japanese (ja)
Other versions
JPH0439994B2 (en
Inventor
Sachiko Murakami
幸子 村上
Shirou Ishida
石田 祀朗
Tadashi Funada
船田 正
Jiro Hirano
二郎 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP4632983A priority Critical patent/JPS59173080A/en
Publication of JPS59173080A publication Critical patent/JPS59173080A/en
Publication of JPH0439994B2 publication Critical patent/JPH0439994B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stability of lipase exposed to a high temperature in aqueous solution, and to prevent the lowering of the enzymatic activity at about the optimum temperature, by adding a polyoxyalkylene ether of a monohydric or polyhydric alcohol. CONSTITUTION:An aqueous solution containing lipase to be used for the hydrolysis of oil or fat is added with 0.1-50wt%, preferably 1-20wt% of a polyoxyalkylene ether of a monohydric or polyhydric alcohol.

Description

【発明の詳細な説明】 この発明はリパーゼの安定化方法に関する。[Detailed description of the invention] This invention relates to a method for stabilizing lipase.

リパーゼを用いて油脂を加水分解する方法については、
従来多くの研究がなされているが、はとんどの研究は常
温付近(25〜37°C)で液体の油を加水分解するも
のであり、高融点の脂肪を加水分解する例は非常に少な
い。
For information on how to hydrolyze fats and oils using lipase,
Although many studies have been conducted in the past, most research has focused on hydrolyzing liquid oils at room temperature (25-37°C), and there have been very few examples of hydrolyzing fats with high melting points. .

この主な理由は、リパーゼが生体細胞により生産される
タンパク質性の触媒で、至適温度である約37°Cを超
えると熱変性をおこし、失活して油脂の加水分解能力が
低下し、かかる高温下で高融点の脂肪の加水分解を試み
ても高い加水分解率が得られないためであった。また、
上記リパーゼの失活を防止するために、高融点の脂肪を
低温で加水分解を行うと、脂肪の一部や加水分解により
生成した固体の脂肪酸が結晶となって析出し、反応系の
粘度が増大して攪拌が困難となり、リパーゼ水溶液と脂
肪との接触が不十分となって数日間の反応においても加
水分解率が向上してこない。
The main reason for this is that lipase is a proteinaceous catalyst produced by living cells, and when it exceeds the optimum temperature of approximately 37°C, it undergoes thermal denaturation and becomes inactive, reducing its ability to hydrolyze fats and oils. This is because even if attempts were made to hydrolyze high melting point fats at such high temperatures, a high hydrolysis rate could not be obtained. Also,
In order to prevent the above lipase from deactivating, when high melting point fats are hydrolyzed at low temperatures, part of the fat and solid fatty acids produced by hydrolysis precipitate as crystals, reducing the viscosity of the reaction system. As the amount increases, stirring becomes difficult, and contact between the lipase aqueous solution and the fat becomes insufficient, and the hydrolysis rate does not improve even after several days of reaction.

この出願人は、上記問題を克服して高融点の脂肪の加水
分解率を97〜98係以上に向上させるた    ゛め
、すでに、融解した脂肪と冷却したリパーゼ水溶液とを
混合して脂肪の融点以下の温度で安定な乳化分散液を得
、これを静置して加水分解することにより、リパーゼの
失活を防止してっまりリパーゼの活性を有効に保持して
上記目的を達する方法を開示した(特開昭57−577
99号〕。しかし、この方法においては反応温度が30
’Cと比較的低温度であるために反応は48時間を要し
た。
In order to overcome the above-mentioned problem and improve the hydrolysis rate of high melting point fats to 97-98 or higher, the applicant has already mixed melted fat and cooled lipase aqueous solution to increase the melting point of fat. Discloses a method for achieving the above objectives by obtaining an emulsified dispersion that is stable at the following temperatures, and hydrolyzing it by allowing it to stand still, thereby preventing lipase from deactivating and effectively retaining lipase activity. (Unexamined Japanese Patent Publication No. 57-577)
No. 99]. However, in this method, the reaction temperature is 30
The reaction took 48 hours due to the relatively low temperature of 'C.

一方、上記高融点の脂肪とは異なる常温で液体である油
をリパーゼ水溶液により加水分解する方法については、
すでに述べたように数多くの研究がなされてきた。この
場合、常温での加水分解反応終了後油相を遠心分離など
の操作で分離し、リパーゼ水溶液を回収して再使用する
方法が一般に採用されている。しかし、常温での加水分
解に肖たり、たとえばリパーゼの至適温度である37°
Cで97〜98%の分解率を達成するための反応時間は
分散効果の低さから76〜96時間という長時間となる
ため、この間にリパーゼ水溶液の酵素活性が約90係ま
で低下する問題があった。したがってリパーゼ水溶液を
回収して再使用するに当り、1回の加水分解反応終了後
酵素活性の約10係に相当するリパーゼを補給する必要
があった。
On the other hand, regarding the method of hydrolyzing oil that is liquid at room temperature, which is different from the above-mentioned high melting point fat, using an aqueous lipase solution,
As already mentioned, many studies have been conducted. In this case, a method generally employed is to separate the oil phase by centrifugation or the like after the completion of the hydrolysis reaction at room temperature, and collect and reuse the lipase aqueous solution. However, it is difficult to hydrolyze at room temperature, for example, 37° which is the optimal temperature for lipase.
The reaction time to achieve a decomposition rate of 97 to 98% with C is a long time of 76 to 96 hours due to the low dispersion effect, so there is a problem that the enzyme activity of the lipase aqueous solution decreases to about 90% during this time. there were. Therefore, when recovering and reusing the lipase aqueous solution, it was necessary to replenish lipase equivalent to about 10 times the enzyme activity after one hydrolysis reaction was completed.

この発明者らは、上述の二つの欠点を回避するため、す
なわちリパーゼによる加水分解反応が高融点の脂肪を対
象とじつるような比較的高温度で実施できないこと、8
よびリパーゼの至適温度(通常37°C〕付近でリパー
ゼ水溶液が徐々にその酵素活性を滅することを防止する
ために鋭意検討を行った結果、リパーゼ水溶液中に多数
のエーテル結合を含有する物質を共存させることにより
、リパーゼ水溶液の安定性が向上しこれにより上記欠点
を回避できることを見い出し、この発明を完成するに至
ったものである。
The inventors sought to avoid the two drawbacks mentioned above, namely that the hydrolysis reaction by lipases cannot be carried out at relatively high temperatures, such as those targeted at high melting point fats;
As a result of extensive research to prevent lipase aqueous solutions from gradually losing their enzymatic activity near the optimum temperature for lipase (usually 37°C), we have found that a substance containing a large number of ether bonds is added to lipase aqueous solutions. The present invention was completed based on the discovery that the stability of the aqueous lipase solution can be improved by coexisting with the lipase, thereby avoiding the above-mentioned drawbacks.

すなわち、この発明は、油脂の加水分解に供される如き
リパーゼを含有する水溶液に一価または多価アルコール
のポリオキシアルキレンエーテルを添加してリパーゼを
安定化させる方法に係るものである。
That is, the present invention relates to a method of stabilizing lipase by adding a polyoxyalkylene ether of a monohydric or polyhydric alcohol to an aqueous solution containing lipase that is used for hydrolyzing fats and oils.

この発明において、−価アルコールとは炭素数1〜18
のアルコールであり、多価アルコールとは一分子内に水
酸基を二個以上有するものであり、三個性するものとし
てエチレングリコール、プロピレングリコール、ネオペ
ンチルクリコールなどがあり、三個性するものとしてグ
リセロール、トリメチロールプロパンなどがあり、四個
以上有するものとしてペンタエリスリトール、ソルビト
ール、グルコースなどがある。
In this invention, -hydric alcohol refers to a carbon number of 1 to 18
Polyhydric alcohols are alcohols that have two or more hydroxyl groups in one molecule, and the three types include ethylene glycol, propylene glycol, and neopentyl glycol, and the three types include glycerol, Examples include trimethylolpropane, and those having four or more include pentaerythritol, sorbitol, and glucose.

一価または多価アルコールのポリオキシアルキレンエー
テル(以下、ポリエーテルという〕のオキシアルキレン
基はオキシエチレン基またはオキシフロピレン基であり
、これらは単独でも共存していでもよく、共存する場合
はブロック付加物でもランダム付加物でもよい。オキシ
アルキレン基の数は一分子当り2〜40、好ましくは5
〜20である。この範囲外ではリパーゼの安定化効果が
低下する。
The oxyalkylene group of the polyoxyalkylene ether (hereinafter referred to as polyether) of monohydric or polyhydric alcohol is an oxyethylene group or an oxyfuropylene group, and these may be used alone or together, and when they coexist, block addition The number of oxyalkylene groups per molecule is 2 to 40, preferably 5.
~20. Outside this range, the stabilizing effect of lipase decreases.

ポリエーテルは水に溶解または分散させて使用するが、
その添加量はリパーゼ水溶液中で01〜・    50
重量%、好ましくは1〜20重量%になる量である。添
加量を50重量%になる量より多くしてもその安定化効
果はそれほど向上しないので経済的に不利である。また
、01重量%未満ではその安定化効果は不十分である。
Polyether is used by dissolving or dispersing it in water,
The amount added is 01 to 50 in the lipase aqueous solution.
% by weight, preferably from 1 to 20% by weight. Even if the amount added is greater than 50% by weight, the stabilizing effect will not improve much, which is economically disadvantageous. Further, if it is less than 0.01% by weight, the stabilizing effect is insufficient.

この発明に使用するリパーゼとしては、キャンデイダ属
、クロモバクテリウム属、アスペルギルス属、ペニシリ
ウム属、ムコール属、ジオトリカム属、リゾプス属、ア
ルスロバクター属、ヒコミセス属などの微生物を給源と
するリパーゼ、すい蔵などの動物蔵器より得られるリパ
ーゼ、ひま種子などの植物種子より得られるリパーゼ等
がある。
Lipases used in this invention include lipases sourced from microorganisms such as Candida, Chromobacterium, Aspergillus, Penicillium, Mucor, Geotrichum, Rhizopus, Arthrobacter, and Hycomyces; There are lipases obtained from animal vases such as, and lipases obtained from plant seeds such as castor seeds.

この発明によるリパーゼの安定化方法により。By the method for stabilizing lipase according to this invention.

至適温度37°Cのリパーゼを50’Cで使用すること
が可能となる。すなわち、50°Cにおいてはポリエー
テルを添加しないリパーゼの水溶液は1時間で最初の酵
素活性の約80%が失なわれる。しかし、ポリエーテル
を添加したリパーゼの水溶液はその酵素活性の低下は小
さく、2時間経過後にもとの酵素活性の約10%の低下
しか見られず、4時間経過後でもその酵素活性は約20
q6低下するに過ぎない。
It becomes possible to use lipase whose optimum temperature is 37°C at 50'C. That is, at 50°C, an aqueous solution of lipase to which no polyether is added loses about 80% of its initial enzymatic activity in one hour. However, in an aqueous solution of lipase to which polyether has been added, the decrease in enzyme activity is small, with only a 10% decrease in the original enzyme activity after 2 hours, and a decrease in enzyme activity of about 20% even after 4 hours.
It only decreases by q6.

したがって、この発明の利点として、例えば融点42°
Cのトリグリセリドである牛脂を前記この出願人の先の
提案法によって306Cで静置分解した場合に反応時間
48時間を要して分解率97〜98チに達したものが、
50°Cでは反応時間は1イ。
Therefore, as an advantage of this invention, for example, melting point 42°
When beef tallow, which is a triglyceride of C, was statically decomposed at 306C using the method previously proposed by this applicant, a decomposition rate of 97 to 98C was reached in a reaction time of 48 hours.
At 50°C, the reaction time is 1.

以下の4時間で分解率97〜98%になることから、反
応時間の短縮による生産効率の大巾な向上を望める。
Since the decomposition rate reaches 97 to 98% in the following 4 hours, it can be expected that the production efficiency will be greatly improved by shortening the reaction time.

この発明によるリパーゼの安定化のもうひとつの利点は
、リパーゼの至適温度である37°Cに保持した場合に
従来のリパーゼの水溶液は4〜5日で酵素活性の約10
%が失活してしまうのに対し、ポリエーテルを添加した
この発明に係るリパーゼの水溶液は37°Cで10日間
経過して上記従来のものと同じ酵素活性の約10%が失
活するため、リパーゼのリサイクル効率が約2倍になっ
て経済的に非常に有利となることである。
Another advantage of stabilizing lipase according to the present invention is that when kept at 37°C, which is the optimum temperature for lipase, conventional lipase aqueous solutions lose about 10% of their enzymatic activity in 4 to 5 days.
% is deactivated, whereas the aqueous solution of lipase according to the present invention containing polyether loses its enzyme activity by about 10% after 10 days at 37°C, which is the same as that of the conventional one. , the recycling efficiency of lipase is approximately doubled, which is very economically advantageous.

つぎに、この発明を実施例により具体的に説明する。な
お、リパーゼ水溶液の酵素活性の測定法はつぎの通りで
ある。
Next, the present invention will be specifically explained using examples. The enzymatic activity of the lipase aqueous solution is measured as follows.

PT(7,Qのリン酸緩衝液5 mff1 とオリーブ
油1m)の混合物にリパーゼ水溶液1徂ノを加え、37
°Cにおいて5QQr−p−mで攪拌して1時間反応さ
せ1反応終了後遊離した脂肪酸の量をアルカリによる滴
定で求めた。リパーゼの活性は、1分間に1μモルの脂
肪酸を遊離する酵素阻を1単位とした。
Add 1 x of lipase aqueous solution to a mixture of PT (5 mff1 of 7,Q phosphate buffer and 1 m of olive oil),
The reaction mixture was stirred at 5QQr-pm at °C and allowed to react for 1 hour. After completion of one reaction, the amount of liberated fatty acids was determined by titration with an alkali. The activity of lipase was defined as 1 unit of enzyme activity that releases 1 μmol of fatty acid per minute.

実施例1 ン エタノールにプロピアキシド4モルとエチレンオキシド
6モルがランダム付加したポリエーテルの5重量多水溶
液を調製し、37°Cに加温した。
Example 1 A 5-weight multi-aqueous solution of polyether in which 4 moles of propioxide and 6 moles of ethylene oxide were randomly added to ethanol was prepared and heated to 37°C.

これにジオトリカム属より得られた1、172単位/m
j2のプロスを加え、初期酵素活性150単位7度のリ
パーゼ水溶液も調製し、5QOr−p−m で攪拌しな
がら37°Cに保持し、適時サンプリングして酵素活性
を測定した。その結果、1日経過後で150単位/mノ
、3日経過後で150単位/mム7日経過後で144単
位/mノ、11日経過後で136単位/malの酵素活
性を示した。すなわち、11日経過後で93%しか活性
が失なわれなかった。
In addition to this, 1,172 units/m obtained from Geotrichum sp.
A lipase aqueous solution of 7°C with an initial enzyme activity of 150 units was prepared by adding Pros. As a result, the enzyme activity was 150 units/m after 1 day, 150 units/m after 3 days, 144 units/m after 7 days, and 136 units/m after 11 days. That is, only 93% of the activity was lost after 11 days.

比較例1 ポリエーテルを用いないほかは実施例1と同一の条件で
試験した結果、1日経過後で150単位/mノ、3日経
過後で139単位Δ町、5日経過後で131単位/mノ
、10日経過後で120単位/mノとなり、51目です
でに127%、10日1で20係の活性が失なわれた。
Comparative Example 1 A test was conducted under the same conditions as in Example 1 except that polyether was not used. The results were 150 units/m after 1 day, 139 units/m after 3 days, and 131 units/m after 5 days. After 10 days, the activity became 120 units/m, and at the 51st stage, 127% of the activity had already been lost.

実施例2 ポリエーテルとして炭素数12〜13 の合成第一アル
コール(直鎖率80%)のプロピレンオキシド4モルと
エチレンオキシド6モルがこの順序でブロック付加した
ポリエーテルを用い、実施例1と同一の条件で試験を行
なった。その結果、1日経過後で150単位/mJ2.
7日経過後で145単位/h1ノ、11日経過後で13
3単位/mノの酵素活性を示した。すなわち、11日経
過後で11.3%しか活性が失なわれなかった。
Example 2 The same polyether as in Example 1 was used, using a polyether in which 4 moles of propylene oxide and 6 moles of ethylene oxide of a synthetic primary alcohol having 12 to 13 carbon atoms (linear chain ratio: 80%) were block-added in this order. The test was conducted under the following conditions. As a result, after one day, 150 units/mJ2.
145 units/h1 after 7 days, 13 after 11 days
It showed an enzyme activity of 3 units/m. That is, only 11.3% of the activity was lost after 11 days.

実施例3 エチレンクリコールにエチレンオキシド3七ルトフロピ
レンオキシド2モルがランダム付加したポリエーテルの
10重量%の水溶液を調製し、50゜Cに加温した。こ
れにキャンデイダ属より得られた3 0,000単位/
g のリパーゼ粉末を加え、初期活性150単位/mノ
 を含有するリパーゼ水溶液を調製し、500r−p−
mで攪拌しながら50°Cに保持して、適時サンプリン
グして酵素活性を測定した。その結果、1時間経過後で
148単位/mノ、2時間経過後で136単位/mノ、
4時間経過後で121単位/ mi となった。すなわ
ち、4時間経過後で193%しか活性が失なわれなかっ
た。
Example 3 A 10% by weight aqueous solution of polyether in which 2 moles of ethylene oxide and 37 rutoflopylene oxide were randomly added to ethylene glycol was prepared and heated to 50°C. In addition to this, 30,000 units/unit obtained from Candida sp.
g of lipase powder was added to prepare a lipase aqueous solution containing 150 units/m of initial activity.
The mixture was maintained at 50°C while stirring at 50°C, and samples were taken at appropriate times to measure enzyme activity. As a result, 148 units/m after 1 hour, 136 units/m after 2 hours,
After 4 hours, it was 121 units/mi. That is, only 193% of the activity was lost after 4 hours.

比較例2 ポリエーテルを用いないほかは実施例3と条件を同一に
して試験した結果、1時間経過後で28単位/ m2の
酵素活性しか示さなかった。すなわち、1時間で81.
3%の活性が失なわれた。
Comparative Example 2 A test was conducted under the same conditions as in Example 3 except that polyether was not used, and as a result, only 28 units/m2 of enzyme activity was exhibited after 1 hour. In other words, 81.00 in 1 hour.
3% activity was lost.

実施例4 クリセロールにエチレンオキシド20モルを付加したポ
リエーテルを用い、実施例3と同一の条件で試験した。
Example 4 A test was conducted under the same conditions as in Example 3 using a polyether prepared by adding 20 moles of ethylene oxide to chrycerol.

その結果、1時間経過後で148単位/mノ、2時間経
過後で138単位/m44時間経過後で120単位/m
ノの酵素活性を示した。すなわち、4時間経過後で20
%しか活性が失なわれなかった。
As a result, 148 units/m after 1 hour, 138 units/m after 2 hours, 120 units/m after 44 hours.
It showed the enzyme activity of . In other words, after 4 hours, 20
Only % of activity was lost.

実施例5 ペンタエリスリトールにエチレンオキシド5モルとプロ
ピレンオキシド10モルがこの順序でブロック付加した
ポリエーテルの20重量%の水分散体を調製し、376
Cに加温した。これにムコール属より得られた15.O
OO単位/gのリパーゼ粉末を加え、初期活性150単
位/m2を含有する酵素水溶液を調製し、500r−p
−m で攪拌しながら370Cニ保持した。適時サンプ
リングして酵素活性を測定した。その結果、1日経過後
で150単位/rf11.3日経過後で148単位/m
ノ、7日経過後で145単位/mノ、10日経過後で1
35単位/mノの酵素活性を示した。すなわち、10日
経過後で10%しか活性が失なわれなかった。
Example 5 A 20% by weight aqueous dispersion of a polyether in which 5 moles of ethylene oxide and 10 moles of propylene oxide were block-added to pentaerythritol in this order was prepared.
It was heated to C. In addition to this, 15. O
Add OO units/g of lipase powder to prepare an enzyme aqueous solution containing an initial activity of 150 units/m2, and incubate at 500 r-p.
The temperature was maintained at 370C while stirring at -m. Enzyme activity was measured by sampling at appropriate times. As a result, 150 units/rf after 1 day 148 units/m after 3 days
145 units/m after 7 days, 1 after 10 days
It showed an enzyme activity of 35 units/m. That is, only 10% of the activity was lost after 10 days.

比較例3 ポリエーテルを用いないほかは実施例5と同一の条件で
試験した結果、1日経過後で150単位/mノ、3日経
過後で137単位/mノ、5日経過後で135単位/m
ノ、10日経過後で122単位/mノ となり、5口重
ですでに10%、10日口重187係の活性が失なわれ
た。
Comparative Example 3 Tested under the same conditions as Example 5 except that polyether was not used. Results were 150 units/m after 1 day, 137 units/m after 3 days, and 135 units/m after 5 days.
After 10 days, the activity was 122 units/m2, and 10% of the activity had already been lost at the 5th mouth weight, which was 187 units at the 10th day's mouth weight.

実施例6 グルコースのプロピレンオキシド5モル付加物の1重量
多水分散体を調製し、そのほかは実施例5と同一の条件
で試験した。その結果1日経過後で150単位/mi、
3日経過後で146単位/mノ、7日経過後で140単
位/ m7.10日経過後で137単位/m、I2の酵
素活性を示した。すなわち、10日経過後で8.7%し
か活性が失われなかった。
Example 6 A 1-weight polyaqueous dispersion of a 5-mol adduct of glucose with propylene oxide was prepared, and otherwise tested under the same conditions as in Example 5. As a result, 150 units/mi after 1 day,
The enzyme activity was 146 units/m after 3 days, 140 units/m after 7 days, and 137 units/m after 10 days. That is, only 8.7% of the activity was lost after 10 days.

実施例7 エチレングリコールにプロピレンオキシド2モルとエチ
レンオキシド3モルがランダムに付加したポリエーテル
の10重1jt%の水溶液を調製し、これにキャンデイ
ダ属より得られた3 0,000単位/gのリパーゼ粉
末を加え、初期活性500単位/m2を含有するリパー
ゼ水溶液を調製した。このものに牛脂(酸価02.けん
化価192.3 、融点42°C〕100gを加え、5
00r−P−m で攪拌しながら50゜Cに4時間保持
した。反応終了後油層を分離し脱水した。このものは酸
価199.0.けん化価2039で分解率〔(酸価/け
ん化価)X100〕は97,6係であった。
Example 7 A 10% by weight aqueous solution of polyether in which 2 moles of propylene oxide and 3 moles of ethylene oxide were randomly added to ethylene glycol was prepared, and to this was added 30,000 units/g of lipase powder obtained from the genus Candida. was added to prepare an aqueous lipase solution containing an initial activity of 500 units/m2. Add 100 g of beef tallow (acid value 02, saponification value 192.3, melting point 42°C) to this,
The temperature was maintained at 50°C for 4 hours while stirring at 00rPm. After the reaction was completed, the oil layer was separated and dehydrated. This one has an acid value of 199.0. The saponification value was 2039, and the decomposition rate [(acid value/saponification value) x 100] was 97.6.

比較例4 ポリエーテルを用いないほかは実施例7と同一の条件で
試験した結果、油層部分は酸価123.2゜けん化価1
998で分解率は617係となった。
Comparative Example 4 As a result of testing under the same conditions as Example 7 except that polyether was not used, the oil layer part had an acid value of 123.2 degrees and a saponification value of 1.
At 998, the decomposition rate was 617.

実施例8 エタノールにプロピレンオキシド4モルとエチレンオキ
シド6モルがランダム付加したポリエーテルの5重ft
ft%水溶液を調製し、これにジオl−IJカム属より
得られた1、172単位/m劫ブロスを加え、初期活性
500単位/mi のリパーゼ水溶液を調製した。これ
にオリーブ油(酸価05.けん化価189.1)100
gを加え、5QQr−p−m  で攪拌しながら37°
Cで4日間保持した。反応終了後油層を遠心分離し脱水
した。このものは酸価i94.4.けん化価2003で
分解率は97.1 %であり、水相の酵素活性は490
単位/mノであった。この水相100m1に上述のブロ
スを0.01m1加えて酵素活性を500単位/miと
し、これを用いてオリーブ油の加水分解をくり返した。
Example 8 5 double ft of polyether in which 4 moles of propylene oxide and 6 moles of ethylene oxide were randomly added to ethanol
ft% aqueous solution was prepared, and 1,172 units/m kalpa broth obtained from Diol-IJ Cam was added to this to prepare an aqueous lipase solution with an initial activity of 500 units/m2. Add this to olive oil (acid value 05, saponification value 189.1) 100
g and stirred at 37° while stirring at 5QQr-pm.
It was kept at C for 4 days. After the reaction was completed, the oil layer was centrifuged and dehydrated. This product has an acid value of i94.4. The saponification value is 2003, the decomposition rate is 97.1%, and the enzyme activity in the aqueous phase is 490.
The unit was /m. 0.01 ml of the above-mentioned broth was added to 100 ml of this aqueous phase to give an enzyme activity of 500 units/mi, and this was used to repeatedly hydrolyze olive oil.

反応終了後油層を遠心分離し脱水した。このものは酸価
193.0けん化価2000で分解率は965%となっ
た。
After the reaction was completed, the oil layer was centrifuged and dehydrated. This product had an acid value of 193.0, a saponification value of 2000, and a decomposition rate of 965%.

比較例5 ポリエーテルを用いないほかは実施例8と同一の条件で
試験した結果、油層部分は酸価190,5 。
Comparative Example 5 A test was conducted under the same conditions as in Example 8 except that polyether was not used, and the acid value of the oil layer portion was 190.5.

けん化価1995で分解率955係であった。水相の酵
素活性は450単位/mノであった。この水相100 
mff1に上述のプロスを0.05mノ加えて酵素活性
を500単Mr1miとし、これを用いてオリーブ油の
加水分解をくり返した。反応終了後油層を遠心分離し脱
水した。このものは酸価190.0 、けん化価198
.5で分解率は95.7%であった。
The saponification value was 1995 and the decomposition rate was 955. The enzyme activity in the aqueous phase was 450 units/m. This water phase 100
0.05 m of the above-mentioned pros was added to mff1 to give an enzyme activity of 500 units Mr1 mi, and this was used to repeatedly hydrolyze olive oil. After the reaction was completed, the oil layer was centrifuged and dehydrated. This item has an acid value of 190.0 and a saponification value of 198.
.. 5, the decomposition rate was 95.7%.

特許出願人 日本油脂株式会社Patent applicant: NOF Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)リパーゼを含有する水溶液に一価または多価アル
コールのポリオキシアルキレンニーデルを添加すること
を特徴とするリパーゼの安定化方法。
(1) A method for stabilizing lipase, which comprises adding a polyoxyalkylene needle of monohydric or polyhydric alcohol to an aqueous solution containing lipase.
JP4632983A 1983-03-19 1983-03-19 Stabilization of lipase Granted JPS59173080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4632983A JPS59173080A (en) 1983-03-19 1983-03-19 Stabilization of lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4632983A JPS59173080A (en) 1983-03-19 1983-03-19 Stabilization of lipase

Publications (2)

Publication Number Publication Date
JPS59173080A true JPS59173080A (en) 1984-09-29
JPH0439994B2 JPH0439994B2 (en) 1992-07-01

Family

ID=12744105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4632983A Granted JPS59173080A (en) 1983-03-19 1983-03-19 Stabilization of lipase

Country Status (1)

Country Link
JP (1) JPS59173080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000236A (en) * 2001-06-18 2003-01-07 Toyobo Co Ltd Method for stabilizing esterase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223110A (en) * 1975-08-12 1977-02-21 Boehringer Mannheim Gmbh Measuring method of triglyceride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223110A (en) * 1975-08-12 1977-02-21 Boehringer Mannheim Gmbh Measuring method of triglyceride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000236A (en) * 2001-06-18 2003-01-07 Toyobo Co Ltd Method for stabilizing esterase

Also Published As

Publication number Publication date
JPH0439994B2 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
JP3720194B2 (en) Method for producing partial glycerides
US4614718A (en) Synthesis of sugar or sugar-alcohol fatty acid esters
EP0191217B2 (en) Process for producing glycerides in the presence of lipases
Wallach et al. Purification and properties of a Tween-hydrolyzing enzyme from rat adipose tissue
US6080402A (en) Immobilization of lipases by entrapment in silica matrices
EP0294520B1 (en) Process for preparing enzyme preparation
Jenta et al. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion‐based organogels
CH638241A5 (en) ENZYMPRAEPARAT WITH L-ALPHA-AMINOACYLAMIDASE ACTIVITY.
Razak et al. Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent
US3855142A (en) Enzymatic denture cleanser
JPS59173080A (en) Stabilization of lipase
IE51745B1 (en) Cholesterol esterase achromobacter delicatulus,and the hydrolysis of cholesterol esters therewith
JPS6078587A (en) Preparation of fatty acid ester
Satyanarayana et al. Lipolytic activity of thermophilic fungi of paddy straw compost
JP4142887B2 (en) Method for producing enzyme reaction product
JPS6143992A (en) Preparation of fatty acid ester of sugar or sugar alcohol
US3067108A (en) Method of refining amyloglucosidase
JPS5515746A (en) Preparation of l-alpha-glycerophosphoric acid oxidase
JPH03504440A (en) fat hydrolysis process
JP2724474B2 (en) Decomposition method of fats and oils by enzymes
JPH0453492A (en) Hydrolysis of fat and oil by lipase and hydrolyzed product obtained thereby
JPS5867183A (en) Production of phospholipase d
JPH01187089A (en) Production of palmitoleic acid and glyceride thereof
JPH03292893A (en) Hydrolysis of fatty acid alcohol ester
JPS6253154B2 (en)