JPS59172811A - Ceramic resonator - Google Patents

Ceramic resonator

Info

Publication number
JPS59172811A
JPS59172811A JP4644083A JP4644083A JPS59172811A JP S59172811 A JPS59172811 A JP S59172811A JP 4644083 A JP4644083 A JP 4644083A JP 4644083 A JP4644083 A JP 4644083A JP S59172811 A JPS59172811 A JP S59172811A
Authority
JP
Japan
Prior art keywords
temperature
resonance point
ceramic
impedance
ceramic resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4644083A
Other languages
Japanese (ja)
Inventor
Shinichi Sawahara
沢原 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4644083A priority Critical patent/JPS59172811A/en
Publication of JPS59172811A publication Critical patent/JPS59172811A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve the temperature characteristic in a circuit utilizing an impedance characteristic of a ceramic resonator by adopting a material having a negative temperature tendency in the temperature dependancy of a resonance point and an anti-resonance point as the material of a piezoelectric ceramic. CONSTITUTION:A differential peak detecting circuit 1 is constituted by connecting a resonance circuit 3 comprising the combination of a ceramic resonator CDA, a capacitor C, an inductance L and a resistor R to a differential amplifier 2. A piezoelectric body of the ceramic resonator CDA uses a piezoelectric ceramic made of titanic acid lead zirconate as a row material. Further, the temperature dependancy of the resonance point and the anti-resonance point of the piezoelectric ceramic has a negative temperature tennedency to cancel the change in the impedance characteristic attended with the temperature change of a dielectric constant. Thus, the impedance is not almost affected by temperature at frequencies around the center between the resonance point and the anti- resonance point of this ceramic resonator CDA. Thus, in a detecting circuit or the like utilizing the impedance characteristic around the center frequency, the temperature characteristic of the entire circuit is improved.

Description

【発明の詳細な説明】 本発明はセラミック共振子に関する。[Detailed description of the invention] The present invention relates to ceramic resonators.

一般にセラミック共振子はチタン酸ジルコン酸鉛々どの
圧電セラミックを圧電体としている。従って、その誘電
率も温度に依存して変化する。この誘電率の温度特性は
正傾向を示す。これをセラミック共振子のインピーダン
ス特性でみると、第1図(a)で示すように、高温に々
る程、同図(a)中の実線で示す常温時の位置から破線
のごとく下方に、また低温になる程、一点鎖線のごとく
一ヒ方に移行する。このために、セラミック共振子のイ
ンピーダンス特性を利用する回路たとえばFM波を復調
するだめのデイファレン/ヤルピーク検波回路等におい
ては中心周波数や出力レベルも温度に依存して変動する
こととなり、FM波の復調が困難となるなどの問題があ
る。
Generally, a ceramic resonator uses a piezoelectric ceramic such as lead zirconate titanate as a piezoelectric body. Therefore, its dielectric constant also changes depending on temperature. The temperature characteristic of this dielectric constant shows a positive trend. Looking at this in terms of the impedance characteristics of the ceramic resonator, as shown in Figure 1(a), the higher the temperature, the lower the position as shown by the dashed line from the normal temperature position shown by the solid line in Figure 1(a). Furthermore, as the temperature decreases, the temperature shifts to one side, as shown by the dashed-dotted line. For this reason, in circuits that utilize the impedance characteristics of ceramic resonators, such as differential/ear peak detection circuits that are used to demodulate FM waves, the center frequency and output level will vary depending on the temperature, resulting in demodulation of FM waves. There are problems such as difficulty in

本発明は上記の問題点に鑑みてなされたものであって、
セラミック共振子の共振点と反共振点との中間付近の周
波数においてインピーダンス%性が温度に影響されない
ようにし、これによってセラミック共振子のインピーダ
ンス特性を利用した回路における温度特性を向上するこ
とを目的とする。
The present invention has been made in view of the above problems, and includes:
The purpose is to prevent the impedance percentage from being affected by temperature at a frequency near the midpoint between the resonance point and anti-resonance point of a ceramic resonator, and thereby improve the temperature characteristics of a circuit that utilizes the impedance characteristics of a ceramic resonator. do.

一ヒ記目的を達成するための本発明の基本的な考えは、
セラミック共振子の圧電セラミックの材料として、共振
点および反共振点の温度依存性が負の温度傾向をもつも
のを適用した点にある。すなわち、第1図(b)に示す
ように、セラミック共振子の共振点f、と反共振点f、
とが高温になる程実線で示す常温時の位置から破線のご
とく低周波数側へ、また、低温になる程一点鎖線のごと
く高周波数側へ移行するような温度特性を有する圧電セ
ラミックを圧電体さするものである。さらに具体的には
次に示す関係式を満たす月料を選定する必要がある。す
なわち、第2図に示すように、いま同図中実線のごとく
基準温度T。における共振周波数をfr。
The basic idea of the present invention for achieving the above objects is as follows:
The piezoelectric ceramic material used in the ceramic resonator is one in which the temperature dependence of the resonance point and anti-resonance point has a negative temperature tendency. That is, as shown in FIG. 1(b), the resonance point f, anti-resonance point f,
A piezoelectric ceramic is used as a piezoelectric material. It is something to do. More specifically, it is necessary to select a monthly fee that satisfies the following relational expression. That is, as shown in FIG. 2, the reference temperature T is now indicated by the solid line in the figure. The resonance frequency at fr.

そのときのインピーダンスをz「、また反共振の七きの
それらをf、、 Zaとし、両共振点fa、 frの中
間の周波数fcにおけるインピーダンスヲzcトスる。
Let the impedance at that time be z', and let those of the anti-resonance points be f,, Za, and let the impedance at the frequency fc intermediate between both resonance points fa and fr be zc.

またインピーダンスは画周波数fr、 fa間で周波数
に対して直線的に変化するものとする。そして、温度が
変化してT1に々つたとき、インピーダンス特性が誘電
率の変化のみでみれば破線の位置へ移行し、また共振点
frおよび反共温点f、の温度依存性のみでみればイン
ピーダンス特性が一点鎖線の位置に移行するものとする
。上記条件のもとでは、1 o−B141 o−c 1
のとき、誘電率によるインピーダンス特性の変化分が共
振点frおよび反共振点f、の周波数変化により補償さ
れる。相似関係よりl O”B l/I O−A l 
= l fr  fa I、’r Zr −Za lで
あるからl C1”Cl/I O”A l = l f
r−fa I/l zr  Zc lが満足されればよ
い。従って温度がT。がらT1に変化したときにこれに
ともなう誘電率の変化により中間周波数fcにおけるイ
ンピーダンスがZcかう21に変化する場合は f2−fc===  2a −,2,(zc −2,)
となるような周波数特性をもつ材料を選定すればよい。
It is also assumed that impedance changes linearly with frequency between image frequencies fr and fa. When the temperature changes and approaches T1, the impedance characteristic shifts to the position of the broken line if viewed only from the change in dielectric constant, and the impedance changes from the temperature dependence of the resonance point fr and the anti-resonant point f. It is assumed that the characteristics shift to the position indicated by the dash-dotted line. Under the above conditions, 1 o-B141 o-c 1
At this time, the change in impedance characteristics due to the dielectric constant is compensated by the frequency change at the resonance point fr and the anti-resonance point f. From the similarity relationship l O”B l/I O-A l
= l fr fa I, 'r Zr -Za l, so l C1"Cl/I O"A l = l f
It is sufficient if r-fa I/l zr Zc l is satisfied. Therefore, the temperature is T. If the impedance at the intermediate frequency fc changes to Zc or 21 due to the accompanying change in permittivity when T1 changes from Zc to T1, then f2-fc=== 2a −, 2, (zc −2,)
It is sufficient to select a material with frequency characteristics such that .

または、第3図に示すような等価回路を有するセラミッ
ク共振子において、共振点frと反共振点faの中間附
近の周波数fcのインピーダンスは共振点frと反共振
点faの各インピーダンスZr、 ZaのQmの変化の
影響をほとんど受けず容量(C2十〇o)の変化のみに
依存するようにすればよい。従って、中間周波数fcと
そのときのインピーダンスzCとを温度tで偏微分する
と、 δzc  δfC 7−「/−、、−=  (za −2r )  /  
(fa −fr )1次温度係数は温度による変化量を
基準化したもfc   a t TCzCza   Zr    fa−fr”’ T 
Cf。”  Zo/  f。
Alternatively, in a ceramic resonator having an equivalent circuit as shown in Fig. 3, the impedance at a frequency fc near the middle between the resonance point fr and the anti-resonance point fa is the impedance Zr and Za at the resonance point fr and the anti-resonance point fa. It is sufficient to be almost unaffected by changes in Qm and to depend only on changes in capacitance (C200). Therefore, when intermediate frequency fc and impedance zC at that time are partially differentiated with respect to temperature t, δzc δfC 7-'/-,,-= (za-2r)/
(fa - fr) The first-order temperature coefficient is the amount of change due to temperature standardized.
Cf. ”Zo/f.

従って、 を満足する材料を選定する。Therefore, Select a material that satisfies the following.

従って、上記の関係を満す材料を選定使用すれば誘電率
の正傾向を示す温度特性が共振点および反共振点の負傾
向の温度特性により相殺され、結果的に第1図(C)に
示すように共振点と反共振点との中間の周波数fc附近
におけるインピーダンスが温度にほとんど影響されなく
なる。
Therefore, if a material that satisfies the above relationship is selected and used, the temperature characteristics showing a positive trend in permittivity will be offset by the negative trend temperature characteristics at the resonance and anti-resonance points, resulting in the result shown in Figure 1 (C). As shown, the impedance near the frequency fc intermediate between the resonance point and the anti-resonance point becomes almost unaffected by temperature.

以下、本発明を実施例について第4図ないし第6図に基
づいて詳細に説明する。なお、本実施例においては、セ
ラミック共振子をディファレンシャルピーク検波回路に
適用した場合について説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 4 to 6. In this embodiment, a case will be described in which a ceramic resonator is applied to a differential peak detection circuit.

第4図はディファレンシャルピーク検波回路の構成図で
ある。このテイファレンンヤルピーク検波回路1は、差
動増幅器2にセラミック共振子CDA、  コンデンサ
C,インタリタLおよび抵抗Rを組合せてなる共振回路
3を接続して構成される。
FIG. 4 is a configuration diagram of the differential peak detection circuit. This differential peak detection circuit 1 is constructed by connecting a differential amplifier 2 to a resonant circuit 3 which is a combination of a ceramic resonator CDA, a capacitor C, an intalator L, and a resistor R.

上記セラミック共振子ODAは、圧電体として、チタン
酸ジルコン酸鉛の圧電セラミックを素材としている。ま
た、この圧電セラミックは共振点および反共振点の温度
依存性が誘電率の温度変化にともなうインピーダンス特
性の変化を相殺する負の温度傾向を有している。従って
、この十ラミック共振子ODAの共振点と反共振点との
中間附近の周波数ではインピーダンスが温度にほとんど
影響されなくなる。これは、第5図および第6図に示す
実験結果からも明らかである。すなわち、第5図はこの
ティファレノンヤルピーク検波回路1の周波数に対する
出力電圧の関係(Sカーブ)を示したものであり、第6
図はこのディファレンシャルピーク検波回路1を用いた
復調器の復調出力ならびに歪率の離調特性を示している
。両図とも比較のため従来のセラミック共振子を使用し
た場合の特性についても同時に示している。第5図およ
び第6図から本発明品を適用すれば温度に影響されるこ
とのない良好な復調特性が得られることが理解される。
The ceramic resonator ODA uses a piezoelectric ceramic of lead zirconate titanate as a piezoelectric material. Further, this piezoelectric ceramic has a negative temperature tendency in which the temperature dependence of the resonance point and anti-resonance point cancels out the change in impedance characteristics due to the change in dielectric constant with temperature. Therefore, at a frequency near the middle between the resonance point and the anti-resonance point of this ten-ramic resonator ODA, the impedance is hardly affected by temperature. This is also clear from the experimental results shown in FIGS. 5 and 6. That is, FIG. 5 shows the relationship (S curve) of the output voltage with respect to the frequency of this Tiferen nony peak detection circuit 1, and the sixth
The figure shows the demodulation output and distortion rate detuning characteristics of a demodulator using this differential peak detection circuit 1. For comparison, both figures also show the characteristics when using a conventional ceramic resonator. It is understood from FIGS. 5 and 6 that by applying the product of the present invention, good demodulation characteristics that are not affected by temperature can be obtained.

なお、本実施例においてはディファレンシャルピーク検
波回路に適用した場合について説明したが、その他りオ
ードラチュア検波回路など、セラミック振動子のインピ
ーダンス特性を利用するものであれば広く本発明品を適
用することができる。
In this example, the case where it is applied to a differential peak detection circuit has been described, but the product of the present invention can be widely applied to other applications that utilize the impedance characteristics of a ceramic resonator, such as an overdrature detection circuit. can.

以上のように本発明によればセラミック共振子の共振点
と反共振点との中間附近の周波数におけるインピーダン
ス特性は温度に影響され゛なくなるので、この中間附近
のインピーダンス特性を利用した検波回路等においては
その回路全体の温度特性か向上するという優れた効果が
発揮される。
As described above, according to the present invention, the impedance characteristic at a frequency near the middle between the resonance point and the anti-resonance point of the ceramic resonator is no longer affected by temperature, so in a detection circuit etc. that utilizes the impedance characteristic near the middle. This has the excellent effect of improving the temperature characteristics of the entire circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインピーダンス特性の温度の影響を説明する図
、第2図は圧電セラミックの材料を選定するための説明
図、第3図はセラミック共振子の等価回路図、第4図な
いし第6図は本発明の実施例を示し、第4図はディファ
レンシャルピーク検波回路の概略を示す構成図、第5図
はディファレンシャルピーク検波回路の周波数対出力電
圧の関係を示す特性図、第6図はディファレンシャルピ
ーク検波回路の復調特性図である。 特許出願人  株式会社村田製作所 代  理  人  弁理士岡田和秀 ヘ メ 藺 第2図 第3図 第4図 1し艮り又Ll′’1llzジ 5図 、わし脇 6図 イ足未品
Fig. 1 is a diagram explaining the influence of temperature on impedance characteristics, Fig. 2 is an explanatory diagram for selecting a piezoelectric ceramic material, Fig. 3 is an equivalent circuit diagram of a ceramic resonator, and Figs. 4 to 6 4 shows an example of the present invention, FIG. 4 is a configuration diagram showing an outline of a differential peak detection circuit, FIG. 5 is a characteristic diagram showing the relationship between frequency and output voltage of the differential peak detection circuit, and FIG. 6 is a differential peak detection circuit. FIG. 3 is a demodulation characteristic diagram of the detection circuit. Patent Applicant: Murata Manufacturing Co., Ltd. Agent: Patent Attorney: Kazuhide Okada Heme: Figure 2, Figure 3, Figure 4, Figure 1, Rimata, Ll''1llz, Figure 5, Washiwaki, Figure 6.

Claims (1)

【特許請求の範囲】[Claims] (l)@電率が正の温度特性を有する圧電セラミックを
備えたセラミック共振子において、その共振点と反共振
点との温度特性が前記誘電率の正の温度特性に基づくイ
ンピーダンスの変化全相殺する負の温度特性を呈する材
料で前記圧電セラミックが構成されていることを特徴と
するセラミック共振子。
(l) @In a ceramic resonator equipped with a piezoelectric ceramic whose electric constant has a positive temperature characteristic, the temperature characteristic between its resonance point and anti-resonance point completely cancels out the change in impedance based on the positive temperature characteristic of the dielectric constant. A ceramic resonator, wherein the piezoelectric ceramic is made of a material exhibiting negative temperature characteristics.
JP4644083A 1983-03-19 1983-03-19 Ceramic resonator Pending JPS59172811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4644083A JPS59172811A (en) 1983-03-19 1983-03-19 Ceramic resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4644083A JPS59172811A (en) 1983-03-19 1983-03-19 Ceramic resonator

Publications (1)

Publication Number Publication Date
JPS59172811A true JPS59172811A (en) 1984-09-29

Family

ID=12747219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4644083A Pending JPS59172811A (en) 1983-03-19 1983-03-19 Ceramic resonator

Country Status (1)

Country Link
JP (1) JPS59172811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309173A (en) * 2007-06-12 2008-12-25 Nsk Ltd Ball screw sealing device and ball screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309173A (en) * 2007-06-12 2008-12-25 Nsk Ltd Ball screw sealing device and ball screw

Similar Documents

Publication Publication Date Title
JP2002176334A (en) Acoustic resonator and method for assembling acoustic resonator
JPH0119771B2 (en)
TWI222784B (en) Surface acoustic wave filter
US4295108A (en) Filter circuit employing surface acoustic wave device
JPH0522406B2 (en)
JPS59172811A (en) Ceramic resonator
US4297660A (en) Electric circuit using surface acoustic wave device
US4041335A (en) Piezoelectric ceramic resonator with vibration damping means
US4438417A (en) Filter circuit utilizing a surface acoustic wave filter
JPS581563B2 (en) ceramic ceramics
US4006437A (en) Frequency filter
JPH0331283B2 (en)
JPH05283968A (en) Oscillation circuit
US4127833A (en) Band pass filter
US3983518A (en) Filter chain
JPH0133969B2 (en)
JPS6113409B2 (en)
JP2501521Y2 (en) FM demodulation circuit
US3947784A (en) Dual-coupled monolithic crystal element for modifying response of filter
JPS6031307Y2 (en) Expansion mode resonant filter
JPS6133700Y2 (en)
JPS59135918A (en) Surface acoustic wave filter
JPH061878B2 (en) Noise filter
JPS5814766B2 (en) rejector circuit
JPS6285505A (en) Voltage controlled oscillator