JPS591725B2 - Method for manufacturing cation exchange resin - Google Patents

Method for manufacturing cation exchange resin

Info

Publication number
JPS591725B2
JPS591725B2 JP54127367A JP12736779A JPS591725B2 JP S591725 B2 JPS591725 B2 JP S591725B2 JP 54127367 A JP54127367 A JP 54127367A JP 12736779 A JP12736779 A JP 12736779A JP S591725 B2 JPS591725 B2 JP S591725B2
Authority
JP
Japan
Prior art keywords
cation exchange
exchange resin
monomer
monomers
monomer mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54127367A
Other languages
Japanese (ja)
Other versions
JPS5650905A (en
Inventor
昭爾 村上
茂樹 湯浅
紘士 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP54127367A priority Critical patent/JPS591725B2/en
Publication of JPS5650905A publication Critical patent/JPS5650905A/en
Publication of JPS591725B2 publication Critical patent/JPS591725B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は新規な陽イオン交換樹脂の製造方法に関する。[Detailed description of the invention] The present invention relates to a novel method for producing cation exchange resins.

詳しくは(i)スチレンスルホン酸類、(ii)ビニル
基を2個以上有するポリビニルモノマー、(111)ビ
ニル基を1個有するモノビニルモノマーのうち上記(1
)と(11)又は(1)、(11)及び(110の組合
せから選ばれたモノマー混合物をラジカル重合開始剤の
存在下に酢酸溶媒中で共重合することを特徴とする陽イ
オン交換樹脂の製造方法である。従来、陽イオン交換樹
脂の製造方法としては、例えばスチレンのような官能基
導入可能なモノビニルモノマーにジビニルベンゼンのよ
うなポリビニルモノマーを架橋剤として加え、ラジカル
重合開始剤の存在下に懸濁重合法によつて、まず交換基
準導入可能な架橋共重合体を製造し、次いで硫酸のよう
なスルホン化試薬を用いてスルホン化し、架橋共重合体
に陽イオン交換基を導入する方法が、一般的である。
Specifically, among (i) styrene sulfonic acids, (ii) polyvinyl monomers having two or more vinyl groups, (111) monovinyl monomers having one vinyl group, the above (1)
) and (11) or a monomer mixture selected from the combinations of (1), (11) and (110) is copolymerized in an acetic acid solvent in the presence of a radical polymerization initiator. Conventionally, cation exchange resins are produced by adding a polyvinyl monomer such as divinylbenzene as a crosslinking agent to a monovinyl monomer capable of introducing a functional group, such as styrene, in the presence of a radical polymerization initiator. A method in which a crosslinked copolymer into which an exchange standard can be introduced is first produced by a suspension polymerization method, and then sulfonated using a sulfonating reagent such as sulfuric acid to introduce a cation exchange group into the crosslinked copolymer. is common.

その他、特殊な方法として、例えばスチレンスルホン酸
のような陽イオン交換基を有するモノビニルモノマーと
ジビニルベンゼンのような架橋剤を、ラジカル重合開始
剤の存在下に、例えばジメチルホルムアミド(以下DM
Fと略す)やジメチルスルホキシド(以下DMSOと略
す)のような特殊な溶媒中で共重合する方法が知られて
いる。しかしながら、これらの陽イオン交換樹脂の製造
方法には以下のような諸々の欠点がある。
In addition, as a special method, a monovinyl monomer having a cation exchange group such as styrene sulfonic acid and a crosslinking agent such as divinylbenzene are combined in the presence of a radical polymerization initiator such as dimethylformamide (hereinafter referred to as DM).
A method of copolymerization in a special solvent such as F) or dimethyl sulfoxide (hereinafter abbreviated as DMSO) is known. However, these methods of producing cation exchange resins have various drawbacks as described below.

まず前者の場合例えば粒径の小さい陽イオン交換樹脂の
製造を目的とする場合に、スルホン化後の微粒状陽イオ
ン交換樹脂が濾過体を閉塞し、スルホン化試薬との分離
が容易でない事、スルホン化試薬の酸化作用により得ら
れる陽イオン交換樹脂が着色する事、懸濁重合時に用い
られる分散剤が樹脂中に混入する事などの欠点がある。
又後者の場合、溶媒としてDMFを用いた場合には陽イ
オン交換樹脂は粘稠なスラリーとして得られ、DMSO
を用いた場合には溶媒によつて著しく膨濁した寒天状の
陽イオン交換樹脂が得られる。従つて、これらの溶媒か
ら生成した陽イオン交換樹脂を分離精製する事が難しく
、溶媒を完全に除去するために水あるいはメタノールで
繰返し洗浄する必要があり、さらに、乾燥状態で得られ
る陽イオン交換樹脂は無定形の塊りであつて、使用に当
つては更に粉砕篩分けを必要とするなど多くの欠点を有
している。05本発明者等は前記した陽イオン交換樹脂
の種々の欠陥を補うべく鋭意その製造について研究を重
ねて来た。
First, in the former case, for example, when the purpose is to produce a cation exchange resin with a small particle size, the fine particulate cation exchange resin after sulfonation will clog the filter, making it difficult to separate it from the sulfonation reagent. There are disadvantages such as coloring of the cation exchange resin obtained by the oxidation effect of the sulfonating reagent and contamination of the dispersant used during suspension polymerization into the resin.
In the latter case, when DMF is used as a solvent, the cation exchange resin is obtained as a viscous slurry;
When this is used, an agar-like cation exchange resin that is significantly swollen due to the solvent is obtained. Therefore, it is difficult to separate and purify the cation exchange resin produced from these solvents, and it is necessary to wash the cation exchange resin repeatedly with water or methanol to completely remove the solvent. Resins are amorphous lumps and have many drawbacks, such as the need for further crushing and sieving before use. 05 The present inventors have been diligently researching the production of cation exchange resins in order to compensate for the various deficiencies of the above-mentioned cation exchange resins.

その結果、スチレンスルホン酸類とビニル基を2個以上
有するポリビニルモノマー例えばジビニルベンゼンを酢
酸溶媒中で共重合させると微粒子状の陽イオン交換樹脂
が得られ、しかも前記した従来の欠陥を完全に補うこと
が出来ることを見出し本発明を完成させた。即ち本発明
は(1)スチレンスルホン酸類、(4)ビニル基を2個
以上有するポリビニルモノマー、(11!)ビニル基を
1個有するモノビニルモノマーのうち(1)と(1)又
は(1),(4)及び(111)の組合せから選ばれた
モノマー混合物をラジカル重合開始剤の存在下に酢酸溶
媒中で共重合する陽イオン交換樹脂の製造方法である。
As a result, when styrene sulfonic acids and a polyvinyl monomer having two or more vinyl groups, such as divinylbenzene, are copolymerized in an acetic acid solvent, a finely divided cation exchange resin can be obtained, and the above-mentioned conventional defects can be completely compensated for. They discovered that this can be done and completed the present invention. That is, the present invention provides (1) and (1) or (1) among (1) styrene sulfonic acids, (4) polyvinyl monomers having two or more vinyl groups, (11!) monovinyl monomers having one vinyl group, This is a method for producing a cation exchange resin in which a monomer mixture selected from the combinations (4) and (111) is copolymerized in an acetic acid solvent in the presence of a radical polymerization initiator.

イオン交換樹脂の原料としてスチレンスルホン酸類、ポ
リビニルモノマー及びモノビニルモノマーはいずれも公
知なものである。
Styrene sulfonic acids, polyvinyl monomers, and monovinyl monomers are all known as raw materials for ion exchange resins.

本発明に於いてもこれら公知のものが特に限定されず用
いうる。一般に好適に使用されるものの代表的なものを
例示すれば次ぎの通りである。即ちスチレンスルホン酸
類としてはスチレンスルホン酸、スチレンスルホン酸の
塩特にナトリウム、カリウムに代表されるアルカリ金属
塩、アンモニウム塩等な好適に使用される。またビニル
基を2個以上有するポリビニルモノマーとしては一般に
、m−,p−,0−ジビニルベンゼン、ジビニルスルホ
ン、ブタジエン、クロロブレン、イソプレン、トリビニ
ルベンゼン類、ジビニルナフタリン、トリビニルナフタ
リン等の架橋剤として公知のものが好適に使用される。
更にまたビニル基を1個有するモノビニルモノマーとし
ては一般にスチレン、エチルビニルベンゼン、クロルメ
チルスチレン、アクリロニトリル、ビニルクロライド、
アクリル酸、マレイン酸等のモノマーが好適に使用され
る。本発明に於けるモノマー混合物の組合せはスチレン
スルホン酸類とポリビニルモノマーとの2成分系モノマ
ー混合物或いはこれらに更にモノビニルモノマーを添加
した3成分系モノマー混合物のいずれを選んでもよい。
In the present invention, these known materials can be used without particular limitation. Typical examples of those generally suitably used are as follows. That is, as the styrene sulfonic acids, styrene sulfonic acid, salts of styrene sulfonic acid, particularly alkali metal salts represented by sodium and potassium, and ammonium salts are preferably used. Polyvinyl monomers having two or more vinyl groups are generally used as crosslinking agents such as m-, p-, 0-divinylbenzene, divinylsulfone, butadiene, chlorobrene, isoprene, trivinylbenzenes, divinylnaphthalene, and trivinylnaphthalene. Known materials are preferably used.
Furthermore, monovinyl monomers having one vinyl group generally include styrene, ethylvinylbenzene, chloromethylstyrene, acrylonitrile, vinyl chloride,
Monomers such as acrylic acid and maleic acid are preferably used. The combination of monomer mixtures in the present invention may be either a two-component monomer mixture of styrene sulfonic acids and a polyvinyl monomer, or a three-component monomer mixture in which a monovinyl monomer is further added to these monomer mixtures.

これらの組合せは得られる陽イオン交換樹脂に要求され
る性状によつて異なり一概に限定出来ない。一般的な傾
向として上記の2成分系モノマー混合物を用いる場合は
イオン交換容量を増大出来、上記の3成分系モノマー混
合物を用いる場合は得られる陽イオン交換樹脂の機能を
変える事が出来る。例えば第3成分としてクロロメチル
スチレンを用いた場合、これを更にトリメチルアミンで
四級仕する事で両性イオン交換樹脂とすることが出来る
。また前記モノマー混合物の組成比は要求される陽イオ
ン交換樹脂の性状例えば強度、架橋度、イオン交換基の
量等によつて異なり一概に限定出来ないが、一般にはス
チレンスルホン酸類に対してポリビニルモノマーを10
〜300重量%の範囲が好適に使用される。またモノビ
ニルモノマーを用いる3成分系モノマー混合物の場合は
スチレンスルホン酸類に対して10〜300重量%の範
囲が好適である。また一般的には本発明によつて得られ
る陽イオン交換樹脂のイオン交換容量は、原料モノマー
組成比から算出する値とほマ一致する。
These combinations vary depending on the properties required of the resulting cation exchange resin and cannot be limited unconditionally. As a general trend, when the above-mentioned two-component monomer mixture is used, the ion exchange capacity can be increased, and when the above-mentioned ternary monomer mixture is used, the function of the resulting cation exchange resin can be changed. For example, when chloromethylstyrene is used as the third component, it can be further quaternized with trimethylamine to produce an amphoteric ion exchange resin. The composition ratio of the monomer mixture varies depending on the properties of the cation exchange resin required, such as strength, degree of crosslinking, amount of ion exchange groups, etc., and cannot be absolutely limited, but in general, polyvinyl monomers are used for styrene sulfonic acids. 10
A range of 300% by weight is preferably used. Further, in the case of a three-component monomer mixture using a monovinyl monomer, a suitable range is 10 to 300% by weight based on the styrene sulfonic acid. Further, generally, the ion exchange capacity of the cation exchange resin obtained by the present invention almost coincides with the value calculated from the raw material monomer composition ratio.

更にポリビニルモノマーの使用量が極端に少なくなると
、例えばスチレンスルホン酸類に対して10(重量(f
/))より少なくなると得られる陽イオン交換樹脂の収
率が低下する傾向があるので、一般にはスチレンスルホ
ン酸類に対して10(重量(f))以上使用するのが好
ましい。該ポリビニルモノマーは一般に得られる陽イオ
ン交換樹脂の架橋度を制御する意味と収率の制御に重点
をおき決定すればよい。更にまたモノビニルモノマーの
添加量は一般に得られる陽イオン交換樹脂のイオン交換
容量の制御を考慮して決定すると好適である。本発明の
最大の特徴は前記モノマー混合物を酢酸溶媒中で共重合
する点にある。
Furthermore, if the amount of polyvinyl monomer used becomes extremely small, for example, 10 (weight (f
/)) If the amount is less, the yield of the cation exchange resin obtained tends to decrease, so it is generally preferable to use 10 (weight (f)) or more based on the styrene sulfonic acids. The polyvinyl monomer may be determined with emphasis on controlling the degree of crosslinking of the cation exchange resin obtained and controlling the yield. Furthermore, the amount of monovinyl monomer added is preferably determined in consideration of controlling the ion exchange capacity of the generally obtained cation exchange resin. The most important feature of the present invention is that the monomer mixture is copolymerized in an acetic acid solvent.

酢酸溶媒の代りにギ酸、プロピオン酸、酪酸等を用いる
場合は陽イオン交換樹脂として使用に供し得る架橋共重
合体をほとんど得ることが出来ない。従つて本発明は溶
媒として酢酸を使用することが極めて重要な要件である
。上記の酢酸溶媒中に於ける前記モノマー混合物濃度は
特に限定されるものではなく必要に応じて予め適宜決定
すればよいが、一般にはモノマー濃度を高くするのが仕
込みモノマーに対する陽イオン交換樹脂の収率が高い傾
向がある。また該モノマー混合物の共重合条件は後述す
るラジカル重合開始剤の種類、モノマー混合物の種類と
組成比等によつて異なり一概に限定出来ない力人一般に
は60〜120℃の範囲で30分〜5時間程度が最も好
適に採用される。本発明に於ける前記モノマー混合物の
共重合は公知のラジカル重合開始剤の存在下に実施すれ
ばよい。
When formic acid, propionic acid, butyric acid, etc. are used instead of the acetic acid solvent, it is almost impossible to obtain a crosslinked copolymer that can be used as a cation exchange resin. Therefore, it is extremely important for the present invention to use acetic acid as a solvent. The concentration of the monomer mixture in the acetic acid solvent is not particularly limited and may be appropriately determined in advance as necessary, but in general, increasing the monomer concentration will increase the yield of the cation exchange resin relative to the monomers charged. The rate tends to be high. The copolymerization conditions for the monomer mixture vary depending on the type of radical polymerization initiator, the type and composition ratio of the monomer mixture, etc., which will be described later, and cannot be unconditionally limited. The time scale is most preferably employed. The copolymerization of the monomer mixture in the present invention may be carried out in the presence of a known radical polymerization initiator.

該ラジカル重合開始剤の代表的なものを例示すれば、例
えば過酸化ベンゾイル、過酸化アセチル、過酸化ジ一T
ert−ブチル、クメンヒドロペルオキシド、などの過
酸化物、p−プロムベンゼンジアゾニウムヒドロキシド
、トリフエニルメチルアゾベンゼン、αα7ーアゾビス
イソブチロニトリルなどのアゾ化合物、N−ニトロソア
シルアニリド、テトラフエニルスクシノニトリル等が好
適である。これらのラジカル重合開始剤の添加量は、適
宜決定すればよいが一般にモノマー混合物に対して、0
.1重量%もあれば十分である。又重合温度は用いるラ
ジカル重合開始剤の分解温度に応じて適宜選択して決定
すれば良い。本発明で得られる陽イオン交換樹脂は一般
に1〜10μの球型の一次粒子が凝集した10〜100
μの顆粒物として得られる。
Typical radical polymerization initiators include benzoyl peroxide, acetyl peroxide, di-T peroxide, etc.
Peroxides such as ert-butyl, cumene hydroperoxide, azo compounds such as p-prombenzenediazonium hydroxide, triphenylmethylazobenzene, αα7-azobisisobutyronitrile, N-nitrosoacylanilide, tetraphenylsuccinimide, etc. Nonitrile and the like are preferred. The amount of these radical polymerization initiators to be added may be determined as appropriate, but in general, the amount of the radical polymerization initiator added is 0 to the monomer mixture.
.. 1% by weight is sufficient. Further, the polymerization temperature may be appropriately selected and determined depending on the decomposition temperature of the radical polymerization initiator used. The cation exchange resin obtained in the present invention generally has 10 to 100 aggregates of spherical primary particles of 1 to 10 μm.
Obtained as μ granules.

従つて酢酸溶媒からの分離或いは分離した陽イオン交換
樹脂を水、メタノール等で洗浄する場合の洗浄が極めて
容易である。また本発明の陽イオン交換樹脂は乾燥後も
塊状に凝集することがなく取扱いが非常に容易である。
しかも本発明で得られる陽イオン交換樹脂は白色で、着
色成分を全く含んでいず、また有機溶媒への抽出成分が
全くない。従つて従来から着色成分或いは有機溶媒への
抽出成分等のため使用出来なかつた分野例えば分離、分
析の分野にも本発明の陽イオン交換樹脂は好適に使用出
来る。本発明を更に具体的射説明するため以下実施例を
挙げて説明するが、本発明はこれらの実施例に限定され
るものではない。実施例 1 還流器および攪拌機付きの容量300r7Leのガラス
製反応器を充分に窒素置換した後、精製した酢酸100
rrLeを注入し、市販のスチレンスルホン酸カリウム
(純度90%以上)7.0t、純度50wt%のジビニ
ルベンゼン(不純物としてエチルビニルベンゼンが45
〜50wt含まれている。
Therefore, separation from the acetic acid solvent or washing of the separated cation exchange resin with water, methanol, etc. is extremely easy. Further, the cation exchange resin of the present invention does not aggregate into lumps even after drying and is very easy to handle.
Furthermore, the cation exchange resin obtained in the present invention is white and does not contain any colored components, and also has no components extracted into organic solvents. Therefore, the cation exchange resin of the present invention can be suitably used in fields where it could not be used conventionally due to colored components or components extracted into organic solvents, such as separation and analysis fields. EXAMPLES In order to more specifically illustrate the present invention, Examples will be given below, but the present invention is not limited to these Examples. Example 1 A glass reactor with a capacity of 300r7Le equipped with a reflux device and a stirrer was sufficiently purged with nitrogen, and purified acetic acid 100
rrLe was injected, and commercially available potassium styrene sulfonate (purity of 90% or more) 7.0t and divinylbenzene with a purity of 50wt% (ethylvinylbenzene was an impurity of 45%) were added.
Contains ~50wt.

)を10.0tを入へ室温で充分に攪拌した。完全に溶
解混合した後、ラジカル重合開始剤としてベンゾイルパ
ーオキサイドを全モノマーに対して1Wt0t)添加し
、重合温度80℃で18時間反応させた結果、白色の樹
脂が生成した。この樹脂をグラスフイルタ一でろ過し、
メタノールと水で充分に洗浄した後、1N一塩酸水溶液
でこの樹脂のスルホン酸カリウム型を水素イオン型にし
、その後水で充分洗浄し、真空乾燥した。このようにし
て得られた樹脂の重量を測定したところ13.0Vであ
つた。この樹脂を走査型電子顕微鏡で観察したところ、
直径およそ5〜6μの一次粒子の凝集した直径およそ1
0〜100μからなる顆粒状をしていることがわかつた
。上記水素イオン型のイオン交換樹脂を1.0V秤量し
1M一塩化ナトリウム水溶液に浸すと、にわかに酸性を
呈した。この水溶液を0.1N一水酸化ナトリウム水溶
液で、メチルオレンジを指示薬として中和滴定すること
で、イオン交換容量を測定したところ1.70meq.
/DryltH+型であつた。この結果から陽イオン交
換樹脂であることが確認された。上記イオン交換樹脂を
水溶液、水−メタノール混合溶液(メタノール1001
))水−テトラヒドロフラン混合溶液(テトラヒドロフ
ラン10(f))の三種の溶液それぞれ100dに、約
3rづついれ攪拌しながら約1ケ月放置し、それぞれの
溶液の紫外吸収スペクトルの吸収を調べたところ、放置
前の溶液と同様なもので全く新しい吸収スペクトルは見
られなかつた。
) was added thereto and thoroughly stirred at room temperature. After completely dissolving and mixing, benzoyl peroxide was added as a radical polymerization initiator (1 Wt0t) to all monomers, and as a result of reacting at a polymerization temperature of 80° C. for 18 hours, a white resin was produced. Filter this resin with a glass filter,
After thorough washing with methanol and water, the potassium sulfonate form of this resin was converted into a hydrogen ion form with a 1N aqueous solution of monohydrochloric acid, followed by thorough washing with water and vacuum drying. When the weight of the resin thus obtained was measured, it was found to be 13.0V. When this resin was observed with a scanning electron microscope, it was found that
The aggregate diameter of primary particles of approximately 5-6 μm in diameter is approximately 1
It was found that it was in the form of granules consisting of 0 to 100μ. When the hydrogen ion type ion exchange resin was weighed at 1.0 V and immersed in a 1M sodium monochloride aqueous solution, it suddenly became acidic. The ion exchange capacity was measured by neutralization titration of this aqueous solution with a 0.1N aqueous sodium monohydroxide solution using methyl orange as an indicator, and found to be 1.70 meq.
/DryltH+ type. From this result, it was confirmed that it was a cation exchange resin. The above ion exchange resin was dissolved in an aqueous solution, a water-methanol mixed solution (methanol 1001
)) Add 100 d of each of the three types of water-tetrahydrofuran mixed solution (tetrahydrofuran 10(f)) to 100 d of each solution and leave it for about 1 month while stirring, and examine the absorption in the ultraviolet absorption spectrum of each solution. Similar to the previous solution, no new absorption spectra were observed.

比較のため市販の強酸性陽イオン交換樹脂たとえばアン
バーライトIR−120B(商品名)をボールミルで粉
砕し、充分に水洗した後、前記同様の三種の溶液に前記
同様な操作で紫外吸収スペクトルを観測したところ、芳
香族炭化水素類に起因すると思われる200mμ,25
0mμ,310mμ、付近の紫外吸収スペクトルが見ら
れた。実施例 2 表1に示す原料モノマー及びラジカル重合開始剤を用い
た以外は実施例1と同様な操作で共重合を実施した。
For comparison, a commercially available strongly acidic cation exchange resin such as Amberlite IR-120B (trade name) was ground in a ball mill, thoroughly washed with water, and the ultraviolet absorption spectra were observed in the same three solutions as described above. As a result, 200 mμ, 25
Ultraviolet absorption spectra near 0 mμ and 310 mμ were observed. Example 2 Copolymerization was carried out in the same manner as in Example 1 except that the raw material monomers and radical polymerization initiator shown in Table 1 were used.

その結果は表1に示す通りであつた。但し煮1〜4の重
合時間は18時間、黒5〜9の重合時間は6時間で実施
した。実施例 3 実施例1で使用した反応器を用いて、充分に窒素置換し
た後精製した酢酸100m!を注入し、市販のスチレン
スルホン酸カリウム(純度90%以上)7.0y1純度
50wt%のジビニルベンゼンを10.0?及びクロル
メチルスチレン(純度90%以上)10.0yを入へ室
温で充分に攪拌した。
The results were as shown in Table 1. However, the polymerization time for Boiled 1 to 4 was 18 hours, and the polymerization time for Black 5 to 9 was 6 hours. Example 3 Using the reactor used in Example 1, 100ml of acetic acid was purified after being sufficiently purged with nitrogen! Inject commercially available potassium styrene sulfonate (90% purity or higher) 7.0y1 divinylbenzene with a purity of 50wt% to 10.0? and 10.0 y of chloromethylstyrene (purity 90% or more) were added thereto and thoroughly stirred at room temperature.

Claims (1)

【特許請求の範囲】 1 (i)スチレンスルホン酸類 (ii)ビニル基を2個以上有するポリビニルモノマ(
iii)ビニル基を1個有するモノビニルモノマーのう
ち、(i)と(ii)又は(i)、(ii)及び(ii
i)の組合せから選ばれたモノマー混合物をラジカル重
合開始剤の存在下に酢酸溶媒中で共重合することを特徴
とする陽イオン交換樹脂の製造方法。
[Claims] 1 (i) styrene sulfonic acids (ii) polyvinyl monomers having two or more vinyl groups (
iii) Among monovinyl monomers having one vinyl group, (i) and (ii) or (i), (ii) and (ii)
A method for producing a cation exchange resin, comprising copolymerizing a monomer mixture selected from the combination i) in an acetic acid solvent in the presence of a radical polymerization initiator.
JP54127367A 1979-10-04 1979-10-04 Method for manufacturing cation exchange resin Expired JPS591725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54127367A JPS591725B2 (en) 1979-10-04 1979-10-04 Method for manufacturing cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54127367A JPS591725B2 (en) 1979-10-04 1979-10-04 Method for manufacturing cation exchange resin

Publications (2)

Publication Number Publication Date
JPS5650905A JPS5650905A (en) 1981-05-08
JPS591725B2 true JPS591725B2 (en) 1984-01-13

Family

ID=14958204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54127367A Expired JPS591725B2 (en) 1979-10-04 1979-10-04 Method for manufacturing cation exchange resin

Country Status (1)

Country Link
JP (1) JPS591725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151064A1 (en) 2017-02-17 2018-08-23 日信工業株式会社 Resinous component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574650A (en) * 2013-07-09 2014-02-12 昆山富凌灶具有限公司 Windproof type stove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151064A1 (en) 2017-02-17 2018-08-23 日信工業株式会社 Resinous component

Also Published As

Publication number Publication date
JPS5650905A (en) 1981-05-08

Similar Documents

Publication Publication Date Title
JP2002527564A (en) Polymer-coated carbon products and other pigments and their preparation by aqueous medium polymerization or solvent coating
US3904568A (en) Method for grafting organic polymers onto inorganic colloidal material
DE1143706B (en) Process for the preparation of flocculating emulsions
US3383336A (en) Resinous insoluble reaction products
JPS591725B2 (en) Method for manufacturing cation exchange resin
US2813087A (en) Preparation of water-soluble sulfonation products from polymers of arvinyltoluene and acrylonitrile
CN105601827B (en) A kind of preparation method of the cement water reducing agent with superelevation water-reducing property
US2809960A (en) Preparation of water-soluble sulfonation products of polymeric ar-vinyltoluenes
DE3390062T1 (en) Process for the preparation of amidoalkanesulfonic acids and derivatives thereof
Arai et al. Endgroup analysis of isolated poly (methyl methacrylate) from graft copolymers of wool
US2749325A (en) Acrylonitrile polymer blends and process of producing them
US2687394A (en) Coated particles of calcium carbonate and method of making same
US2763634A (en) Sulphonation method
US3962067A (en) Process for the production of an aqueous solution of silicoformic acid
US2804446A (en) Production of water-soluble vinyltoluene-acrylic ester copolymer sulfonates and products obtainable thereby
EP0192151B1 (en) Mouldings with a uniform particle size and thermal stability
EP0192152B1 (en) Mouldings with a uniform particle size and thermal stability
NO158301B (en) WATER BASED BORESLAM.
JPS63258910A (en) Dispersant for inorganic particles
US3687912A (en) Crosslinked acrylonitrile copolymers
KR20080020397A (en) Bead-typed poly(styrene-co-divinyl benzene) containing sulfonic acid group and process for preparing thereof
JPS62143904A (en) Production of nitrated 1,2-polybutadiene
SU1657513A1 (en) Method for obtaining anionites
DE3405940A1 (en) SALT-FREE REFINED MOLDS
US4020259A (en) Process for the polymerization of allyl halides