JPS59172511A - Production of latex - Google Patents

Production of latex

Info

Publication number
JPS59172511A
JPS59172511A JP4595283A JP4595283A JPS59172511A JP S59172511 A JPS59172511 A JP S59172511A JP 4595283 A JP4595283 A JP 4595283A JP 4595283 A JP4595283 A JP 4595283A JP S59172511 A JPS59172511 A JP S59172511A
Authority
JP
Japan
Prior art keywords
latex
parts
particle size
polymerizable material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4595283A
Other languages
Japanese (ja)
Other versions
JPH032165B2 (en
Inventor
Yoshita Shiraishi
白石 良多
Yoshiyuki Ohashi
大橋 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP4595283A priority Critical patent/JPS59172511A/en
Publication of JPS59172511A publication Critical patent/JPS59172511A/en
Publication of JPH032165B2 publication Critical patent/JPH032165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To facilitate the production of a latex having a large particle diameter and being excellent in flowability, etc., by emulsion-polymerizing an aliphatic conjugated diene monomer, adding the same monomer when the polymer conversion reaches a specified value and polymerizing the reaction mixture. CONSTITUTION:100pts.wt. polymerizable material comprising an aliphatic conjugated diene (e.g., 1,3-butadiene) or its mixture with an ethylenically unsaturated monomer (e.g., methyl acrylate or acrylonitrile) is emulsion-polymerized in the presence of 50-100pts.wt. water. When the polymer conversion in this emulsion polymerization system reaches 30-80%, 10-50pts.wt. same polymerizable material as that initially charged is added to the emulsion polymerization system, and the reaction mixture is further polymerized to form particles of an average particle diameter >=0.25mum. In this way, the purpose latex suitable for use as a base for graft polymerization is obtained.

Description

【発明の詳細な説明】 本発明は粒子径の大きいラテックスの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing latex with large particle size.

一般に、共役ジエン系重合体ラテックスにおけるポリマ
ー粒子の粒径(以下「ラテックス粒子径」という。)が
大きいと次のような利点がある。
Generally, when the particle size of the polymer particles in a conjugated diene polymer latex (hereinafter referred to as "latex particle size") is large, there are the following advantages.

(イ) このようなラテックスを、例えばABS樹脂の
ようなグラフト重合によって得られる合成ゴム誘導体の
グラフトベースとして使用すると、高い耐衝撃性を有す
る樹脂となる。
(a) When such a latex is used as a graft base for a synthetic rubber derivative obtained by graft polymerization, such as ABS resin, the resin has high impact resistance.

(ロ) ラテックスの粘度が小さいため、ラテックス濃
度をかなり高くしても流動性が良好であって、取扱いが
容易である。
(b) Since the viscosity of the latex is low, it has good fluidity and is easy to handle even when the latex concentration is considerably high.

しかるに、通常の乳化重合法によって得られる共役ジエ
ン系重合体のラテックス粒子径は通常0.05〜0.1
5μmであり、また乳化剤の使用層等を調節すればラテ
ックス粒子径をある程度大ぎくすることは可1こである
が、この場合においても高々最大0.25μm程度であ
って、必ずしもラテックス粒子径の大きいものとはいえ
ない。
However, the latex particle size of conjugated diene polymers obtained by ordinary emulsion polymerization methods is usually 0.05 to 0.1.
5 μm, and it is possible to increase the latex particle size to some extent by adjusting the emulsifier layer, etc., but even in this case, the maximum is about 0.25 μm, and it is not necessary to increase the latex particle size. It can't be called a big thing.

従来、ラテックス粒子径の大きなラテックス中得るため
には、特殊な乳化剤あるいは添加剤を用いる方法、予め
ラテックス粒子径の小さいラテックスを重合し、このラ
テックスを厘合反応系に添加して重合を行なう、いわゆ
るシード重合法、あるいは重合終了後のラテックスに、
酸、アルカリ、塩などを添加する化学的処理あるいは攪
拌、加圧、凍結などの物理的処理を施して、ラテックス
粒子同7士を合着させて粒子を肥大化する方法などが用
いられてきた。
Conventionally, in order to obtain latex with a large latex particle size, a special emulsifier or additive is used, a latex with a small latex particle size is polymerized in advance, and this latex is added to a polymerization reaction system to perform polymerization. So-called seed polymerization method, or latex after polymerization,
Methods that have been used include chemical treatments such as adding acids, alkalis, and salts, or physical treatments such as stirring, pressurization, and freezing to cause latex particles to coalesce and enlarge the particles. .

しかしながら、これらの方法には次のような欠点がある
。すなわち、特殊な乳化剤、添加剤を用いる方法は、ラ
テックスの分散安定性を低下させて複数のラテックス粒
子を合着させるものであり、そのためラテックス中に凝
析物が生じることが多く、均質なラテックスを得ること
ができない。また、ラテックスにおいてポリマー以外の
特殊な成分を増大させることは、そのラテックスの化学
的特性を好ましくないものとする場合がある。
However, these methods have the following drawbacks. In other words, methods that use special emulsifiers and additives reduce the dispersion stability of the latex and cause multiple latex particles to coalesce.As a result, coagulates often occur in the latex, making it difficult to obtain a homogeneous latex. can't get it. Furthermore, increasing the amount of special components other than polymers in latex may make the chemical properties of the latex unfavorable.

またシード重合法においては、ラテックス粒子径の小さ
いラテックスを製造する別工程を必要とするだけでなく
、シード座台のA程においてはlrらだなラテックス粒
子の生成を抑制することが必要であって、このような条
件は微妙なのでその設定が一般に減しいなどの欠点がめ
る。
In addition, the seed polymerization method not only requires a separate process to produce latex with a small latex particle size, but also requires suppressing the formation of latex particles with lr irregularities in the A section of the seed pedestal. However, since such conditions are delicate, there are drawbacks such as the fact that the setting is generally difficult.

さらに、化学的あるいは切地的処理を施すことによって
ラテックス粒子を肥大化させる方法においては、肥大化
の操作中に不用な凝析物が生じ易く、またラテックス粒
子径が均一なものとならず、しかも肥大化のためにコス
トのかかる設備、工程を必要とするなどの多くの欠点を
有する。
Furthermore, in the method of enlarging latex particles by chemical or cutting treatment, unnecessary coagulation is likely to occur during the enlarging operation, and the latex particle size is not uniform. Moreover, it has many drawbacks, such as requiring costly equipment and processes due to its enlargement.

本発明者らは、以上述べたような欠点を有さないラテッ
クス粒子径の大きいラテックスの製造方法について鋭意
研究した結果、重合反応の途中において七ツマ−をさら
に添加することによって、ラテックス粒子の合着が効果
的に生じることを見い吊し、この細見に基づいて本発明
を完成するに至った。
As a result of intensive research into a method for producing latex with large latex particle diameters that does not have the above-mentioned drawbacks, the inventors of the present invention discovered that the synthesis of latex particles can be improved by further adding 7-mer in the middle of the polymerization reaction. The inventors have found that this can be effectively achieved, and have completed the present invention based on this detailed study.

すなわち、本発明の目的とするところは、特に新らたな
設備あるいは複゛雑な工程を必要とせず簡便な操作によ
って、均質でしかもラテックス粒子径が大きくて流動性
に優れ、特にグラフト重合におけるベースとして用いる
のに好適なラテックスの製造方法を提供することにある
In other words, the object of the present invention is to produce homogeneous latex particles with large particle size and excellent fluidity, particularly in graft polymerization, by simple operation without the need for new equipment or complicated processes. An object of the present invention is to provide a method for producing latex suitable for use as a base.

本発明の特徴とするところは、脂肪族共役ジエンまたは
脂肪族共役ジエンとエチレン系不飽和単量体との混合物
より成る重合性材料100.i置部を、水50〜lOO
重量部の存在下において乳化重合せしめ、この乳化重合
系における重合転化率が30〜80%となったときに、
前記重合性材料と同一の重合性材料10〜50重量部を
前記乳化重合系に添加してさらに重合せしめて平均粒径
0.25μm以上の粒子を形成する点にある。
The present invention is characterized by the polymerizable material 100 comprising an aliphatic conjugated diene or a mixture of an aliphatic conjugated diene and an ethylenically unsaturated monomer. Place the container in 50~100 lOO of water.
Emulsion polymerization is carried out in the presence of parts by weight, and when the polymerization conversion rate in this emulsion polymerization system is 30 to 80%,
The point is that 10 to 50 parts by weight of the same polymerizable material as the above polymerizable material is added to the emulsion polymerization system and further polymerized to form particles having an average particle size of 0.25 μm or more.

次に本発明を具体的に述べる。Next, the present invention will be specifically described.

本発明においては、まず脂肪族共役ジエンまたは脂肪族
共役ジエンとエチレン系不飽和単量体との混合物よりな
る重合性材料100重量部を、水50〜100重量部の
存在下において乳化重合せしめ、続いてこの乳化重合系
における反応転化率が30〜80%となった段階におい
て、前記重合性材料と同一の重合性材料10〜50重皺
部を前記乳化重合系に新らたに添刀口してさらに座付せ
しめて、ラテックス粒子の平均粒径が0.25μm以上
およそ0.5μmまでの、′4に0.27〜0.4μm
のラテックスを製造する。
In the present invention, first, 100 parts by weight of a polymerizable material consisting of an aliphatic conjugated diene or a mixture of an aliphatic conjugated diene and an ethylenically unsaturated monomer is emulsion polymerized in the presence of 50 to 100 parts by weight of water, Subsequently, at a stage when the reaction conversion rate in this emulsion polymerization system reached 30 to 80%, a 10 to 50 fold part of the same polymerizable material as the above polymerizable material was newly added to the emulsion polymerization system. The average particle size of the latex particles is from 0.25 μm to approximately 0.5 μm, and from 0.27 to 0.4 μm.
Manufactures latex.

前記脂肪族共役ジエンは、主として主鎖の炭素数が4ま
たは5の化合物であって、1.3−ブタジェン、イソプ
レン、クロロプレン、1−クロルブタジェンなどを挙げ
ることができるが、特に1.3−ブタジェンが好適であ
る。
The aliphatic conjugated diene is a compound mainly having 4 or 5 carbon atoms in its main chain, and includes 1,3-butadiene, isoprene, chloroprene, 1-chlorobutadiene, etc., and particularly 1.3-butadiene. - Butadiene is preferred.

前記エチレン系不飽和単量体としては、スチレン、α−
メチルスチレン、ビニルトルエンなどの芳香族ビニル化
合物、メチルアクリレート、エチルアクリレートなどの
アクリル酸エステル、メチルメタクリレート、エチルメ
タ・クリレートなどのメタクリル酸エステル、アクリロ
ニトリル、メタアクリロニトリルなどのビニルシアン化
合物などを挙げることができるが、時にスチレン、メチ
ルメタクリレートが好適である。
Examples of the ethylenically unsaturated monomer include styrene, α-
Examples include aromatic vinyl compounds such as methylstyrene and vinyltoluene, acrylic esters such as methyl acrylate and ethyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate, and vinyl cyanide compounds such as acrylonitrile and methacrylonitrile. However, styrene and methyl methacrylate are sometimes preferred.

なか、カルボキシル基を有するエチレン系単量体を使用
することも可能であるが、この単量体の使用割合が大き
くなると、第1段の重合によって得られるラテックスの
分散安定性が非常に高いものとなってラテックス粒子同
士の合着が抑制されるようになり、ラテックス粒子径の
増大化が妨げられるので、むしろ使用は避けるべきであ
る。
Among them, it is also possible to use an ethylene monomer having a carboxyl group, but if the proportion of this monomer used becomes large, the dispersion stability of the latex obtained by the first stage polymerization becomes extremely high. As a result, coalescence of latex particles is suppressed, and an increase in the latex particle size is hindered, so its use should rather be avoided.

乳化重合のための分散媒である前記水の使用量は50〜
100重量部、好ましくは50〜90重量部である。そ
の使用量が50重量部未満では分散系の分散安定性が低
下し、一方100重量部を越えると大きなラテックス粒
子径を得ることができず、いずれも実用上支障をきたす
。なお、この水は反応開始時に一括して用いるのが好ま
しいが、支障をきたさない範囲で重合反応系に分割ある
いは継続添加してもよい。
The amount of water used as a dispersion medium for emulsion polymerization is 50~
The amount is 100 parts by weight, preferably 50 to 90 parts by weight. If the amount used is less than 50 parts by weight, the dispersion stability of the dispersion system will decrease, while if it exceeds 100 parts by weight, it will be impossible to obtain a large latex particle size, both of which will cause practical problems. Although it is preferable to use this water all at once at the start of the reaction, it may be added in portions or continuously to the polymerization reaction system as long as it does not cause any trouble.

また、重合反応における重合転化率が30〜80チとな
った段階で新らたに追添加される重合性材料の凌は、反
応開始時の重合性材料100重を邪に対して10〜50
 fii部である。この重合性材料の奈加盪を変化させ
ることにより、得られるラテックスのラテックス粒子径
を調節することかり能であるが、添加量が10重点部未
満ではラテックス粒子径の増大効果が小さく、一方50
重省部を越えると反応に要する時間が長くなり実用的で
ない。
In addition, when the polymerization conversion rate in the polymerization reaction reaches 30 to 80 parts, the weight of the newly added polymerizable material is 10 to 50 parts per 100 parts of the polymerizable material at the start of the reaction.
fii part. It is possible to adjust the latex particle size of the obtained latex by changing the concentration of this polymerizable material, but if the amount added is less than 10 points, the effect of increasing the latex particle size is small;
If the reaction time exceeds the critical limit, the time required for the reaction becomes longer and is not practical.

重合性材料を追添加する時期は重合反応における重合転
化率が30〜80%の範囲内であれば特に制限されるも
のではなく、この条件を満足する限シにおいては添刀目
の時期を変化させてもラテックス粒子径の大きさに与え
る影響は小さいが、この範囲外、即ち重合転化率が30
%未満あるいは80チを越えた時点で重合性材料を追添
加しても、ラテックス粒子径の増大効果はほとんど与ら
れな込。
The timing of additional addition of the polymerizable material is not particularly limited as long as the polymerization conversion rate in the polymerization reaction is within the range of 30 to 80%, and as long as this condition is satisfied, the timing of the addition can be changed. However, if the polymerization conversion rate is outside this range, that is, if the polymerization conversion rate is 30
Even if the polymerizable material is added below 80% or above 80%, there is almost no effect of increasing the latex particle size.

本発明に係るラテックスの製造方法においては通常の乳
化重合法を用いることができ、反応温度は450以上、
好ましくは60C以上である。また、本発明におけるラ
テックス粒子径の増大作用をより高めるためには、反応
系にアルカリ金属塩、例えば塩化ナトリウム、塩化カリ
ウム、燐酸ナトリウム、燐酸カリウム、炭酸ナトリウム
、炭酸、カリウム等を1重量部以上添加することが望ま
しい。
In the latex manufacturing method according to the present invention, a normal emulsion polymerization method can be used, and the reaction temperature is 450 or higher,
Preferably it is 60C or higher. In order to further enhance the effect of increasing the latex particle size in the present invention, 1 part by weight or more of an alkali metal salt, such as sodium chloride, potassium chloride, sodium phosphate, potassium phosphate, sodium carbonate, carbonic acid, potassium, etc., may be added to the reaction system. It is desirable to add.

乳化重合において用いられる乳化剤の使用量は1〜4重
量部が好ましい。その使用量が1重量部未満では重合性
材料の分散安定性が不十分であって反応速度が著しく低
くなり、一方便用前が4重量部を越えると、得られるラ
テックスの分数安定性が高くなってラテックス粒 子同
士の合着が起りにくくなり、そのためラテックス粒子径
の増大作用が低下することとなって好ましくない。乳化
剤としては不均化ロジン酸または高級脂肪酸のアルカリ
金属塩などを挙げることができ、これらをそれぞれ単独
であるいは2棟以上組合せて用いる。
The amount of emulsifier used in emulsion polymerization is preferably 1 to 4 parts by weight. If the amount used is less than 1 part by weight, the dispersion stability of the polymerizable material will be insufficient and the reaction rate will be extremely low, while if it exceeds 4 parts by weight, the fractional stability of the resulting latex will be high. This makes it difficult for the latex particles to coalesce with each other, which undesirably reduces the effect of increasing the latex particle size. Examples of the emulsifier include disproportionated rosin acid and alkali metal salts of higher fatty acids, and these may be used alone or in combination of two or more.

まだ補助乳化剤としてナフタリンスルホン嬢ナトリウム
のホルムアルデヒド縮合物を添加することが望ましい。
It is still desirable to add a formaldehyde condensate of sodium naphthalene sulfone as an auxiliary emulsifier.

重合開始剤としては、例えば過硫酸カリウム、過動し酸
ナトリウム、過硫酸アンモニウム等の水溶性過酸化物、
あるいは例えばクメンハイドロパーキサイド、ジイソプ
ロピルベンゼンハイドロパーオキサイド、t−ブチルハ
イドロパーオキサイ、ド、パラメンタンハイドロパーオ
キサイド弄の有7機ハイドロ過酸化物などを挙げること
ができる。
Examples of the polymerization initiator include water-soluble peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate;
Alternatively, examples thereof include organic hydroperoxides such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, and para-menthane hydroperoxide.

な2、第三級ドデシルメルカプタン等の連鎖移動剤など
の添加剤を使用することは何ら制限されるものではない
There is no restriction on the use of additives such as chain transfer agents such as 2.tertiary dodecyl mercaptan.

以上のように本発明によれば、特殊な装置あるいは複雑
な工程を必要とせずに、重合性材料金遣添加するという
簡便な操作によって、ラテックス粒子径が平均粒径で0
.25〜0.45μmと非常に大きいものを確実に得る
ことができる。因みに、重合性材料の追添加を実施しな
いで乳化重合を行なうと、得られるラテックスのラテッ
クス粒子径は、重合性材料の追添加を実施した場合より
平均粒径で0.1〜0.2μm小さくなる。
As described above, according to the present invention, the average particle size of latex particles can be reduced to 0 by the simple operation of adding polymerizable material without requiring special equipment or complicated processes.
.. Very large particles of 25 to 0.45 μm can be obtained reliably. Incidentally, if emulsion polymerization is performed without additionally adding a polymerizable material, the latex particle size of the obtained latex will be 0.1 to 0.2 μm smaller in average particle size than when additionally adding a polymerizable material. Become.

このような本発明におけるラテックス粒子径の増大作用
の原因は必ずしも明らかではないが、重合性材料の追添
加によって既に生成していたポリマー粒子がさらに重合
により生長したと考えた場合よりも明らかに大きいラテ
ックス粒子・匝を有することから、追添加された重合性
材料によつ工既に生成していたラテックス粒 子同士が
合着するものと考えられる。
The cause of this effect of increasing the latex particle size in the present invention is not necessarily clear, but it is clearly larger than if it were considered that the polymer particles that had already been generated by the additional addition of the polymerizable material were further grown by polymerization. Since it has latex particles and a container, it is thought that the additionally added polymerizable material causes the latex particles that have already been formed to coalesce together.

本発明製造方法によって得られたラテックス粒子径の大
きいラテックスは次のような特長を有する。  “ (イ) このラテックスは種々の用途に用いることがで
きるが、特に、例えばABS樹脂のようなグラフト重合
によって得られる合成ゴム誘導体のグラフトベースとし
て使用することにより、この合成ゴム誘導体を高い耐衝
撃性のものとすることができる。
The latex having a large latex particle size obtained by the production method of the present invention has the following features. (a) This latex can be used for various purposes, but in particular, it can be used as a graft base for synthetic rubber derivatives obtained by graft polymerization, such as ABS resin, to make this synthetic rubber derivative highly impact resistant. It can be a sexual thing.

(ロ) このラテックスは粘度が小さく、ラテックス濃
度をかなり高いものとしても流動性が良好であるため、
種々の用途、工程において取扱いが容易費ある。
(b) This latex has a low viscosity and good fluidity even when the latex concentration is quite high.
Easy to handle and cost effective in various uses and processes.

以下、本発明の実施例について説明するが、本発明がこ
れに限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited thereto.

なお、「部」は重量部を表わす。Note that "parts" represent parts by weight.

実施例1 (1)  ラテックスの製造 以下の組成の物質を攪拌機付きステンレス製オートクレ
ーブに投入し、温度60Cで重合反応を行なった。
Example 1 (1) Production of latex Materials having the following composition were placed in a stainless steel autoclave equipped with a stirrer, and a polymerization reaction was carried out at a temperature of 60C.

1.3−ブタジェン      100部水     
          70部不均化ロジン酸カリウム 
    2部オレイン酸カリウム       0.4
部ナフタレンスルホン酸ナトリウムの ホルマリン縮合物       0.2部炭酸カリウム
          1.2部過硫酸カリウム    
     0.3部第三級ドデシルメルカプタン   
    0.2部この反応における重合転化率が50チ
に達した時点で新らたに1,3−ブタジェン25部を追
添加し、1.3−ブタジェンの総量125部(反応開始
時におけるものと追添加したものとの相)に対する重合
転化率が90%となるまでさらに反応を継続してラテッ
クスを得た。なお、反応全体に要した時間は50時間で
あった。このようにして得られたラテックスのラテック
ス粒子径および凝固物の量を測定したところ、ラテック
ス粒子径は0.29μmと大きく、凝固物の量は0.0
1重11%以下と非常に少ないものであった。なお、こ
れらの値は次の方法により得られたものである。
1.3-Butadiene 100 parts water
70 parts disproportionated potassium rosinate
2 parts potassium oleate 0.4
Part formalin condensate of sodium naphthalene sulfonate 0.2 parts Potassium carbonate 1.2 parts Potassium persulfate
0.3 parts tertiary dodecyl mercaptan
0.2 parts When the polymerization conversion rate in this reaction reached 50 parts, another 25 parts of 1,3-butadiene was added to make the total amount of 1,3-butadiene 125 parts (from that at the start of the reaction). The reaction was further continued until the polymerization conversion rate with respect to the additionally added phase) reached 90% to obtain a latex. Note that the time required for the entire reaction was 50 hours. When the latex particle size and amount of coagulated material of the latex thus obtained were measured, the latex particle size was as large as 0.29 μm, and the amount of coagulated material was 0.0 μm.
The content was very low, less than 11% by weight. Note that these values were obtained by the following method.

、ラテックス粒子径:オスミウム酸処理後のラテックス
を電子顕微鏡で観察することにより測定した粒径の平均
値。
, Latex particle size: Average particle size measured by observing latex treated with osmic acid using an electron microscope.

凝固物の竜ニラテックスを120メツシユの濾材を用い
て濾過することによシ得られた凝固物のラテックスに対
する重tチ。
The weight of the coagulated product obtained by filtering the coagulated latex using a 120-mesh filter medium.

(2) ABS樹脂の製造 前記方法で得られたラテックス25部と、以下の組成の
物質を攪拌機付きステンレス製オートクレーブに投入し
、温度60Cで4時間重合反応を行なった。
(2) Production of ABS resin 25 parts of the latex obtained in the above method and a substance having the following composition were placed in a stainless steel autoclave equipped with a stirrer, and a polymerization reaction was carried out at a temperature of 60C for 4 hours.

スチレン           50部アクリロニトリ
ル       25部不均化ロジン酸カリウム   
  2部水酸化カリウム         0.1部グ
ルコース          0.5部ビロリン酸ナト
リウム      0.5f[S硫酸第一鉄     
         0,02部第三級ドデシルメルカプ
タン       0.5fil水         
   200部 クメンハイドロパーオキサイド       0.5部
次いで、この反応によって得られたラテックスに2,4
−ジ−t−ブチルパラクレゾールを1部添刀口し、さら
に希硫酸を加えて凝固した後、濾過、水洗、乾燥を経て
樹脂粉末を得た。この樹脂粉末を40in径の押出機を
用いて、温度200t:”、回転数6 Orpmでベレ
ット化し、次いで5オンス射出成形機によって、温度2
00C、ゲージ圧85kV′crIr2で成形してAB
S樹脂の成形片を得た。
Styrene 50 parts Acrylonitrile 25 parts Disproportionated potassium rosinate
2 parts Potassium hydroxide 0.1 part Glucose 0.5 part Sodium birophosphate 0.5f [S ferrous sulfate
0.02 parts tertiary dodecyl mercaptan 0.5fil water
200 parts cumene hydroperoxide 0.5 part Next, 2,4 parts was added to the latex obtained by this reaction.
One part of -di-t-butyl para-cresol was added to the mixture, and dilute sulfuric acid was further added to solidify it, followed by filtration, washing with water, and drying to obtain a resin powder. This resin powder was pelletized using a 40-inch diameter extruder at a temperature of 200 tons and a rotation speed of 6 orpm, and then pelletized using a 5-ounce injection molding machine at a temperature of 2
AB molded at 00C, gauge pressure 85kV'crIr2
A molded piece of S resin was obtained.

このABS樹脂の成形片について流動値および衝撃強度
を測定した。その結果を他のデータとともに第1表に示
す。なお、流動値、衝撃強匿は次の方法によって測定し
た値である。
The flow value and impact strength of this molded piece of ABS resin were measured. The results are shown in Table 1 along with other data. Note that the flow value and impact resistance are values measured by the following method.

流動匝:高化式フローテスター(ノズルの径law、長
さ2m、荷重30kg/crr;’ 、島津製作所製)
を用いて温度200Cで測定した直。
Flow tester: Koka type flow tester (nozzle diameter law, length 2m, load 30kg/crr;', manufactured by Shimadzu Corporation)
Direct measurement at a temperature of 200C.

衝撃強度: ASTM D256によシ温度23Cで測
定した噸○ 実施例2〜5.比較例1〜3 単一体の退添加瀘あるいは追添加時期(反応系の重合転
化率)を第1表に示した値とした以外は実施例1と全く
同様にして実施例について4種、比較例について3種の
計74のラテックスを得た。
Impact strength: Measured according to ASTM D256 at a temperature of 23C. Examples 2-5. Comparative Examples 1 to 3 Four types of examples were compared in exactly the same manner as in Example 1, except that the regression addition filter or additional addition timing (polymerization conversion rate of the reaction system) of the single substance was set to the values shown in Table 1. A total of 74 latexes of three types were obtained for the examples.

これらの各ラテックスについてラテックス粒子径、凝固
物の凌を既述の方法によって測定した。その績果を第1
表に示す。さらにこれら7種の谷ラテックスをそれぞれ
グラフトベースとして実施例1と全く同様にしてABS
樹脂の成形片を得たにの成形片について流動値、衝撃強
度を既述の方法によって測定した。その結果を同じく第
1表に示す。
For each of these latexes, the particle size of the latex and the quality of the coagulated material were measured by the method described above. The results are the first
Shown in the table. Furthermore, using these seven types of valley latex as a graft base, ABS was prepared in exactly the same manner as in Example 1.
The flow value and impact strength of the resin molded pieces obtained were measured by the methods described above. The results are also shown in Table 1.

以上の実験結果よシ、本発明の実施例に2いては、ラテ
ックス粒子径の増大効果が大ぎく、しかもラテックス中
に凝固物がほとんど発生せず、さらに流動性、#衝撃性
の優れたーABS樹脂となることが判明した。
According to the above experimental results, in Example 2 of the present invention, the effect of increasing the latex particle size was great, moreover, almost no coagulum was generated in the latex, and furthermore, the fluidity and impact properties were excellent. It turned out to be ABS resin.

比較例4 実施例1のラテックスの製造における水70部を40部
とした以外は実施例1と全く同様にしてラテックスを得
た。このラテックスのラテックス粒子径および凝固物の
瀘を既述の方法で測定したところ、ラテックス粒子径は
0.30μmと大きく満足すべきものであったが、凝固
物の看は4.2重量%と大きくて実用的でない。
Comparative Example 4 A latex was obtained in exactly the same manner as in Example 1, except that 40 parts of water was used instead of 70 parts in the production of latex in Example 1. When the latex particle size of this latex and the coagulum were measured using the method described above, the latex particle size was 0.30 μm, which was very satisfactory, but the coagulum was 4.2% by weight, which was large. It's not practical.

比較例5 実施例1のラテックスの製造における水70部を110
部とした以外は実施例1と全(同様にしてラテックスを
得た。このラテッ夛スのラテックス粒子径および凝固物
の魔を既述の方法で測定したところ、凝固物の遺は0.
011重量%小さく問題はないが、ラテックス粒子径は
0.22μmと小さいものでめった。
Comparative Example 5 70 parts of water in the production of latex of Example 1 was replaced with 110 parts of water.
A latex was obtained in the same manner as in Example 1, except that the latex particle size and coagulum of this latex were measured by the method described above, and it was found that no coagulum remained.
Although the latex particle size was small at 0.11% by weight and no problem, the latex particle size was as small as 0.22 μm, which was disappointing.

実施例 実施例1のラテックスの製造における重合性材料1.3
−ブタジェン100部を1.3ごブタジェン90部およ
びスチレン10部と、追添那する重合性材料1.3−ブ
タジェン25部を1噛3−ブタジェン22.5部および
スチレン2.5部とした以外は実施例1と全(同様にし
てラテックスを得た。このラテックスのラテックス楳子
径および凝固物の量を既述の方法で測定したところ、ラ
テックス粒子径は0.31μmと大きく、凝固物の量は
0,01重量%以下と良好な結果が得られた。
Examples Example 1 Polymerizable materials in the production of latex 1.3
- 100 parts of butadiene was mixed with 90 parts of 1.3-butadiene and 10 parts of styrene, and 25 parts of the polymerizable material to be added was 22.5 parts of 3-butadiene and 2.5 parts of styrene. A latex was obtained in the same manner as in Example 1 except for the above. When the latex particle diameter and the amount of coagulated material of this latex were measured by the method described above, the latex particle size was as large as 0.31 μm, and the amount of coagulated material was Good results were obtained with an amount of 0.01% by weight or less.

さらに、このラテックスをグラフトベースとする以外は
実施例1と全(同様にしてABS樹脂の成形片を得た。
Furthermore, a molded piece of ABS resin was obtained in the same manner as in Example 1 except that this latex was used as the graft base.

このABS樹脂の成形片について既述の方法によシ流1
Ih11t%衝撃強度を測定したところ、流動値ば12
×1O−3cc/秒、衝撃強度は49kg−(社)−と
いずれも良好な結果が得られた。
This molded piece of ABS resin was processed using the method described above.
When Ih11t% impact strength was measured, the flow value was 12.
*1 O-3 cc/sec, and the impact strength was 49 kg (Company) - good results were obtained in both cases.

比較例6 重合性材料の追添加を実施しない他は実施例6と全く同
様にしてラテックスを得た。このラテックスのラテック
ス粒子径および凝固物の計を既述の方法により測定した
ところ、凝固物の微は0.01貞j4%以下と問題はな
いが、ラテックス粒子径は021μmと小はいものであ
った。
Comparative Example 6 A latex was obtained in exactly the same manner as in Example 6, except that no additional polymerizable material was added. When the latex particle size and coagulum of this latex were measured using the method described above, the coagulum was fine at 0.01 μm or less, which was not a problem, but the latex particle size was 0.21 μm, which was small. Ta.

さらに、このラテックスをクラフトペースとする以外は
実施例1と全く同様にしてABS樹脂の成形片を得た。
Furthermore, a molded piece of ABS resin was obtained in exactly the same manner as in Example 1 except that this latex was used as kraft paste.

このABS樹脂の成形片についてl&動値、#唯強度を
既述の方法にょシ測定したところ、流動値は10 X 
10−3CC/秒、衝撃強度は39辱・滑−であった。
When the l&dynamic value and #yield strength of this molded piece of ABS resin were measured using the methods described above, the flow value was 10X.
The impact strength was 10-3 CC/sec and 39 hits/slip.

Claims (1)

【特許請求の範囲】 1)脂肪族共役ジエンまたは脂肪族共役ジエンとエチレ
ン系不飽和単量体との混合物より成る重合性材料100
重量部を、水50〜100重量部の存在下において乳化
重合せしめ、この乳化重合系における重合転化率が30
〜80%となったとぎに、前記重合性材料と同一の重合
性材料10〜50重量部を前記乳化重合系に添加してさ
らに重合せしめて平均粒径0.25μm以上の粒子を形
成することを特徴とするラテックスの製造方法。 2)脂肪族共役ジエンが1,3−ブタジェンでちゃ、か
つエチレン系不飽和単量体が芳香族ビニル化合物、アク
リル酸エステル、メタ、り゛リル酸エステル、アクリロ
ニトリルおよびメタアクリロニトリルから選択された1
遣以上のものである特許請求の範囲第1項記載のラテッ
クスの製造方法。
[Claims] 1) Polymerizable material 100 made of an aliphatic conjugated diene or a mixture of an aliphatic conjugated diene and an ethylenically unsaturated monomer
parts by weight were subjected to emulsion polymerization in the presence of 50 to 100 parts by weight of water, and the polymerization conversion rate in this emulsion polymerization system was 30.
~80%, add 10 to 50 parts by weight of the same polymerizable material as the above polymerizable material to the emulsion polymerization system and further polymerize to form particles with an average particle size of 0.25 μm or more. A method for producing latex characterized by: 2) The aliphatic conjugated diene is 1,3-butadiene, and the ethylenically unsaturated monomer is selected from aromatic vinyl compounds, acrylic esters, meth, lyrylic esters, acrylonitrile, and methacrylonitrile.
2. A method for producing latex according to claim 1, which is a process for producing latex.
JP4595283A 1983-03-22 1983-03-22 Production of latex Granted JPS59172511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4595283A JPS59172511A (en) 1983-03-22 1983-03-22 Production of latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4595283A JPS59172511A (en) 1983-03-22 1983-03-22 Production of latex

Publications (2)

Publication Number Publication Date
JPS59172511A true JPS59172511A (en) 1984-09-29
JPH032165B2 JPH032165B2 (en) 1991-01-14

Family

ID=12733607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4595283A Granted JPS59172511A (en) 1983-03-22 1983-03-22 Production of latex

Country Status (1)

Country Link
JP (1) JPS59172511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336353A (en) * 2004-05-27 2005-12-08 Bridgestone Corp Puncture sealing agent
CN106632814A (en) * 2016-10-10 2017-05-10 长春工业大学 Preparation method of polymer emulsion with large particle size, narrow distribution range and high solid content

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336353A (en) * 2004-05-27 2005-12-08 Bridgestone Corp Puncture sealing agent
JP4673003B2 (en) * 2004-05-27 2011-04-20 株式会社ブリヂストン Puncture sealant
CN106632814A (en) * 2016-10-10 2017-05-10 长春工业大学 Preparation method of polymer emulsion with large particle size, narrow distribution range and high solid content

Also Published As

Publication number Publication date
JPH032165B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
DE3415453C2 (en)
JP2915962B2 (en) Process for producing dispersions of emulsifiers and homodisperse polymers of large particle size using these emulsifiers
JPH09509209A (en) Method for producing multimodal ABS polymer
US11932709B2 (en) Diene-based rubber latex, method for preparing thereof and graft copolymer with core-shell structure comprising the same
JPS5821644B2 (en) ABS type resin manufacturing method
US3600465A (en) Thermoplastic moulding compositions
KR0179314B1 (en) The preparation of thermoplastic resin composition for high impact strength and high glossness
JPS59172511A (en) Production of latex
US3318831A (en) Process for preparing high solids concentrated latex
EP0103657B1 (en) Abs type resins having disperse particles of a rubber exhibiting a high solution viscosity and a method for its preparation
DE1153175B (en) Process for the production of an aqueous latex of rubber-like polymers with latex particles of increased particle size
EP1159322A1 (en) High impact monovinylidene aromatic polymers
JP3457044B2 (en) Method for producing thermoplastic resin
WO2000068283A1 (en) Process for producing rubber latex
US4034020A (en) Graft copolymer preparation
KR100188526B1 (en) The preparation process for impact thermoplastic resin composition
US3751526A (en) Process for producing impact resistant thermoplastic resins
US3849358A (en) Method of preparing highly concentrated resinous latex
US20030032724A1 (en) Process for producing graft copolymer latex
JPS6261044B2 (en)
JPH0132842B2 (en)
KR100360948B1 (en) A process of proparation for pastte poly(vinyl chliride) with pseudoplasticity and high flowability
JP3317734B2 (en) Method for producing powdery granular polymer
KR20030042626A (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
JP3181690B2 (en) Method for producing graft copolymer