JPS59172166A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS59172166A JPS59172166A JP4665383A JP4665383A JPS59172166A JP S59172166 A JPS59172166 A JP S59172166A JP 4665383 A JP4665383 A JP 4665383A JP 4665383 A JP4665383 A JP 4665383A JP S59172166 A JPS59172166 A JP S59172166A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- electron beam
- magnetic layer
- curable resin
- coating liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/842—Coating a support with a liquid magnetic dispersion
- G11B5/845—Coating a support with a liquid magnetic dispersion in a magnetic field
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Paints Or Removers (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は特に高密度記録用として適した磁気記録媒体の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of manufacturing a magnetic recording medium particularly suitable for high-density recording.
従来技術
近年、オーディオ、ビデオ、コンピューター等の電子機
器の発展に伴ない、これら機器の出力を記録、再生する
磁気テープ、磁気フレキシブルディスク等の磁気記録媒
体に対しては数μ以下の短波長記録において高再生出力
が得られる高密度記録が強く要求されている。Prior Art In recent years, with the development of electronic devices such as audio, video, and computers, short wavelength recording of several micrometers or less has become necessary for magnetic recording media such as magnetic tapes and magnetic flexible disks that record and reproduce the output of these devices. There is a strong demand for high-density recording that can provide high reproduction output.
一般に、磁気記録媒体はポリエステル等の高分子材料よ
りなる非磁性支持体上に強磁性微粉末と高分子材料の結
合剤とを主成分とする磁性層を設けてなるが、この磁性
層に対しては溶媒を含む未乾燥状態の時に磁性層の面内
方向に磁界を加えて強磁性微粉末の粒子方向を揃えるい
わゆるオリエンテーションが行なわれている。このオリ
エンテーションにより磁気ヘッドでの再生出力が向上す
ることは良く知られている。しかし、このオリエンテー
ションは記録波長が数μ以下と短かくなればなる程、そ
の効果が低下する傾向がある。その他、再生出力の向上
には、磁性層を薄くして自己減磁を少なくしたり、磁性
層の抗磁力を高めることKよっても可能であるが、抗磁
力を例えば1500工ルステツド以上と余り高くしても
、このような抗磁力の高い磁性層に有効に記録、再生で
きる磁気ヘッドが未だ開発されていないのが実情である
。In general, a magnetic recording medium is formed by providing a magnetic layer mainly composed of ferromagnetic fine powder and a binder made of a polymeric material on a nonmagnetic support made of a polymeric material such as polyester. In this case, so-called orientation is performed in which a magnetic field is applied in the in-plane direction of the magnetic layer to align the grain direction of the ferromagnetic fine powder when it is in an undried state containing a solvent. It is well known that this orientation improves the reproduction output of the magnetic head. However, this orientation tends to become less effective as the recording wavelength becomes shorter, such as several microns or less. In addition, it is possible to improve the reproduction output by making the magnetic layer thinner to reduce self-demagnetization, or by increasing the coercive force of the magnetic layer, but if the coercive force is too high, e.g. However, the reality is that no magnetic head has yet been developed that can effectively record and read information on such a magnetic layer with high coercive force.
そうした長手方向記録方式の欠点を解決する為に磁気記
録媒体の面に垂直な方向に記録する垂直磁気配録方式が
提案されている。この垂直磁気記録方式は記録波長が短
波長になるに従い磁性層内に働く減磁界が/JSさくな
り、従来の長手方向記録方式に比べて、短波長信号の残
留磁化を大巾に増やすことができる利点がある。In order to solve these drawbacks of the longitudinal recording method, a perpendicular magnetic recording method has been proposed in which recording is performed in a direction perpendicular to the surface of the magnetic recording medium. In this perpendicular magnetic recording method, as the recording wavelength becomes shorter, the demagnetizing field acting within the magnetic layer becomes smaller, making it possible to greatly increase the residual magnetization of short wavelength signals compared to the conventional longitudinal recording method. There are advantages that can be achieved.
上記の垂直磁気記録方式に適した磁気記録媒体としてC
(+ −Cr等の強磁性金属薄膜を非磁性支持体上に設
けたものがあるが、これらは一般に生産性が悪く高価と
なり、また、耐摩耗性に欠ける等、実用上は多くの問題
点を有している。C as a magnetic recording medium suitable for the above perpendicular magnetic recording method.
(+ - There are products in which a ferromagnetic metal thin film such as Cr is provided on a non-magnetic support, but these generally have poor productivity and are expensive, and have many problems in practical use, such as lacking wear resistance.) have.
高密度記録用能な磁気記録媒体を得るKは、上記したよ
うに、強磁性微粉末の磁化容易軸を垂直に配向すること
が有効であるが(特開昭48−88910号公報)、垂
直に立てられた強磁性微粉末は塗液が乾燥するまでに、
ランダムな磁化容易軸方向をもつ元の方向忙もとりやす
く、また、垂直方向に磁界を加えられると強磁性微粉末
は磁化され凝集を生じて高い垂直方向の角型比が得られ
ない。もっとも、強磁性微粉末の単位体積歯たりの含有
量を減少させる方法もあるが、これでは角型比が高くて
も残留磁束密度も低くなり、従って、高密度記録用に高
い再生出力が得られない。また、磁性塗液の粘度を高(
することも上記欠点の解消には効果的ではあるが、しか
しこの場合は、強磁性微粉末が動きにく(なり、従って
、大きな磁場が必要となって結局は凝集を生じ根本的な
解決とはならない。As mentioned above, it is effective to orient the axis of easy magnetization of the ferromagnetic fine powder perpendicularly to obtain a magnetic recording medium capable of high-density recording. The ferromagnetic fine powder placed in the
The original direction, which has a random easy axis of magnetization, is easily lost, and when a magnetic field is applied in the perpendicular direction, the ferromagnetic fine powder becomes magnetized and aggregates, making it impossible to obtain a high squareness ratio in the perpendicular direction. However, there is a method to reduce the content of ferromagnetic fine powder per unit volume, but this will lower the residual magnetic flux density even if the squareness ratio is high, and therefore, high reproduction output for high-density recording can be achieved. I can't. In addition, the viscosity of the magnetic coating liquid can be increased (
Although it is effective to eliminate the above drawback, in this case, the ferromagnetic fine powder becomes difficult to move (therefore, a large magnetic field is required, which eventually causes agglomeration and is not a fundamental solution). Must not be.
上記のごとき問題点ないし欠点を解決する手段として電
子線硬化性樹脂をバインダーに使う方法(特開昭57−
111832号公報、特開昭57−164436号公報
など)がある。これは強磁性微粉末の磁化容易軸を垂直
に配向させた後電子腺を照射してバインダーを硬化させ
、垂直忙配向された磁化容易軸が元にもどったり、また
、強磁性微粉末が凝集したりするのを防ぐ、ことができ
て非常に有効な方法である。As a means to solve the above-mentioned problems and drawbacks, a method of using electron beam curable resin as a binder (Japanese Patent Application Laid-open No. 57-1998-
111832, JP-A-57-164436, etc.). This is because the axis of easy magnetization of the fine ferromagnetic powder is oriented vertically, and then the binder is hardened by irradiation with electron beams, so that the axis of easy magnetization that was vertically oriented returns to its original state, and the fine ferromagnetic powder agglomerates. This is a very effective way to prevent this from happening.
しかしながら、本発明者の実験によれば、前記の電子線
硬化性樹脂を使う方法においては、電子線硬化性樹脂に
分散剤を加えたのみでは分散に必要な磁性塗液の粘度が
不十分となり十分な強磁性微粉末の分散性が得られない
ことがわかった。特に近年、高密度記録用として用いら
れる強磁性微粉末は高い”/Nを得る為に超微粒子化し
ており分散性の劣化が大きな技術的課題となってきてい
る。However, according to the inventor's experiments, in the method using the electron beam curable resin, the viscosity of the magnetic coating liquid required for dispersion is insufficient if only a dispersant is added to the electron beam curable resin. It was found that sufficient dispersibility of the ferromagnetic fine powder could not be obtained. Particularly in recent years, ferromagnetic fine powder used for high-density recording has been made into ultrafine particles in order to obtain a high "/N", and deterioration of dispersibility has become a major technical issue.
目 的
本発明は、以上のような塗布型の垂直磁気記録媒体の欠
点を解決する為になされたものであって、数μ以下の短
波長記録において特に大きな再生出力が得られる磁気記
録媒体の製造方法を提供するものである。Purpose The present invention was made in order to solve the above-mentioned drawbacks of coated perpendicular magnetic recording media, and to provide a magnetic recording medium that can obtain a particularly large reproduction output in short wavelength recording of several microns or less. A manufacturing method is provided.
5−
構成
本発明者はこの目的を達成する為に鋭意研究した結果、
磁性層の結合剤として電子線硬化性樹脂と有機溶剤を使
用すれば強磁性微粉末が十分に分散した磁性塗液が得ら
れ、また、この磁性塗液が塗布されてからそれが乾燥硬
化されるまでの間に磁性層に垂直な磁場と電子線とを同
時忙加えれば前述した目的が十分達成できることを見出
した。本発明はかかる知見に基づいて完成されたもので
ある。5- Configuration As a result of intensive research to achieve this purpose, the inventor of the present invention found that
If an electron beam curable resin and an organic solvent are used as binders for the magnetic layer, a magnetic coating liquid in which fine ferromagnetic powder is sufficiently dispersed can be obtained, and after this magnetic coating liquid is applied, it is dried and hardened. We have found that the above-mentioned objective can be fully achieved by simultaneously applying a perpendicular magnetic field and an electron beam to the magnetic layer during the period of time. The present invention was completed based on this knowledge.
即ち、本発明の磁気記録媒体の製造方法は、非磁性支持
体上に強磁性微粉末、電子線硬化性樹脂及び有機溶剤を
主成分とした磁性塗料を塗布した後、この塗膜が未だ乾
燥硬化しないうちKその塗膜に垂直な磁場に与え【配向
しかつその塗膜が磁場内にあるうちに電子線を同時に与
え該塗膜を硬化させて磁性層を形成することを特徴とし
ている。That is, in the method for producing a magnetic recording medium of the present invention, after coating a magnetic coating mainly composed of ferromagnetic fine powder, electron beam curable resin, and organic solvent on a nonmagnetic support, the coating film is still dry. It is characterized by applying a perpendicular magnetic field to the coating film while it is not cured, and simultaneously applying an electron beam while the coating film is in the magnetic field to harden the coating film and form a magnetic layer.
本発明で使用される支持体の代表例としては、ポリエチ
レンテレフタレートのとときポ 6−
リエステル類、ポリプロピレンのごときポリオレフィン
類、セルローストリアセテートのごときセルロース誘導
体などがあげられる。Representative examples of the support used in the present invention include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, and cellulose derivatives such as cellulose triacetate.
支持体の厚さはとくに厳格に規定されるものではないが
5〜200μくらいが適当である。Although the thickness of the support is not particularly strictly defined, it is suitably about 5 to 200 microns.
磁性層ないしは磁性層形成液は、強磁性微粉末および電
子線硬化性樹脂を主成分としており、磁性層形成液には
有機溶媒が含まれている。The magnetic layer or the magnetic layer forming liquid mainly contains a ferromagnetic fine powder and an electron beam curable resin, and the magnetic layer forming liquid contains an organic solvent.
強磁性微粉末の代表的なものとしては、r−F el
OHa Ca含有r −re、 o、 s F@@ 0
4 ・cro。A typical example of ferromagnetic fine powder is r-Fel.
OHa Ca-containing r -re, o, s F@@0
4 ・cro.
、 Co金含F・、01、鉄窒化物針状微粉末、C0−
N1−P合金、コノマルト微粒子、パリュームフエライ
ト、ストロンチュームフエライトのごと性徴粉末等があ
げられ、平均粒径0.1〜0.5程度のものが適当であ
る。これら強磁性微粉末の形状は球形、針状、六角板状
等を問わない。, Co gold-containing F・,01, iron nitride acicular fine powder, C0-
Characteristic powders such as N1-P alloy, conomalt fine particles, parium ferrite, and strontium ferrite can be mentioned, and those having an average particle size of about 0.1 to 0.5 are suitable. The shape of these ferromagnetic fine powders may be spherical, acicular, hexagonal plate, or the like.
電子線硬化樹脂の代表例としては、シリコン変性不飽和
ポリエステル樹脂;ウレタン化又はビニル化した脂肪酸
変性不飽和ポリエステル樹脂;マレオイル基を側鎖や末
端に導入したポリエステル、アクリル樹脂又はエポキシ
樹脂;アクリロイル基を分子中に2個以上有するアクリ
ル樹脂;末端インシアネートウレタンプレポリマーとヒ
ドロキシル基を有するアクリレート又はメタクリレート
との反応生成物、例えばウレタンアクリレート、エステ
ルウレタン化アクリレート、エーテルウレタン化アクリ
レート;エポキシアクリレート;シリコーンアクリレー
ト等またはこれらと電子線硬化性モノマーとの混合物が
挙げられる。なお、末端イソシアネートウレタンプレポ
リマーはポリオール(ポリエステル屋でもポリエーテル
型でもよい)とジイソシアネートとの反応により得られ
る。Typical examples of electron beam curable resins include silicone-modified unsaturated polyester resins; urethanized or vinylized fatty acid-modified unsaturated polyester resins; polyesters, acrylic resins, or epoxy resins with maleoyl groups introduced into side chains or terminals; acryloyl groups. Acrylic resins having two or more in the molecule; reaction products of terminal incyanate urethane prepolymers and acrylates or methacrylates having hydroxyl groups, such as urethane acrylates, ester urethane acrylates, ether urethane acrylates; epoxy acrylates; silicone acrylates etc. or a mixture of these and an electron beam curable monomer. The terminal isocyanate urethane prepolymer is obtained by reacting a polyol (polyester or polyether type) with a diisocyanate.
単官能電子線硬化性モノマーとしてはビニルピロリドン
、2−エチルへキシルアクリレート、ラウリルアクリレ
ート、ヒドロキシエチルアクリレート、エトキシメトキ
シアクリレート、テトラヒドロフルフリルアクリレート
等が挙げられる。Examples of monofunctional electron beam curable monomers include vinylpyrrolidone, 2-ethylhexyl acrylate, lauryl acrylate, hydroxyethyl acrylate, ethoxymethoxy acrylate, and tetrahydrofurfuryl acrylate.
2官能電子線硬化性モノマーとしてはジエチレングリコ
ールジアクリレート、テトラエチレングリコールジアク
リレート、ネオペンチルグリコールジアクリレート等が
挙げられる。Examples of the bifunctional electron beam curable monomer include diethylene glycol diacrylate, tetraethylene glycol diacrylate, neopentyl glycol diacrylate, and the like.
3官能以上の多官能電子線硬化性モノマーとしてはトリ
メチロールプロパントリアクリレート、テトラメチロー
ルメタンテトラアクリレート等が挙げられる。Trimethylolpropane triacrylate, tetramethylolmethanetetraacrylate, and the like are exemplified as trifunctional or higher polyfunctional electron beam curable monomers.
電子線硬化性樹脂は単独で用いられても、又は、2種以
上が混合されて用いられてもよい。The electron beam curable resins may be used alone or in combination of two or more.
磁性層ないしは磁性層形成液には、前記の結合剤、強磁
性微粉末の他に添加剤として。In addition to the above-mentioned binder and fine ferromagnetic powder, the magnetic layer or magnetic layer forming liquid contains additives.
分散剤、潤滑剤、研磨剤、帯電防止剤等が加えられても
よい。Dispersants, lubricants, abrasives, antistatic agents, etc. may be added.
9−
分散剤としてはカプリル酸、カプリン酸、ラウリン酸、
ミリスチン酸、パルミチン酸、ステアリン酸、オレイン
酸、エライジン酸、リノール酸、リルン酸、ステアロー
ル酸等の炭素数12〜18個の脂肪酸(RICOOaR
lは炭素数11〜17個のアルキルまたはアルケニル基
);前記の脂肪酸のアルカリ金属(Lis Nas K
等)またはアルカリ土類金属(Mg、 ca、 Ba)
から成る金属石頓;前記の脂肪酸エステルの弗素を含有
した化合物;前記の脂肪酸のアミド;ポリアルキレンオ
キサイドアルキルリン酸エステル;レシチンなどが使用
される。これらの分散剤は結合剤(電子線硬化性樹脂)
100重量部に対して0.5〜20重量部の範囲で添加
される。9- Dispersants include caprylic acid, capric acid, lauric acid,
Fatty acids with 12 to 18 carbon atoms (RICOOaR
l is an alkyl or alkenyl group having 11 to 17 carbon atoms); an alkali metal of the above-mentioned fatty acid (Lis Nas K
etc.) or alkaline earth metals (Mg, ca, Ba)
A fluorine-containing compound of the above-mentioned fatty acid ester; an amide of the above-mentioned fatty acid; a polyalkylene oxide alkyl phosphate ester; lecithin, etc. are used. These dispersants are binders (electron beam curable resins)
It is added in an amount of 0.5 to 20 parts by weight per 100 parts by weight.
潤滑剤としてはカーダンブラック、グラファイト、カー
2ンブラツクグラフトボリマーなどの導電性微粉末;二
硫化モリブデン、二硫化タングステンなどの無機微粉末
;ポリエチレン、ポリプロピレン、ポリエチレン塩化
10−
ビニル共重合体、ぼりテトラフルオ賞エチレンなどのプ
ラスチック微粉末;α−オレフィン重合物;常温で液状
の不飽和脂肪族炭化水素(n−オレフィン二重結合が末
端の炭素に結合した化合物、炭素数約20);炭素数1
2〜20個の一塩基性脂肪酸と炭素数3〜12個の一価
のアルコールから成る脂肪酸エステル類などが使用でき
る。これらの潤滑剤は結合剤100重量部に対して0.
2〜20重量部の範囲で添加される。As lubricants, conductive fine powders such as cardan black, graphite, and carbon black graft polymers; inorganic fine powders such as molybdenum disulfide and tungsten disulfide; polyethylene, polypropylene, and polyethylene chloride.
10- Plastic fine powders such as vinyl copolymers and ethylene tetrafluorocarbons; α-olefin polymers; unsaturated aliphatic hydrocarbons that are liquid at room temperature (compounds in which an n-olefin double bond is bonded to the terminal carbon, carbon Number approximately 20); carbon number 1
Fatty acid esters consisting of 2 to 20 monobasic fatty acids and monohydric alcohols having 3 to 12 carbon atoms can be used. These lubricants contain 0.00 parts by weight per 100 parts by weight of binder.
It is added in an amount of 2 to 20 parts by weight.
研磨剤としては一般に使用される材料で溶融アル電す、
炭化ケイ素酸化クロム、コランダム、人造コランダム、
ダイアモンド、人造ダイアモンド、ザクロ石、エメリー
(主成分:コランダムと磁鉄鉱)等が使用される。これ
らの研磨剤はモース硬度が5以上であり、平均粒子径が
0.05〜5μの大きさのものが使用され、特に好まし
くは0.1〜2μである。As an abrasive, molten alkaline is used as a commonly used material.
silicon carbide chromium oxide, corundum, artificial corundum,
Diamonds, synthetic diamonds, garnet, emery (main ingredients: corundum and magnetite), etc. are used. These abrasives have a Mohs hardness of 5 or more and an average particle size of 0.05 to 5 μm, particularly preferably 0.1 to 2 μm.
これらの研磨剤は結合剤100重量部に対して0.5〜
20重号部の範囲で添加される。These abrasives are used in an amount of 0.5 to 100 parts by weight of the binder.
It is added in an amount of 20 parts.
帯電防止剤としてはカーIンブラック、グラファイト、
カーIンブラックグラフトボリマーなどの導電性微粉末
;サポニンなどの天然界面活性剤;アルキレンオキサイ
ド系、グリセリン系、グリシドール系などのノニオン界
面活性剤;高級アルキルアミン類、第4級アンモニウム
塩類、fリジンその他の複素環類、ホスホニウム又はス
ルホニウム類などのカチオン界面活性剤;カルボン酸、
スルホン酸、硼酸、硫酸エステル基、燐酸エステル基等
の酸性基を含むアニオン界面活性剤;アミノ酸類、アミ
ノスルホy酸類、アミノアルコールの硫酸または燐酸エ
ステル類等の両性活性剤などが使用される。これらの帯
電防止剤は結合剤100重量部に対し″cO11〜30
重量部の範囲で添加される。As antistatic agents, car in black, graphite,
Conductive fine powder such as carin black graft polymer; natural surfactants such as saponin; nonionic surfactants such as alkylene oxide, glycerin, and glycidol; higher alkylamines, quaternary ammonium salts, f Cationic surfactants such as lysine and other heterocycles, phosphoniums or sulfoniums; carboxylic acids,
Anionic surfactants containing acidic groups such as sulfonic acid, boric acid, sulfuric ester groups, and phosphoric ester groups; amphoteric surfactants such as amino acids, aminosulfonic acids, and sulfuric or phosphoric esters of amino alcohols are used. These antistatic agents have a cO of 11 to 30 parts per 100 parts by weight of binder.
It is added in a range of parts by weight.
実際に本発明方法を行な5には、前記の強磁性微粉末、
結合剤(電子線硬化性樹脂)及び有機溶剤を必須成分と
し、必要により、これに前記の各種添加剤を加えたもの
を磁性層形成液(磁性塗料)として調製し、これを非磁
性支持体上に塗布し、この塗膜が未だ乾燥してしまわな
いうちにその塗膜に垂直な磁場を与えて配向し、かつ、
その塗膜が磁場内にあるうちに電子線を照射して今度は
その塗膜を硬化させて1〜20μ厚の磁性層を形成せし
めればよい。When the method of the present invention was actually carried out, the above-mentioned ferromagnetic fine powder,
A magnetic layer forming liquid (magnetic paint) is prepared by containing a binder (electron beam curable resin) and an organic solvent as essential components, and adding the various additives mentioned above as necessary, and applying this to a non-magnetic support. apply a perpendicular magnetic field to the coating film before it dries to orient it, and
While the coating film is in a magnetic field, it may be irradiated with an electron beam to harden the coating film to form a magnetic layer having a thickness of 1 to 20 μm.
本発明方法で使用される有機溶剤としてはアセトン、メ
チルエチルケトン、メチルイソブチルケトン、シクロヘ
キサノン等のケトン系;メタノール、エタノール、プロ
パツール、ブタノール等のアルコール系;酢酸メチル、
酢酸エチル、酢酸ブチル、乳酸エチル、酢酸クリコール
モノエチルエーテル等のエステル系;エーテル、グリコ
ールジメチル! −f ル、グリコールモノエチルエー
テル、ジオキサン等のグリコールエーテル系;ベンゼン
、トルエン、キシレン等のタール系(芳香族炭化水素)
;メチレンクロライド、エチレンクロライド、四塩化炭
素、クロロホルム、エチレン 13−
クロルヒドリン、ジクロルベンゼン等の塩素化炭化水素
等のものがあげられる。The organic solvents used in the method of the present invention include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohols such as methanol, ethanol, propatool, and butanol; methyl acetate,
Ester systems such as ethyl acetate, butyl acetate, ethyl lactate, glycol acetate monoethyl ether; ether, glycol dimethyl! -f Glycol ethers such as glycol, glycol monoethyl ether, and dioxane; tars (aromatic hydrocarbons) such as benzene, toluene, and xylene
; Examples include chlorinated hydrocarbons such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, ethylene 13-chlorohydrin, and dichlorobenzene.
こうした本発明方法の実施の一態様を添付の図面に示し
た。1′はいまだ乾燥されていない磁性塗料(磁性塗液
)で非磁性支持体2上に塗布されており、これら全体が
この装置では左方向に向いた矢印の方向忙走行している
。One embodiment of the method of the present invention is shown in the accompanying drawings. 1' is coated on a non-magnetic support 2 with a magnetic paint (magnetic coating liquid) which has not yet been dried, and the entire coating is moving in the direction of the arrow pointing leftward in this device.
3は磁石でこれにより磁性塗液中の強磁性微粉末は垂直
配向とされ、一方、電子線照射装置4からの電子線5が
磁性塗液にあてられ結合剤(電子線硬化性樹脂)は硬化
乾燥される。3 is a magnet which vertically aligns the ferromagnetic fine powder in the magnetic coating liquid, while the electron beam 5 from the electron beam irradiation device 4 is applied to the magnetic coating liquid, and the binder (electron beam curable resin) is oriented vertically. hardened and dried.
ここに垂直配向をもった磁気記録媒体が作成されろ。な
お図面中、1は垂直配向を有し乾燥された状態の磁性層
を表わしている。Create a magnetic recording medium with vertical orientation. In the drawings, reference numeral 1 represents a magnetic layer in a dried state and having vertical orientation.
か(して製造された垂直配向した磁気記録媒体によれば
、特別に垂直ヘッドといわれるようなヘッドを用いなく
ても、通常使用されているリング型ヘッドでの再生出力
の向上が認められ、高密度記碌が可能である。According to the vertically oriented magnetic recording medium manufactured in this way, it has been recognized that the reproduction output can be improved with a commonly used ring-type head without using a special head called a perpendicular head. High density recording is possible.
14−
実施例1
アクリル樹脂 20 1不飽和ポリエス
テル1flRFJrl 201ラウリン
酸 21
カーIンブラツク 15 gよりなる混
合物を三本口→・で分散した後、平均孔径約3μのフィ
ルターで濾過して磁性層形成液(磁性塗料)を調製した
。14- Example 1 A mixture consisting of acrylic resin 20 1 unsaturated polyester 1flRFJrl 201 lauric acid 21 carin black 15 g was dispersed with a three-way filter, and then filtered through a filter with an average pore size of about 3μ to obtain a magnetic layer forming liquid. (magnetic paint) was prepared.
この磁性塗料を約75μ厚のポリエチレンテレフタレー
トフィルム(非磁性支持体)上に、乾燥硬化されたとき
の厚さが約1.8μとなるように、ドクターブレードで
塗布した。This magnetic paint was applied onto a polyethylene terephthalate film (non-magnetic support) having a thickness of about 75 μm using a doctor blade so that the thickness when dried and cured was about 1.8 μm.
次いで、これを永久磁石でつ(られた 2000ガウスの直流磁場の中間を通過させ。Next, this is held together with a permanent magnet. Pass through the middle of a 2000 Gauss DC magnetic field.
続いて、加速電圧300KV、ビーム電流15mAのカ
ーテン方式の電子線加速器を用い5Mrad/秒の線量
率で10Mradの吸収線量になるように磁性塗料に照
射した。Subsequently, using a curtain type electron beam accelerator with an accelerating voltage of 300 KV and a beam current of 15 mA, the magnetic paint was irradiated with an absorbed dose of 10 Mrad at a dose rate of 5 Mrad/sec.
配向され塗料が乾燥硬化されたものに1更にスーA−キ
ャレンダーを施こした後、所定寸法に打抜き、表面研磨
を行なって5.25インチの磁気フレキシブルディスク
(本発明品1)を作成した。After the oriented disk and the paint had been dried and hardened, it was further subjected to Soo A-calendering, punched out to a predetermined size, and the surface was polished to create a 5.25-inch magnetic flexible disk (Product 1 of the present invention). .
比較のために、磁場配向の操作を省略した以外は上記と
まったく同様にして、5.25インチの磁気フレキシブ
ルディスク(比較品1)を作成した。For comparison, a 5.25-inch magnetic flexible disk (comparative product 1) was prepared in exactly the same manner as above except that the magnetic field orientation operation was omitted.
更に比較の為に、トルエン−メチルエチルケトン−シク
ロヘキサノン混合溶媒を用いない以外は上記とまったく
同様にして5.25インチの磁気フレキシブルディスク
(比較品2)を作成した。Furthermore, for comparison, a 5.25-inch magnetic flexible disk (comparative product 2) was prepared in exactly the same manner as above except that the toluene-methyl ethyl ketone-cyclohexanone mixed solvent was not used.
これらサンプルに、5.25インチのフレキシブルディ
スクドライブ(ヘッドギャップ長1.3μ)を用いて、
3.7μおよび1.8μの記録・再生を行ない、平均再
生出力を測定した。A 5.25-inch flexible disk drive (head gap length 1.3μ) was used for these samples.
Recording and reproduction were performed at 3.7μ and 1.8μ, and the average reproduction output was measured.
測定結果は表−1のとおりであった。The measurement results are shown in Table-1.
実施例2
ラウリン酸 4I
シリコーンオイル 6Iよりな
る混合物をI−ルミルで11S時間分散した。ついで、
この分散液に
28重量部
を加えゼールきルで15時間分散した。更にこの分散液
に
17−
カーIンブラック 71を加え1
g −)vミルで約15時間分散して磁性層形成液とし
た。Example 2 A mixture consisting of lauric acid 4I and silicone oil 6I was dispersed in I-lumil for 11S hours. Then,
28 parts by weight was added to this dispersion and dispersed in a Seel kil for 15 hours. Furthermore, 17-Carne Black 71 was added to this dispersion and 1
g-) A magnetic layer forming solution was obtained by dispersing in a V mill for about 15 hours.
この粘調な分散液(磁性層形成液)を2〜3ミルのドク
ターブレードを用いてポリエチレンテレフタレートフィ
ルム(厚す約7sμ)上に塗布し、100〜120℃で
乾燥して溶媒を除去した後、加速電圧300KV、 ビ
ーム電流1010−l5のESI(カーテンタイプ方式
)の電子線加速器を用いて、吸収線量がIMradで電
子線照射を行ないある程度重合硬化せしめた後、コツト
ンロールと鏡面ロールの群からなる3段のカレンダーで
平滑化処理を行なった。次いで、上記電子線加速器を用
いて吸収線量が10Mradで電子線照射 18−
を行い重合硬化せしめ、所定寸法に打抜き、表面研磨を
行なって5.25インチの磁気フレキシブルディスク(
本発明品2)を作成した。This viscous dispersion (magnetic layer forming liquid) was applied onto a polyethylene terephthalate film (approximately 7 sμ thick) using a 2-3 mil doctor blade, and the solvent was removed by drying at 100-120°C. Using an ESI (curtain type) electron beam accelerator with an accelerating voltage of 300 KV and a beam current of 1010-15, electron beam irradiation was performed at an absorbed dose of IMrad, and after polymerization and hardening to some extent, a group of cotton rolls and mirror-finished rolls was formed. The smoothing process was performed using a three-stage calendar consisting of: Next, using the electron beam accelerator described above, electron beam irradiation was performed at an absorbed dose of 10 Mrad to polymerize and harden the disk, which was then punched out to a predetermined size and surface polished to form a 5.25-inch magnetic flexible disk (
Invention product 2) was created.
比較の為にトルエン−メチルエチルケトン−シフ四ヘキ
サノンの混合溶媒を使用しない以外は全く同様にして磁
性層形成液を調製した。しかし、この液はプリン状に固
っており、粘稠な分散液とならず磁性層形成が不可能で
あった。For comparison, a magnetic layer forming solution was prepared in exactly the same manner except that the mixed solvent of toluene-methyl ethyl ketone-Schiff tetrahexanone was not used. However, this liquid was solidified like a pudding and did not become a viscous dispersion, making it impossible to form a magnetic layer.
上記サンプルを実施例1と同様にして平均再生出力を測
定した。結果は表−1のとおりであった。The average reproduction output of the above sample was measured in the same manner as in Example 1. The results were as shown in Table-1.
表−1
注) 垂直方向の角型比はVSMで測定し残留磁化比”
/Msで評価した。Table 1 Note) The squareness ratio in the vertical direction is measured by VSM and is the residual magnetization ratio.
/Ms.
ここでMrは残留磁束密度、M8は飽 和磁束密度である。Here, Mr is the residual magnetic flux density, and M8 is the saturation is the sum magnetic flux density.
図面は本発明方法の実施の一態様を説明するための図で
ある。The drawings are diagrams for explaining one embodiment of the method of the present invention.
Claims (1)
及び有機溶剤を主成分とした磁性塗料を塗布した後、こ
の塗膜が未だ乾燥硬化しないうちにその塗膜に垂直な磁
場を与えて配向し且つその塗膜が磁場内にあるうちに電
子線を同時に与え該塗膜を硬化させて磁性層を形成する
ことを特徴とする磁気記録媒体の製造方法。1. After applying a magnetic paint mainly composed of ferromagnetic fine powder, electron beam curable resin, and organic solvent onto a non-magnetic support, apply a magnetic field perpendicular to the paint film before it dries and hardens. 1. A method for producing a magnetic recording medium, comprising: applying an electron beam to the coating film to orient it, and curing the coating film while the coating film is in a magnetic field to form a magnetic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4665383A JPS59172166A (en) | 1983-03-19 | 1983-03-19 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4665383A JPS59172166A (en) | 1983-03-19 | 1983-03-19 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59172166A true JPS59172166A (en) | 1984-09-28 |
Family
ID=12753271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4665383A Pending JPS59172166A (en) | 1983-03-19 | 1983-03-19 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59172166A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237218A (en) * | 1987-03-25 | 1988-10-03 | Fuji Photo Film Co Ltd | Production of magnetic recording medium |
-
1983
- 1983-03-19 JP JP4665383A patent/JPS59172166A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237218A (en) * | 1987-03-25 | 1988-10-03 | Fuji Photo Film Co Ltd | Production of magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4526837A (en) | Magnetic recording medium | |
US3865627A (en) | Magnetic recording medium incorporating fine acicular iron-based particles | |
US4343831A (en) | Process for producing magnetic recording medium | |
US4239637A (en) | Magnetic material for recording media | |
JPH04123312A (en) | Magnetic recording medium for master | |
JPH065575B2 (en) | Method of manufacturing magnetic recording medium | |
US4740419A (en) | Magnetic recording media | |
JPS59172166A (en) | Production of magnetic recording medium | |
JPS586526A (en) | Magnetic recording medium | |
JPS5977628A (en) | Magnetic recording medium | |
JPH0252415B2 (en) | ||
JPH07153074A (en) | Manufacture for magnetic recording medium | |
JPH0386917A (en) | Magnetic recording carrier | |
JPS58215732A (en) | Manufacture of magnetic recording medium | |
JPS60111329A (en) | Magnetic recording medium | |
JPS59227034A (en) | Manufacture of magnetic recording medium | |
JPS6089823A (en) | Manufacture for magnetic recording medium | |
JPS6250888B2 (en) | ||
JPS58146033A (en) | Manufacture of magnetic recording medium | |
JPS61175929A (en) | Manufacture of magnetic recording medium | |
JP2651749B2 (en) | Magnetic recording media | |
KR850001005B1 (en) | Magnetic recording medium | |
JPS5811085B2 (en) | Jikiki Rokutai | |
JPS6349289B2 (en) | ||
JPS6349288B2 (en) |