JPS59171837A - Data correction for transmissivity measurement with infrared spectroscope - Google Patents

Data correction for transmissivity measurement with infrared spectroscope

Info

Publication number
JPS59171837A
JPS59171837A JP58046168A JP4616883A JPS59171837A JP S59171837 A JPS59171837 A JP S59171837A JP 58046168 A JP58046168 A JP 58046168A JP 4616883 A JP4616883 A JP 4616883A JP S59171837 A JPS59171837 A JP S59171837A
Authority
JP
Japan
Prior art keywords
data
curve
value
transmissivity
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58046168A
Other languages
Japanese (ja)
Other versions
JPH0257862B2 (en
Inventor
Seiji Nishizawa
西沢 誠治
Norio Wakimoto
範雄 脇本
Yuusei Ookubo
大久保 憂晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP58046168A priority Critical patent/JPS59171837A/en
Publication of JPS59171837A publication Critical patent/JPS59171837A/en
Publication of JPH0257862B2 publication Critical patent/JPH0257862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the transmissivity spectrum of a sample accurately by dividing data of a transmissivity curve by data of a background curve to correct the transmissivity curve. CONSTITUTION:A transmissivity curve is memorized with respect to the wavelength or the number of waves of a sample measured with an infrared spectroscope. Then, after the differentiation of the transmissivity curve, the differentiation value is squared and the results are divided in terms of a fixed wavelength or a fixed number of waves and the sum of the squared differentiation values in each divided section is calculated. Background curves are prepared respectively by using data corresponding to the sections involved of the transmissivity curve when the value of the sum is below the predetermined threshold and data of the transmissivity curve corresponding to the sections on both sides of the sections involved when the value of the sum exceeds the threshold. The data of the transmissivity curve is divided by the data of the background curves to correct the transmissivity curve. Thus, a correct transmissivity spectrum of the sample can be measured.

Description

【発明の詳細な説明】 この発明はフーリエ干渉赤外分光装置など、赤外領域で
試料の透過率を測定する分光装置において、透過率測定
データを補正する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting transmittance measurement data in a spectroscopic device that measures the transmittance of a sample in the infrared region, such as a Fourier interference infrared spectrometer.

周知のようにマイケルソン干渉計等の干渉計を用いてフ
ーリエ変換により試料のスペクトル、すなわち波長に対
する透過率の変化曲線を求めるフーリエ干渉赤外分光装
置が広く使用されている。
As is well known, Fourier interference infrared spectrometers are widely used, which use an interferometer such as a Michelson interferometer to obtain a spectrum of a sample, that is, a change curve of transmittance with respect to wavelength, by Fourier transformation.

ところでこの種の装置では試料の窓あるいはプリズム等
の光学素子としては、KBr  (臭化カリ)が使用さ
れることが多い。KBrは他の光学結晶材料例えばNa
 C1等と比較して赤外線に対する透明度が高いからで
ある。しかしながらKBrを試料の窓等に使用した場合
でもその波長特性により吸収や散乱の効果によってベー
スライン、すなわち透過率100%(試料が空の場合に
相当)に対応する透過率曲線が傾いたり曲ったすするこ
とがある。
Incidentally, in this type of apparatus, KBr (potassium bromide) is often used as an optical element such as a sample window or a prism. KBr can be used with other optical crystal materials such as Na
This is because it has higher transparency to infrared rays than C1 and the like. However, even when KBr is used as a sample window, the baseline, that is, the transmittance curve corresponding to 100% transmittance (corresponding to an empty sample), may be tilted or curved due to absorption and scattering effects due to its wavelength characteristics. Sometimes I sip.

このようにベースラインの傾きや曲りが生じれば、その
傾いた部分や曲った波長において試料の透過率が正確に
あられれなくなる。例えば第1図(A)に示すように真
の透過率100%のラインAに対し分光装置の光路にお
けるKBr等の光学素子の波長特性による吸収や散乱に
よって実際に現われる透過率−100%のベースライン
Bが傾いていた場合には、試料の真のスペクトルが第1
図(B)の破線Cで示すような場合、すなわち波長λ1
1λ2附近のみに吸収が生じるような試料の場合、フー
リエ変形されて出力された実際のデータは第1図(B)
の実線りで示すようなものとなり、そのため試料の同定
等を正確に行ない得なくなることがある。
If the baseline is tilted or curved in this way, the transmittance of the sample cannot be accurately measured at the tilted portion or at the curved wavelength. For example, as shown in Figure 1 (A), with respect to the true transmittance line A of 100%, the transmittance that actually appears due to absorption and scattering due to the wavelength characteristics of optical elements such as KBr in the optical path of the spectrometer is minus 100% base. If line B was tilted, the true spectrum of the sample would be the first
In the case shown by the broken line C in figure (B), that is, the wavelength λ1
In the case of a sample where absorption occurs only around 1λ2, the actual data output after Fourier transformation is shown in Figure 1 (B).
As shown by the solid line, it may become impossible to accurately identify the sample.

しかるに従来のフーリエ干渉赤外分光装置においては、
上述のようなベースラインの傾きや曲りについて特に考
慮が払われていないのが実情である。
However, in the conventional Fourier interference infrared spectrometer,
The reality is that no particular consideration is given to the slope or curvature of the baseline as described above.

この発明には以上の事情に鑑みてなされたもので、透過
率100%に対応するベースラインの傾きや曲りを補正
し、これによって試料の透過率スペクトルを正確に測定
し得るようにした補正方法を提供することを目的とする
ものである。
This invention has been made in view of the above circumstances, and is a correction method that corrects the slope and curvature of the baseline corresponding to 100% transmittance, thereby making it possible to accurately measure the transmittance spectrum of a sample. The purpose is to provide the following.

すなわちこの発明の補正方法は、赤外分光装置により測
定された試料の波長もしくは波数に対する透過率曲線を
記憶させておき、その透過率曲線を微分した後その微分
値を2乗し、その微分2乗値を一定波長ごともしくは一
定波数ごとに分割してその分割された各区間内の微分2
乗値の和を算出し、その和の値が予め定めた閾値以下の
区間では前記透過率曲線のその区間に対応するデータを
、また前記用の値が前記同値を越える区間ではその両側
の区間の透過率曲線のデータを用いて背景曲線を作成し
、前記透過率曲線のデータを前記背景曲線のデータによ
り割算することにより透過率曲線を補正することを特徴
とするものである。
That is, the correction method of the present invention stores a transmittance curve for the wavelength or wavenumber of a sample measured by an infrared spectrometer, differentiates the transmittance curve, squares the differential value, and calculates the differential value by 2. Divide the multiplication value by a certain wavelength or a certain wave number and calculate the differential 2 within each divided section.
The sum of the multiplication values is calculated, and in the section where the value of the sum is less than a predetermined threshold value, the data corresponding to that section of the transmittance curve is calculated, and in the section where the value exceeds the same value, the data corresponding to the section on both sides thereof is calculated. A background curve is created using transmittance curve data, and the transmittance curve is corrected by dividing the transmittance curve data by the background curve data.

以下この発明の方法を第2図、第3図を参照して詳細に
説明する。
The method of the present invention will be explained in detail below with reference to FIGS. 2 and 3.

第2図はこの発明の補正方法を実施するフローチャート
を示すものであり、また第3図はこの発明の補正方法の
各段階におけるスペクトルデータの内容を示す図である
FIG. 2 shows a flowchart for implementing the correction method of the present invention, and FIG. 3 is a diagram showing the contents of spectral data at each stage of the correction method of the invention.

なお実際のスペクトルデータは横軸を波数νとすること
が多いが、第3図では便宜的に横軸を波長λとし、それ
に基いて説明する。もちろん波数νを横軸にした場合も
波長λを横軸にした場合と実質的に同じであって、以下
の説明中の波長を波数に置き変えるだけで良い。
Note that in actual spectrum data, the horizontal axis is often set to the wave number ν, but in FIG. 3, the horizontal axis is set to the wavelength λ for convenience, and the explanation will be based on this. Of course, the case where the wave number ν is plotted on the horizontal axis is substantially the same as the case where the wavelength λ is plotted on the horizontal axis, and it is only necessary to replace the wavelength in the following explanation with the wave number.

この発明の補正方法を実施するに先立っては、フーリエ
干渉赤外分光装置によって試料の各波長に対応する透過
率、すなわちスペクトルを測定しておき、かつこれを記
憶装置に記憶させておく。
Prior to implementing the correction method of the present invention, the transmittance, that is, the spectrum, corresponding to each wavelength of the sample is measured using a Fourier interference infrared spectrometer, and this is stored in a storage device.

そしてこの発明の補正方法を実施するにあたっては、先
ず上述のような測定データを読出し、これを2乗する。
To carry out the correction method of the present invention, first, the above-mentioned measurement data is read out and squared.

すなわち例えば第3図(A>に示すような生スペクトル
データすなわち波長λに対する透過率の生データB(λ
)を読出し、このデータを曲線として扱って微分し、第
3図(B)に示すようなデータB’(λ)を得る。ここ
で試料による吸収は通常は特定波長例えば第3図のλl
、λ2のところで急峻に生じ、その波長λ1、λ2以外
の部分ではほとんど生じないから第3図(A)の曲線に
おいて試料の吸収による波長λl、λ2附近の急峻なデ
ィップ部分Dl、D2を除いた全体的な傾きは、ベース
ラインの傾きによるものである。そしてこのベースライ
ンの傾きの変化はディップ部分Dl、D2の立ち上がり
、立ち下がりと比較してわずかであるから、微分値B’
(λ)は第3図(B)に示すように波長λ1、λ2の附
近以外はほぼ一定となる。
That is, for example, raw spectrum data as shown in FIG. 3 (A>, that is, raw data B (λ
) is read out, and this data is treated as a curve and differentiated to obtain data B'(λ) as shown in FIG. 3(B). Here, the absorption by the sample is usually at a specific wavelength, for example λl in Figure 3.
, λ2, and hardly occurs at wavelengths other than λ1 and λ2, so the steep dip parts Dl and D2 near the wavelengths λl and λ2 due to absorption of the sample are removed from the curve in Figure 3 (A). The overall slope is due to the baseline slope. Since the change in the slope of this baseline is small compared to the rise and fall of the dip portions Dl and D2, the differential value B'
As shown in FIG. 3(B), (λ) is almost constant except around the wavelengths λ1 and λ2.

次いで上述のような微分値データB’(λ)を2乗し、
第3図(C)に示すようなデータ(B′(λ))2を得
る。このデータは生データB(λ)のディップ部分D+
 、D2の立ち下がり、立ち上がりでピークを有するも
のである。
Next, the differential value data B'(λ) as described above is squared,
Data (B'(λ))2 as shown in FIG. 3(C) is obtained. This data is the dip part D+ of raw data B(λ)
, has a peak at the falling and rising edges of D2.

一方、予めデータの全波長域について所定の波長間隔(
もしくは所定の波数間隔)で分割点を定めて、これを記
憶させておく。そして前述のようにして2乗された微分
値データ、すなわち微分2乗値データ(B′(λ))2
を前記分割点によって分割し、その分割された各区間内
の3点あるいは5点等の任意の数のサンプリング波長に
おける微分2乗値の和を算出する。その各区間の微分2
乗値の和Sを第3図(D)に示す。次いで各区間の微分
2乗値の和Sを予め定めた閾値りと比較し、その比較結
果に基いて背景曲線BS(λ)を作成する。すなわち、
前記和Sが@([1−以下の区間(これらの区間の全体
をPで現す)では微分する前のその区間における生デー
タB(λ)(第4図(A>参照)をそのまま区間背景曲
線Or 、 Ca 、Csとし、一方前記和Sが閾値り
を越える区間(これらの区間をQで表わす)ではその区
間の生データB(λ)を捨て、その両側の区間(すなわ
ち生データB(λ)を採用した区間)のデータから直線
近似し、この直線をもって区間背景曲線C2、C4とす
る。すなわち区間Qではその両側の区間の生データB(
λ)の値を直線で結ぶ。このようにして作成された背景
曲線BS(λ)を第3図(E)に示す。但し実際には背
景曲線BS(λ)を滑らかなものとするため、上述のよ
うな直線近似を行なった後、順次3点平均データをとる
等の方法によりスムージングを行なうことが好ましい。
On the other hand, a predetermined wavelength interval (
(or at predetermined wave number intervals) and store them. Then, the differential value data squared as described above, that is, the differential square value data (B'(λ))2
is divided by the dividing points, and the sum of differential square values at an arbitrary number of sampling wavelengths, such as three or five points, within each divided section is calculated. Differential 2 of each interval
The sum S of the multiplication values is shown in FIG. 3(D). Next, the sum S of the differential square values of each section is compared with a predetermined threshold value, and a background curve BS(λ) is created based on the comparison result. That is,
In the interval where the sum S is @([1- or less (all of these intervals are represented by P), the raw data B(λ) (see Fig. 4 (A>)) in that interval before differentiation is used as the interval background. The curves Or, Ca, and Cs are assumed, and on the other hand, in the sections where the sum S exceeds the threshold (these sections are represented by Q), the raw data B (λ) of that section is discarded, and the sections on both sides (i.e., the raw data B ( A linear approximation is made from the data of the section) in which λ) is adopted, and these straight lines are used as the section background curves C2 and C4.In other words, in the section Q, the raw data B(
Connect the values of λ) with a straight line. The background curve BS(λ) created in this way is shown in FIG. 3(E). However, in practice, in order to make the background curve BS(λ) smooth, it is preferable to perform smoothing by sequentially taking three-point average data after linear approximation as described above.

上述のように微分2乗値の和Sが閾値り以下の区間は透
過率B相生データB(λ)における試料の吸収のない部
分に相当し、それらの区間では生−データB(λ)がそ
のまま背景曲線に採用される。
As mentioned above, the sections where the sum S of the differential square values is less than or equal to the threshold value correspond to the portions of the transmittance B mutualistic data B(λ) where the sample does not absorb, and in those sections, the raw data B(λ) is It is used as the background curve.

一方微分2乗値の和Sが閾it!!Lよりも高い区間は
、試料の吸収がある波長λ11λ2の附近の透過率曲線
生データB(λ)のディップ部分Di 、 D2に相当
し、その部分では生データB(λ)が捨てられ、その両
側の吸収のない区間の生データB(λ)によって直線近
似されて背景曲線B S、(λ)が作成される。したが
って背景曲線は、試料による吸収の影響を除外した生デ
ータB(λ)のベースラインに可及的に近似されること
になる。 このようにして作成された背景曲線88(λ
)によって透過率曲線生データB(λ)を割算する。す
なわち各波長についてB(λ)/BS(λ)を求める。
On the other hand, the sum S of the differential square values is the threshold it! ! The section higher than L corresponds to the dip part Di, D2 of the transmittance curve raw data B(λ) near the wavelength λ11λ2 where the sample absorbs, and in that part the raw data B(λ) is discarded and its A background curve B S,(λ) is created by linear approximation using the raw data B(λ) of the non-absorption sections on both sides. Therefore, the background curve is approximated as much as possible to the baseline of the raw data B(λ) excluding the influence of absorption by the sample. Background curve 88 (λ
) is divided by the transmittance curve raw data B(λ). That is, B(λ)/BS(λ) is determined for each wavelength.

斯くすれば、第3図(F)に示すように、透過率曲線生
データB(λ)のベースラインがほぼ直線(すなわち透
過率100%のライン)に補正された試料の透過率曲線
BC(λ)が得られる。
In this way, as shown in FIG. 3(F), the transmittance curve BC( λ) is obtained.

すわちKBr等の光学素子の吸収や散乱等によるベース
ラインの曲がりや傾きが矯正されて、試料の吸収による
透過率がより正確に現れた透過率曲線BC(λ)のデー
タが得られる。
That is, the bending and inclination of the baseline due to absorption and scattering of optical elements such as KBr are corrected, and data of the transmittance curve BC(λ) that more accurately represents the transmittance due to absorption of the sample is obtained.

なお微分2乗値(B′(λ))に対する分割点粗さは、
波数に対して4力イザー程度が通常であるが、試料によ
っては2〜16力イザー程度の範囲内で設定すればよい
Note that the dividing point roughness for the differential square value (B'(λ)) is
Usually, the wave number is about 4 force iser, but depending on the sample, it may be set within the range of about 2 to 16 force iser.

以上のようにこの発明の方法によれば、赤外分光装置の
光路の窓等の光学素子による吸収や散乱による透過率1
00%に対応するベースラインの曲がりや傾きを簡単か
つ容易に、試料の正確な透過率スペクトルを測定するこ
とができる顕著な効果が得られる。
As described above, according to the method of the present invention, the transmittance is 1 due to absorption and scattering by optical elements such as windows in the optical path of an infrared spectrometer.
A remarkable effect is obtained in that the curve and slope of the baseline corresponding to 00% can be easily and easily measured, and the accurate transmittance spectrum of the sample can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)はフーリエ赤外干渉分光装置にお
ける透過率曲線のベースラインの一例、および透過率曲
線の一例をそれぞれ示す線図、第2図はこの発明の補正
方法を実施するフローチャートの一例を示す図、第3図
(A)〜(F)はこの発明の方法における各段階でのデ
ータを示す線図であるっ 出願人  日本分光工業株式会社 代理人  弁理士 豊 1)武 久 (ばか1名) 図11,1の洋書(′内容に変更なし)第1図 波長 λ1     λλ り級長 第2図 第3図 λl     八2  敗艮 (B) CD) 込1     ;Aλ  波長 F) λI     ムλ  テ良義 手   続   補   正   書  (方式)昭和
58年7月15日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第46168号 2、発明の名称 赤外分光装置による透過率測定におけるデータ補正方法
3、補正をする者 事件との関係 特許出願人 住  所  東京都八王子市石川町2967番地の5名
  称  日本分光工業株式会社 4、代理人 住  所  東京都港区三田3丁目4番18号5、補正
命令の日付 昭和58年6月28日(発送日) 6、補正の対象
Figures 1 (A) and (B) are diagrams showing an example of the baseline of the transmittance curve and an example of the transmittance curve, respectively, in a Fourier infrared interference spectrometer, and Figure 2 is a diagram showing the correction method of the present invention. Figures 3(A) to 3(F) are diagrams showing data at each stage of the method of the present invention. Applicant: Japan Bunko Industries Co., Ltd. Representative Patent Attorney Yutaka 1) Hisashi Take (1 idiot) Foreign book in Figure 11, 1 (no change in content) Figure 1 Wavelength λ1 λλ Re-class leader Figure 2 Figure 3 λl 82 Loss (B) CD) Include 1 ;Aλ Wavelength F ) λI Mu te Lawful Procedural Amendment (Method) July 15, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of Case 1982 Patent Application No. 46168 2, Title of Invention Infrared Spectroscopy Data correction method for transmittance measurement using a device 3, relationship with the case of the person making the correction Patent applicant address: 5th name, 2967 Ishikawa-cho, Hachioji-shi, Tokyo, Japan Bunkko Kogyo Co., Ltd. 4, agent address: Port of Tokyo 3-4-18-5, Mita-ku, Date of amendment order: June 28, 1982 (shipment date) 6. Subject of amendment

Claims (1)

【特許請求の範囲】[Claims] 赤外分光装置により測定された試料の波長もしくは波数
に対する透過率曲線を記憶させておき、その透過率曲線
を微分した後その微分値を2乗し、その微分2乗値を一
定波長間隔もしくは一定波数間隔ごとに分割してその分
割された各区間内の微分2乗値の和を算出し、その和の
値が予め定めた閾値以下の区間では前記透過率曲線のそ
の区間に対応するデータを用いかつ前記和の値が閾値以
上の区間ではその両側の区間の前記透過率曲線のデータ
から直線近似して背景曲線を作成し、前記透過率曲線の
データを前記背景曲線のデータで割算することによって
透過率曲線のデータを補正することを特徴とする赤外分
光装置による透過率測定におけるデータ補正方法。
The transmittance curve for the wavelength or wave number of the sample measured by an infrared spectrometer is stored, and after differentiating the transmittance curve, the differential value is squared, and the differential square value is set at a fixed wavelength interval or at a fixed value. Divide into each wave number interval and calculate the sum of the differential square values in each divided section, and in the section where the sum value is less than a predetermined threshold, data corresponding to that section of the transmittance curve is calculated. In the section where the sum value is equal to or greater than the threshold value, a background curve is created by linear approximation from the transmittance curve data of the sections on both sides, and the transmittance curve data is divided by the background curve data. 1. A data correction method in transmittance measurement using an infrared spectrometer, the data being corrected by correcting transmittance curve data.
JP58046168A 1983-03-19 1983-03-19 Data correction for transmissivity measurement with infrared spectroscope Granted JPS59171837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046168A JPS59171837A (en) 1983-03-19 1983-03-19 Data correction for transmissivity measurement with infrared spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046168A JPS59171837A (en) 1983-03-19 1983-03-19 Data correction for transmissivity measurement with infrared spectroscope

Publications (2)

Publication Number Publication Date
JPS59171837A true JPS59171837A (en) 1984-09-28
JPH0257862B2 JPH0257862B2 (en) 1990-12-06

Family

ID=12739484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046168A Granted JPS59171837A (en) 1983-03-19 1983-03-19 Data correction for transmissivity measurement with infrared spectroscope

Country Status (1)

Country Link
JP (1) JPS59171837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513216A (en) * 2017-03-08 2020-05-07 ピレオス リミテッドPyreos Ltd. ATR spectrometer and method for analyzing the chemical composition of a sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513216A (en) * 2017-03-08 2020-05-07 ピレオス リミテッドPyreos Ltd. ATR spectrometer and method for analyzing the chemical composition of a sample
US11248958B2 (en) 2017-03-08 2022-02-15 Pyreos Ltd. ATR spectrometer and method for analysing the chemical composition of a sample

Also Published As

Publication number Publication date
JPH0257862B2 (en) 1990-12-06

Similar Documents

Publication Publication Date Title
Saxner et al. An empirical temperature calibration for F dwarfs
Fitzpatrick Interstellar extinction variations in the Large Magellanic Cloud
Perrin et al. Extension of the effective temperature scale of giants to types later than M6
EP0663997B1 (en) Spectroscopic instrument calibration
JPH08285684A (en) Spectrum stabilizing method in spectrometry
Selby et al. Measurement of the absolute monochromatic flux from Vega at λ 2.20 and λ 3.80 μ m by comparison with a furnace
JPH06105217B2 (en) Spectrometry
JPS59171837A (en) Data correction for transmissivity measurement with infrared spectroscope
JPS63111446A (en) Analyzing device
Clarke et al. Stellar line profiles by tilt-scanned narrow band interference filters
Van Albada et al. Pulsation properties of four RR Lyrae stars
FR2525767A1 (en) DEVICE FOR REDUCING MEASUREMENT ERRORS CAUSED BY PARASITE LIGHT IN SPECTROPHOTOMETERS
JP3174710B2 (en) Gas analyzer
JP3636829B2 (en) Gas concentration measurement method using multi-wavelength light
Dall et al. Mode characterisation in δ Scuti stars-I. ρ Pup, GN And, V1208 Aql and AV Cet
JPH0518823A (en) Spectrophotometry
JP2590129B2 (en) Liquid physical property measurement device
Wegner The gravitational redshift of the white dwarf Omicron-2 ERI B
El-Shazly et al. New graphical method for the determination of the optical constants of thin films
Hiriart et al. Circumstellar gas, dust emission, and mass loss from evolved carbon stars
Fessler et al. Use of an infrared spectroscopic method for isotopic analysis of gaseous uranium hexafluoride
Horneman Recovery of linear phase errors of one-sided interferograms
Popper Masses, radii and luminosities from analysis of eclipsing binaries
Kremer An apparatus for facilitating the elimination of the instrumental curve effect from observed Fraunhofer line profiles
Kupo SPECTROPHOTOMETRY OF THE WHITE EMISSION STAR Y OPHIUCHI