JPS5917151A - Controlling method of ultrasonic flaw detection and driving device - Google Patents

Controlling method of ultrasonic flaw detection and driving device

Info

Publication number
JPS5917151A
JPS5917151A JP57125817A JP12581782A JPS5917151A JP S5917151 A JPS5917151 A JP S5917151A JP 57125817 A JP57125817 A JP 57125817A JP 12581782 A JP12581782 A JP 12581782A JP S5917151 A JPS5917151 A JP S5917151A
Authority
JP
Japan
Prior art keywords
flaw detection
drive device
cable
driving device
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57125817A
Other languages
Japanese (ja)
Inventor
Yasuki Oota
太田 泰樹
Kimio Kanda
神田 喜美雄
Yukio Kakinuma
柿沼 行雄
Mikito Kabuki
株木 幹人
Akisuke Naruse
成瀬 明輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57125817A priority Critical patent/JPS5917151A/en
Publication of JPS5917151A publication Critical patent/JPS5917151A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PURPOSE:To prevent an increase in the scale of a driving device and to prevent a flaw detection position from being limited, by connecting the driving device and its controller together through copper wire cables and optical cables. CONSTITUTION:For example, a ultrasonic flaw detection and driving device performs automatic flaw detection at the weld zone 3 between the main body 1 and nozzle part 2 of the pressure vessel of a nuclear power station. The driving device consists of an annular track 4 fitted to the nozzle, a main body 5, and an arm 6 and performs the ultrasonic flaw detection while scanning a probe 7 in an X and an Y direction. In this case, a Z shaft is provided for pressing the probe 7 against the pressure vessel body 3; the Z shaft is driven by a solenoid and an X and an Y shaft are driven by a DC motor. The controller 12 for controlling the driving device is installed in a control room outside of the nuclear reactor containment vessel 11 and connected to driving devices 4-6 through cables 7- 10.

Description

【発明の詳細な説明】 本発明は、超音波探傷駆動装置に係わり、駆動装置の大
形化や探傷場所の制約なしに、駆動装置と制(財)装置
間のケーブルはせ、太さを低減するのに好適な超音波探
傷駆動装置の“、1il1間力法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection drive device, and the cable thickness between the drive device and the control device can be increased without increasing the size of the drive device or restricting the flaw detection location. This article relates to the 1il1 force method of an ultrasonic flaw detection drive device suitable for reducing the 1il1 force.

超盲−波探傷駆+1rI+装置4゛は、原子力発電所な
どの配管や圧力容器溶接部などを探傷するものであり、
被検体に沿って探触子を自UI的に走査をする装置であ
る。探傷場所は狭隘な場所が多いため、一般的に超音波
探傷駆動装置の、駆動装置と1ltll向装置は離れた
場所に設fρされる。従来の超音波探傷駆動装置dでは
、この駆動@IRと1h11餌j装置〜iま多数の゛「
U線(ケーブル)を介して接続されている。しかし、こ
のように、必要な信号を並列に電線で接続する方式では
、構成ガ簡単という利点があるが、at<動装置と制圃
装[近間のケーブルが太く、かっ市くなる欠点がある。
The ultra-blind wave flaw detection +1rI+ device 4 is used to detect flaws in piping and pressure vessel welds in nuclear power plants, etc.
This is a device that automatically scans the probe along the subject. Since many flaw detection locations are narrow, the driving device and the 1ltll direction device of the ultrasonic flaw detection drive device are generally installed at separate locations fρ. In the conventional ultrasonic flaw detection drive device d, this drive@IR and the 1h11 bait j device ~
Connected via U wire (cable). However, although this method of connecting the necessary signals in parallel with electric wires has the advantage of a simple configuration, it has the disadvantage that the nearby cables are thick and clumpy. be.

符に軸数が多く、複雑な動作を必要とする装4になれば
なるほどケーブルが太く、かつ重くなる。ケーブルが太
く、かつ取くなると駆@装置の動作に負担がかかり、好
ましくない。
The cables become thicker and heavier as the system has more axes and requires more complex movements. If the cable is thick and long, it will put a strain on the operation of the drive device, which is not desirable.

また、原子力発電所の場合、探傷場所の移動に伴も々い
、駆動装置を移動するため、ケーブルを移設しなければ
ならず、ケーブル重縁が重いと、作業峡の大きな負担と
なる。
In addition, in the case of a nuclear power plant, when the flaw detection site is moved, the cable must be relocated to move the drive device, and if the cable is heavy, it will place a heavy burden on the work area.

このように、太く市いケーブルの接続を嫌ってケーブル
を用いない光通信を用いた。自dth探傷/ステムも考
案されている( IFM開昭56−168548 )。
In this way, optical communication that does not use cables was used because the connection of thick and unusable cables was disliked. Self-DTH flaw detection/stem has also been devised (IFM 1985-168548).

また、広帯域であり、ノイズの影響を受は難く、軽くて
細い、という長所を持った光フアイバケーブルを使用し
た、通信方式も、一般的に使用されはじめている。
Additionally, communication systems using optical fiber cables, which have the advantages of being broadband, less susceptible to noise, light and thin, are beginning to be commonly used.

しかし、光フアイバケーブルもしくは空間の光伝幡を利
用した方式では、1・を力の伝送を要しない信号の送受
には適しているが、モータなどを駆動する電力の伝送に
は適し[いない。従って、超音波探傷駆動装置に於い−
C,駆動装置σおよび制御装置を光フアイバケーブルや
望間伝幡Q光通信のみで接続する場合、駆動装置を駆動
する電力を得るためには、駆動装置に電池を積むか、駆
動装置各軸くの電源供給口から電源を敗る必要がある。
However, methods using optical fiber cables or spatial optical transmission are suitable for transmitting and receiving signals that do not require the transmission of force, but are not suitable for transmitting electric power that drives motors and the like. Therefore, in the ultrasonic flaw detection drive device -
C. When the drive device σ and the control device are connected only by optical fiber cable or Mochima Denba Q optical communication, in order to obtain the power to drive the drive device, it is necessary to install a battery in the drive device or to connect each axis of the drive device. It is necessary to connect the power source from the main power supply port.

しかし、電池の積載は、駆動装置の@欧化、小形化を困
難とし、また原子力発電所のように、探傷被検体近傍よ
り、電源供給をすることが困難な暢合、問題があった。
However, loading batteries makes it difficult to make the drive device more compact and more compact, and there are also problems in that it is difficult to supply power from the vicinity of the test object, such as in nuclear power plants.

本発明の目的は、超音波探傷駆動装置に於いて駆IJ+
t+装置と制御装置を結ぶケーブル重嘴、太さを駆動装
置の大形化や探傷場所のτti11約を受けることなく
、最小限とすることにある。
An object of the present invention is to provide a drive IJ+ in an ultrasonic flaw detection drive device.
The purpose is to minimize the thickness of the cable connecting the t+ device and the control device without increasing the size of the drive device or reducing the flaw detection location.

前述のように、原子力発電所等、探傷場所付近で電源の
供給751m1eLい場合、超音波探傷駆動装置は、駆
動装置1#、制御装置間ケーブルを九)7′イバなどの
光通信とした場合、駆動装置1′琴に電池などを積載す
る必要力Iある。
As mentioned above, when the power supply is 751m1eL near the flaw detection location such as a nuclear power plant, the ultrasonic flaw detection drive device uses optical communication such as a 9)7' fiber for the cable between the drive device 1# and the control device. , there is a necessary force I to load batteries and the like onto the drive device 1'.

一方、駆動装置は、探傷現場まで作栗iにより持ち運び
されることや、探傷場所の干渉物により使用制限を受け
ないため、なるべく、小形、軽睦にする必・昶があり、
電池等、容積1.(i: 1!jの嵩ぼるものを駆動装
置に組込むことは、問題がある。
On the other hand, the drive device must be made as small and lightweight as possible because it is carried by a machine to the flaw detection site and its use is not limited by interference at the flaw detection site.
Batteries, etc., volume 1. (i: There is a problem in incorporating a bulky device such as 1!j into a drive device.

また、超音波探傷装置の駆動装置、探傷装置6間のケー
ブルは、移動用ケーブルであるため、固定布設ケーブル
に比べ、強度を高める必要があり、ケーブル外皮を厚く
しなければならない。従って電線数が少ない鴨合は、ケ
ーブル断面積に対するケーブル外皮の比率が堝く、電線
の本数増加による、ケーブル太さへの影響は小さい。す
なわち、若干のケーブル本数の増加を招いても、駆tl
jl+装(hの小形化が計れるなら、小形化した方が利
点がある。そこで本発明は、駆動装置、制御装置間を光
フアイバケーブルと、供に心力供給用のケーブルで接続
する。ところで、駆動装置は、一般に、高精度な動作が
要求されるので、駆動装置各軸を動かすモータは、連続
制御されることが考えられる。
Furthermore, since the cable between the drive device of the ultrasonic flaw detection device and the flaw detection device 6 is a moving cable, it needs to be stronger and have a thicker outer sheath than a fixed cable. Therefore, in a case where the number of wires is small, the ratio of the cable sheath to the cross-sectional area of the cable is low, and an increase in the number of wires has little effect on the cable thickness. In other words, even if the number of cables increases slightly, the
If it is possible to reduce the size of jl+equipment (h), it is more advantageous to make it smaller.Therefore, in the present invention, the drive device and the control device are connected by an optical fiber cable and a cable for supplying the central force.By the way, Since a drive device is generally required to operate with high precision, it is conceivable that the motors that move each axis of the drive device be continuously controlled.

その場合、モータに与える電力を連続的に変化させる電
力制御手段(以下、サーボプンプと呼ぶ)は、大きな電
力を制御するので、小形、軽1計化が難しい。従って、
このサーボ゛γンプを駆動装置に組込もうとすると、前
述9ように1.駆’、iU+ #liiの小形、朝湯化
の点で間:、!へとなる。そのため、ザーボアンプは、
1ff11 ff1il装置ff側に股lR1−るのが
望しいが、その鴇合、(転動装商、制御装置4間に、モ
ータ用ケーブルが必・暦である。しかるに、このモータ
用ケーブルは、モータの制量状況により、酸比が大+j
]K変わるので、他のセンサや駆動装置用回路の゛電源
供給には不適当である。
In that case, the power control means (hereinafter referred to as a servo pump) that continuously changes the power applied to the motor controls a large amount of power, so it is difficult to make it compact and lightweight. Therefore,
When trying to incorporate this servo amplifier into a drive device, 1. Kaku', iU+ #lii's small size, in terms of morning bathing:,! I feel exhausted. Therefore, the servo amplifier is
It is desirable that the 1ff11 ff1il device be connected to the ff side, but a motor cable is required between the rolling equipment and the control device 4.However, this motor cable is Depending on the motor control situation, the acid ratio may be large +j
]K, so it is unsuitable for supplying power to other sensors and drive circuits.

以上の理由により、超音波探傷駆動装置の駆動装置、制
御装置間は、電力伝送を要しない情報伝送のための光フ
アイバケーブル1.e−夕を+tdJかす電力信号を直
接送るための銅線ケーブル、駆動装置内電気品へ電源を
供給する@線ケーブルの3種のケーブルで接続し、1l
i11御する方法が実用上有用であるつ尚、九フーrイ
パケープルは、駆動装置4の状朝信号を1liU御装置
−に送るものと、制御装置からの制御信号を駆動装置に
送るものが必要となる。
For the above reasons, an optical fiber cable is used between the drive device and control device of the ultrasonic flaw detection drive device for information transmission that does not require power transmission. Connect the e-to +tdj with three types of cables: a copper wire cable to directly send the power signal, and an @ wire cable to supply power to the electrical components in the drive unit.
Although the i11 control method is useful in practice, the nine-wheel IPA cable requires a device that sends the status signal of the drive device 4 to the 1liU control device, and a device that sends the control signal from the control device to the drive device. becomes.

ところで、本発明では、モータ用ケーブルは、モータ数
が増えると、その分だけ本数が増えるので、モータの数
が多い場合、ケーブル市艮、太さの増加を招くという問
題があった。
However, in the present invention, as the number of motors increases, the number of motor cables increases accordingly, so when the number of motors is large, there is a problem in that the cables become bulky and the cable thickness increases.

そこで、各モータを必しも同時に1lillかす必要が
ないことに着目1〜、駆動装置側に切換回路を設はモー
タ用ケーブルを、相互に同時にiσ11かす必要のない
モニタで共用し、ケーブル本数を低減する制御方法があ
る。
Therefore, we focused on the fact that it was not necessary for each motor to operate at 1 liter at the same time, and by installing a switching circuit on the drive unit side, we could share the motor cable with a monitor that does not need to operate at iσ 11 at the same time, thereby reducing the number of cables. There are control methods to reduce this.

次に本発明の一実施例を説明する。第1図は、原子力発
電所の圧力容器のノズル部2と圧力容器本体1の溶接部
3を、超音波探傷駆動装置イにより自動探傷する場合の
説明図である。駆動装置は、ノズルに取付ける円j還状
の軌、44、本体5、アーム6から構成され、探触子7
をXJ5向およびY方向に走配しながら超音波探傷を行
なう。このと外探触−r−7を圧力容器本体3に押l〜
付けるZ軸がある。Y軸、Y軸は直流モータにより駆1
1iJ+さtt、7゜軸は、ソレノイドにより駆IIt
hされる。まfr、との駆i1+装置を制御する1Il
lI御装置1イ12は、原4炉格納容2t11の外側の
Ill fl川用に設置さね、ケーブル7〜・10で駆
動装置1□14〜6と接続される。
Next, one embodiment of the present invention will be described. FIG. 1 is an explanatory diagram when a nozzle portion 2 of a pressure vessel of a nuclear power plant and a welded portion 3 of a pressure vessel main body 1 are automatically tested by an ultrasonic flaw detection drive device A. The drive device is composed of a circular track 44 attached to the nozzle, a main body 5, an arm 6, and a probe 7.
Ultrasonic flaw detection is performed while running in the XJ5 direction and the Y direction. Then push the outer probe-r-7 into the pressure vessel body 3.
There is a Z axis to attach. The Y-axis and Y-axis are driven by a DC motor.
1iJ+satt, 7° axis is driven by a solenoid
h is done. 1Il to control the drive i1+ device with mafr,
The II control device 1-12 is installed for the Ill fl river outside of the primary four-reactor containment vessel 2t11, and is connected to the drive devices 1□14-6 by cables 7-10.

・′套2図に、本発明の1■11債1方法を用いた、超
音波探傷装置dのブロック図を示す。、1[1にitd
+装置〜′4〜6は、Hi制御14iiA’: 12と
、モl JtJ ケープA、 7、gM 動’A if
fの状傅を伝送する尤ファイバケーブル8 、;1il
lIiI4144青のI制御信号を送る尤)Tイパケー
ブル9、電源711ケーブル10で濠ヲ76される。Y
軸をWd+かすモータ13にv」、タコジェネレータ1
4が直結されており、Yrltlllを一ノかすモータ
15にもタコジェネレータ16が直結されている。Y軸
、Y軸は同時にtFth f’Fさする必要がないので
、動かす力のモータをIJJ換回ll′317により湖
択して、モータ川ケーブル7に滓続する。X ll1l
tl、 Y ll1lhの位i#’: Itま、それぞ
れロータリエンコーダ18.19により険知される。
・Figure 2 shows a block diagram of an ultrasonic flaw detection device d that uses the 1.11 method of the present invention. , 1 [1 to itd
+ Device~'4-6 Hi control 14iiA': 12, Mol JtJ Cape A, 7, gM Motion 'A if
A fiber cable that transmits the state of f.
lIiI4144 blue I control signal is sent) T ipa cable 9, power supply 711 cable 10 is moat wo 76. Y
Connect the shaft to Wd + V to motor 13, tacho generator 1
A tacho generator 16 is also directly connected to a motor 15 that drives Yrltllll. Since it is not necessary to move the Y-axis and the Y-axis at the same time, the motor with the driving force is selected by the IJJ conversion ll' 317 and connected to the motor river cable 7. X ll1l
tl, Y ll1lh position i#': It is detected by rotary encoders 18 and 19, respectively.

エンドセンサ20,21は、それぞれ、Y軸の内終端を
検知するものである。また、Z輔Qまソレノイド22に
より動作する。、駆動−jA1#4〜6の各ヒンサ信号
は、−駆動装置a内のインタフェース24で光信号に変
調され、尤フーrイパケープル8を萌し1tl1例装置
12側の・インタフェース25に送うILる。
The end sensors 20 and 21 each detect the inner end of the Y axis. Further, it is operated by a solenoid 22. , each of the signals of the drive-jA1 #4 to 6 is modulated into an optical signal by the interface 24 in the drive device a, and sent to the interface 25 on the side of the device 12, which generates an optical signal 8. Ru.

これらセンサ信号は、1ti11 ffMI装置12の
インタフェース25で電気信号に復j凋され、イδけの
4市填によりコントローラ27−またはザーボアノゾ2
6に、4られる。逆に狽j例信号は、i+ill fi
’Il装四“インタフェース25で光信号に変調され光
ファイバケー プル9を経由して、駆動g iifイン
タフニ−ス24に内うれ、「電気信号に復調される。、
切換回路17の切換やソレノイド22のオンオフは、こ
の山It 1.il信シ+にヨリH711(+”(I 
サf1− ル。IM 1hJ+ 4’; 1p 4〜6
 (7) 71.(Igj、 &、−j、;+ll (
Ml装置1イ12内の11”を源装面28から1目、伸
出ケーブル10をA I、 で、1駆i8I装j# 4
〜6にIsられる。、iQX ・itl+装置4〜6内
には電4重用ケーグルの1l(ll+−と1−iに(l
f rff。
These sensor signals are converted into electrical signals at the interface 25 of the 1ti11 ffMI device 12, and are sent to the controller 27- or the servo sensor 2 by inputting the four inputs.
6, 4. Conversely, the example signal is i+ill fi
The signal is modulated into an optical signal by the I/F interface 25, passed through the optical fiber cable 9, and is then demodulated into the drive interface 24 and demodulated into an electrical signal.
The switching of the switching circuit 17 and the on/off of the solenoid 22 are performed by this mountain It1. H711(+”(I)
Sa f1- le. IM 1hJ+ 4'; 1p 4-6
(7) 71. (Igj, &, -j,;+ll (
Connect the 11" inside the Ml device 1-12 to the source mounting surface 28, connect the extension cable 10 to AI, and connect the 1-drive i8I device #4.
~6 Is. , iQX ・Itl+ devices 4 to 6 contain 1l (ll+- and 1-i of the electric quadruplex cable).
f rff.

流の変化により生じる重圧変動を抑圧する重圧調整回路
23を通し各電気部品に電源を供給する。
Power is supplied to each electrical component through a pressure adjustment circuit 23 that suppresses pressure fluctuations caused by changes in flow.

今、Xll1lllモータを動かすとすると、切1弗回
路17をX軸出モータ13の側に切換える。このとき切
換信号は、1目11(財)装置コントローラ27から制
イMl ’N li’Nインタフェース25、光7アイ
パケーブル9、tiAnσ1装置筺インタフェース24
を経由し、で、切換回路に送られる。次に、制御装置コ
ント[1−ラ27け、ザーボアンプ26に動作指令を送
る。勺−ボーγンブ26は動作指令を受けると、モータ
川ケーブル7、切換回路17を経由L−C,X輔モータ
に電1]三を加える。X用1F署−りlバ回転しVまじ
めると、Xツl1llタコジェネレータ14は回転ル(
に比例1ツたpli l−Eを出力しはじめる。この山
′)モジ−1、駆「肋瑛(dインジノエース24゛C、
デジタル信号に交換され1、Xらに)゛r;信号Kt’
1iAI サfL−rlilliinl$+1 (7タ
フ T−−ス25に]泊ら1する。1l111l111
港肯゛インタフェー ス25は、尤ファイバケーブル8
4〜経由しで、4られて乃たタフジェネレ−タ田′?+
をrly+、気1^けVC復調し、ザーポーTンブ26
にフィードバンクする。、また、Y軸の位置信号はロー
タリエンコ−々゛18がら、11嘔[a装置i#インタ
フェース24、尤ノア・イパケーフル8、制伺装jポイ
ンタフェース25を経由シ、てコントローラ27に送ら
れ、コント1」 −ラ2a7りよ(tk lz倍信号よ
り、1)′−ボrンプ26に加える+1tJ1作指令を
変化させる。このように、X輔モータケま、七−タ用ケ
ーブル7と丸ファイバケーブル8を浦シ/と制御Wルー
プにより精度よ< 1lill (ffllされる。
Now, if the Xll1llll motor is to be moved, the cut-off circuit 17 is switched to the X-axis output motor 13 side. At this time, the switching signal is transmitted from the device controller 27 to the control Ml 'N li'N interface 25, optical 7 IPA cable 9, and tiAnσ1 device housing interface 24.
The signal is sent to the switching circuit via . Next, the controller 27 sends an operation command to the servo amplifier 26. When the engine 26 receives an operation command, it applies electricity to the LC and X motors via the motor cable 7 and the switching circuit 17. When the 1F stationary lever for X rotates and V turns, the
It starts outputting pli l-E which is proportional to 1. This mountain') Moji-1, Kaku's ribs (d Indino Ace 24゛C,
1, X, etc.)゛r; Signal Kt'
1iAI SafL-rlilliinl$+1 (7 tough T--S25) Stay 1 night. 1l111l111
The port interface 25 is connected to the fiber cable 8.
Is it a tough generator that was passed through 4? +
rly+, Ki1^ke VC demodulation, Zapo Tnbu26
Feedbank to. In addition, the Y-axis position signal is sent from the rotary encoder 18 to the controller 27 via the device i# interface 24, the Noah device i# interface 24, the control device j pointer interface 25, etc. , Control 1'' - La 2a7 Riyo (from the tk lz multiplication signal, 1)' - Change the +1tJ1 operation command applied to the r pump 26. In this way, the precision of the X motor, the cable 7 for the seventh gear, and the round fiber cable 8 is controlled by the control W loop.

本発明の方法によれば、超音波探1精、駆1ii11装
置dの駆動装置4、jl+lI両装置間ケーブル市j4
i、太さを、探傷・局所の:r;i限や駆動装置の大杉
化合・招くことなく低減できる効果がある。
According to the method of the present invention, the driving device 4 of the ultrasonic detector 1, the driving device 1ii11, and the cable city j4 between the two devices
It has the effect of reducing the flaw detection/local :r;i limit and the driving device's Osugi combination without causing damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第11ズ1は一木シ白明の一実l血削ごある11グ子カ
ツ^4を所圧力容器ノズル溶接線用超音波探偽1駆動装
置の説明図、第2図は第1図の超音波探1易!、!、i
/−1[l+装置のブロック図である。 l・・・IL力容器、2・・・ノズル、;ト・・1Fカ
容4:f s  ノズル溶接線、4〜6・・・、駆動装
面、7.1(+・・ケーブル、8.9・・・丸ファイバ
ケーブル、11・・格納容器、12・・・制−141装
置if、  13.  + 5・・モータ、14゜16
・・・タコジェネレータ、18.19・・・ロータリエ
ンコーダ、20.21・・・エンド七ン−1−1’22
・・・ソレノイド、23・・・電圧i1.9整回路、*
4.25・・・インタノェース、26・・・−リーーー
ボrンプ、27・・・コ′イψ”JjjTy
11th 1 is an explanatory diagram of the ultrasonic detection 1 drive device for the pressure vessel nozzle weld line, and Figure 2 is an explanatory diagram of the drive device for the pressure vessel nozzle weld line. Ultrasonic detection 1 easy! ,! ,i
FIG. 1 is a block diagram of a /-1[l+ device. l...IL force vessel, 2...nozzle, ;g...1F force capacity 4:fs Nozzle welding line, 4-6..., drive equipment surface, 7.1 (+...cable, 8 .9... Round fiber cable, 11... Containment vessel, 12... Control-141 device if, 13. + 5... Motor, 14° 16
...Tacho generator, 18.19...Rotary encoder, 20.21...End 7-1-1'22
... Solenoid, 23 ... Voltage i1.9 rectifier circuit, *
4.25...Internoace, 26...-Lee-boremp, 27...Ko'i ψ”JjjTy

Claims (1)

【特許請求の範囲】[Claims] 1、超音波探触子を被検体に沿って走査する、モータや
センサを備えた駆動装置と、該、駆動装置を遠隔より制
御する制御装置において、該駆動装置とl咳皿If叩装
はを、ビータを動かす′重力信号を直1名送る銅線ケー
ブル、該駆動装置の状態信号を送る尤ファイバケーブル
、誹5駆動装置に!ill tilll f菖号2二送
る尤ファイバケーブル、該、駆動装置d内のHi気部品
へ電源を供給する銅線ケーブルよ)) lP:M t7
.111mすることを特徴とl−た超音波探傷駆動装置
の;h制御方法。
1. In a drive device equipped with a motor and a sensor that scans an ultrasound probe along a subject, and in a control device that remotely controls the drive device, the drive device and the cough plate If are , the copper wire cable that directly sends the gravity signal that moves the beater, and the fiber cable that sends the status signal of the drive device, 5 to the drive device! The fiber cable that sends the iris number 22, the copper wire cable that supplies power to the high-temperature parts in the drive unit d)) lP: M t7
.. A control method for an ultrasonic flaw detection drive device characterized by a length of 111 m.
JP57125817A 1982-07-21 1982-07-21 Controlling method of ultrasonic flaw detection and driving device Pending JPS5917151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125817A JPS5917151A (en) 1982-07-21 1982-07-21 Controlling method of ultrasonic flaw detection and driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125817A JPS5917151A (en) 1982-07-21 1982-07-21 Controlling method of ultrasonic flaw detection and driving device

Publications (1)

Publication Number Publication Date
JPS5917151A true JPS5917151A (en) 1984-01-28

Family

ID=14919666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125817A Pending JPS5917151A (en) 1982-07-21 1982-07-21 Controlling method of ultrasonic flaw detection and driving device

Country Status (1)

Country Link
JP (1) JPS5917151A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157879A (en) * 1980-05-08 1981-12-05 Toshiba Corp Ultrasonic video equipment
JPS5754857A (en) * 1980-09-19 1982-04-01 Hitachi Ltd Ultrasonic flaw detecting equipment for inside surface of fine tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157879A (en) * 1980-05-08 1981-12-05 Toshiba Corp Ultrasonic video equipment
JPS5754857A (en) * 1980-09-19 1982-04-01 Hitachi Ltd Ultrasonic flaw detecting equipment for inside surface of fine tube

Similar Documents

Publication Publication Date Title
CN110977964A (en) Intelligent inspection robot for detecting micro-leakage of power plant equipment operation and detection method
JP4498150B2 (en) Laser light approach detection system
Yamamoto Development of inspection robot for nuclear power plant
CN102013856B (en) Integrated magnetic suspension flywheel digital control device with high reliability
JP2006199440A (en) Approach alarm device
CA2379230A1 (en) Automatic detection of robot type
JPH10138182A (en) Teaching device for robot
JPS5917151A (en) Controlling method of ultrasonic flaw detection and driving device
US4661308A (en) Remote-controlled mobile inspecting and monitoring system
CN101110279B (en) Device for driving control rod, method and device for testing, and torque-converter transmission
Chong et al. A collaborative multi-site teleoperation over an ISDN
CN206002668U (en) Dual AC power electrical fault testing circuit
US4580756A (en) Balancing device
JPH06133411A (en) Power supply device for working robot
EP0149286A1 (en) Communication system and method
CN207408759U (en) A kind of household fixtures and system
CN218747745U (en) Inspection robot and inspection system thereof
CN220064264U (en) Electric power inspection acoustic imaging device
JPH0518674B2 (en)
Wu et al. Robot control system for live maintenance of substation equipment
CN219799623U (en) Online monitoring device for temperature of power grid equipment
JPH09216184A (en) Remote operation type robot monitoring system
KR101766632B1 (en) Load current analysis system of overhead transmission and distribution line
Guo et al. Analysis of characteristic for robot joint
JPH08192379A (en) Space robot