JPS59170802A - Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device - Google Patents

Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device

Info

Publication number
JPS59170802A
JPS59170802A JP58044775A JP4477583A JPS59170802A JP S59170802 A JPS59170802 A JP S59170802A JP 58044775 A JP58044775 A JP 58044775A JP 4477583 A JP4477583 A JP 4477583A JP S59170802 A JPS59170802 A JP S59170802A
Authority
JP
Japan
Prior art keywords
optical fiber
core
light
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58044775A
Other languages
Japanese (ja)
Inventor
Kimiko Ikegami
池上 喜美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58044775A priority Critical patent/JPS59170802A/en
Publication of JPS59170802A publication Critical patent/JPS59170802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To connect optical fibers with extremely small loss by providing a thin metallic film around the outer circumference of a core where light propagates or the outer circumference of a clad. CONSTITUTION:The long-sized core 1 which is made of quartz glass fiber has a 50mum core diameter is covered coaxially with a thin metallic film layer 5 which is made of nickel alloy and has 30mum thickness. The wall surface of the core 1 is finished specularly as the thin metallic film layer 5, so a total reflecting surface is formed regardless of the angle of light incidence. Therefore, incident light is reflected totally by the wall surface of the core 1 to travel straight toward then output terminal, so no light leaks out of the optical fiber.

Description

【発明の詳細な説明】 本発明は光フアイバ,同フアイバ接続方法,同フアイバ
の製造方法,同フアイバの破断検知装置および光通信装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber, a method for connecting the fiber, a method for manufacturing the fiber, a breakage detection device for the fiber, and an optical communication device.

また、本明細書では,光で通信若しくは電力供給を行な
うものをも光通信といい,又そのようなフアイバを光フ
アイバという。
Furthermore, in this specification, communication or power supply using light is also referred to as optical communication, and such fiber is referred to as optical fiber.

従来の光フアイバを第1図,第2図を用いて説明する。A conventional optical fiber will be explained using FIGS. 1 and 2.

第1図は従来の光フアイバの軸方向(縦)からの部分断
面図,第2図は同フアイバの軸方向に対1直角方向(横
)からの断面図である。
FIG. 1 is a partial sectional view of a conventional optical fiber taken in the axial direction (vertical), and FIG. 2 is a sectional view of the same fiber taken in a direction perpendicular to the axial direction (horizontal).

図中1は,光信号が伝搬する部分であり、コアという。Reference numeral 1 in the figure is the part through which the optical signal propagates, and is called the core.

2は、コア1を同心円状に囲むクラツドであり,コア1
の屈折率はクラツド2の屈折率よりも約1%程度高い値
を有している。
2 is a cladding concentrically surrounding core 1;
The refractive index of the cladding 2 is approximately 1% higher than that of the cladding 2.

現在通信用光フアイバとして石英系グレーデツド型フア
イバが一番普及しており,かつコア径50μm,ケラツ
ド径125μmの構造のものが国際的にも標準化の方向
にある。 また,裸状態の光フアイバ(以下、心線3と
いう)3ば脆いので,強度補強,伝送特性向上および取
扱い作業をし易くする目的でシリコン,ナイロン,ポリ
エチレンなどのプラスチツク(以下被覆,又はカバーと
いう)4により被覆する。 なお,光フアイバには石英
系フアイバ,多成分フアイバ,プラスチツククラツドフ
アイバ,プラスチツクフアイバなどがあり、また,一次
被覆のみならず2次被覆,3次被覆を有するものもある
Currently, graded silica fibers are the most popular type of optical fiber for communications, and those with a core diameter of 50 μm and kerat diameter of 125 μm are being standardized internationally. In addition, since the bare optical fiber (hereinafter referred to as core wire 3) is brittle, plastics such as silicone, nylon, and polyethylene (hereinafter referred to as coating or cover) are used to strengthen the optical fiber, improve transmission characteristics, and make it easier to handle. )4. Note that optical fibers include quartz fibers, multicomponent fibers, plastic clad fibers, plastic fibers, etc., and some have not only primary coatings but also secondary coatings and tertiary coatings.

しかしながら,従来の光フアイバには次のような欠点が
あつた。
However, conventional optical fibers have the following drawbacks.

(i)第1図に矢印で示すように入射光がコア1の壁面
に反射しながら伝搬するのであるが,コア1の壁面仕上
精度が十分でないため,また部分的に作用する応力のた
め歪が生じるなどで、クラツト2の部分へ入射光の一部
が漏洩1長距離伝送を困難にしていた。
(i) As shown by the arrow in Figure 1, the incident light propagates while being reflected on the wall surface of the core 1, but due to insufficient finishing accuracy of the wall surface of the core 1 and stress acting locally, the incident light is distorted. As a result, a portion of the incident light leaks into the crack 2, making long-distance transmission difficult.

(ii)光フアイバの接続にはアーク放電法などが研究
されているが装置が大型となり,又素人には困難である
という欠点があつた。
(ii) Arc discharge methods and the like have been studied for connecting optical fibers, but these methods have the drawback of requiring large-sized equipment and being difficult for amateurs.

(iii)溶接,無血手術に際しては大出力レーザから
の強力なレーザ光が光フアイバ内を伝搬するため入出力
端部等における発熱をいかに吸収するかが光フアイバし
いては装置全体の寿命を決定する要因となつているが未
だ十分な解決策はない。
(iii) During welding and bloodless surgery, powerful laser light from a high-output laser propagates within the optical fiber, so how well the heat generated at the input and output ends is absorbed determines the lifespan of the optical fiber and of the entire device. However, there is still no sufficient solution.

(iv)また、このような強力な光を伝搬する光フアイ
バが使用中に、途中で折れ破断した場合直ちに大出力レ
ーザ装置の発振を停止させることが安全上必要である。
(iv) Furthermore, if the optical fiber that propagates such strong light breaks during use, it is necessary for safety to immediately stop the oscillation of the high-output laser device.

しかし光フアイバ破断検知装置(光フアイバからの反射
光を分離して測定する)は大型でしかも高価なため十分
に普及していない。
However, optical fiber breakage detection devices (which separate and measure the reflected light from the optical fiber) are large and expensive, so they are not widely used.

本発明はこのような欠点を除去するものであり,簡単な
構成で、極めて低損失の光フアイバおよび接続容易な光
フアイバ接続方法を提供するものである。 また、本発
明は光フアイバの量産性に優れた製造方法,同フアイバ
の破断検知装置および同フアイバを用いた光通信装置を
提供するものである。
The present invention eliminates these drawbacks, and provides an optical fiber with a simple structure and extremely low loss, and an easy-to-connect optical fiber connection method. Further, the present invention provides a manufacturing method for optical fibers that is excellent in mass productivity, a fracture detection device for the fibers, and an optical communication device using the fibers.

以下本発明の一実施例である光フアイバを第3図,第4
図を用いて説明する。
An optical fiber according to an embodiment of the present invention is shown in Figs. 3 and 4 below.
This will be explained using figures.

第3図は本発明の一実施例である光フアイバの縦断面図
,第4図は同横断面図である。
FIG. 3 is a longitudinal cross-sectional view of an optical fiber according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view thereof.

図中1は、コア径50μm の石英ガラス繊維からなる
長尺のコアであり,5は,コア1を同心円状に囲むニツ
ケル合金からなる厚さ30μmの金属薄膜層(以下,M
TLという)である。矢印は光の伝搬状態を示す。 こ
の場合コア1の壁面は MTL5により鏡面状になつて
いるため,光の入射角のいかんに拘らず全反射面を形成
する。 したがつて,入射光はコア1の壁面で全反射し
,出力端に向つて進行し光フアイバ外へ漏洩することは
ない。
In the figure, 1 is an elongated core made of quartz glass fiber with a core diameter of 50 μm, and 5 is a 30 μm thick metal thin film layer made of nickel alloy that concentrically surrounds the core 1 (hereinafter referred to as M
(referred to as TL). Arrows indicate the propagation state of light. In this case, since the wall surface of the core 1 has a mirror-like surface due to the MTL 5, it forms a total reflection surface regardless of the incident angle of light. Therefore, the incident light is totally reflected on the wall surface of the core 1, travels toward the output end, and does not leak out of the optical fiber.

このようにすることによりクラツドを形成することなく
伝搬特性に優れたより細い光フアイバを容易に得ること
ができ,かつ多心型光ケーブルの製造が容易となる。 
また,MTL5でコア1の壁面は外界と遮断されている
ため化学的にも安定であり、また、外界からの輻射熱を
も遮断できるので熱による歪,劣化を軽減できる。
By doing so, a thinner optical fiber with excellent propagation characteristics can be easily obtained without forming a cladding, and a multi-core optical cable can be manufactured easily.
Furthermore, since the wall surface of the core 1 is isolated from the outside world by the MTL 5, it is chemically stable, and radiant heat from the outside world can also be shielded, so that distortion and deterioration due to heat can be reduced.

また本実施例の光フアイバを横に並べ、これらのMTL
5を半田接続することにより容易に光フアイバシートを
得ることができ,又これらの各MTL5を同電位に保つ
ことができる。 さらにこの光フアイバのMTL5をプ
リント配線板の導電部に接続し,電気回路の一部として
も用いることができ,光フアイバの固定と電気接続との
双方を一本の光フアイバで行なうことがき,さらにこの
光フアイバで光通信をも行なうことができる。
In addition, the optical fibers of this embodiment are arranged horizontally, and these MTLs are
By soldering the MTLs 5, an optical fiber sheet can be easily obtained, and each MTL 5 can be kept at the same potential. Furthermore, the MTL5 of this optical fiber can be connected to a conductive part of a printed wiring board and used as part of an electric circuit, and both the fixing of the optical fiber and the electrical connection can be performed with a single optical fiber. Furthermore, optical communications can also be performed using this optical fiber.

次に本発明の他の実施例である光フアイバを第5図,第
6図,第7図および第8図を用いて説明する。
Next, an optical fiber according to another embodiment of the present invention will be described with reference to FIGS. 5, 6, 7, and 8.

第5図は本発明の他の実施例である光フアイバの縦断面
図,第6図は同横断面図である。
FIG. 5 is a longitudinal cross-sectional view of an optical fiber according to another embodiment of the present invention, and FIG. 6 is a cross-sectional view thereof.

図中1はアクリル繊維からなるコア,5はクロム合金か
らなるMTL,4はシリコン樹脂からなるカバーである
。このようにすることによりコア1の外周にはクラツド
が不要であり,しかもMTL5およびカバー4により補
強される。 またカバー4とコア1との間にMTL5を
介在させたので,相互に作用し化学変化を起ごすことは
ない。
In the figure, 1 is a core made of acrylic fiber, 5 is an MTL made of a chromium alloy, and 4 is a cover made of silicone resin. By doing this, there is no need for a clad around the outer periphery of the core 1, and moreover, it is reinforced by the MTL 5 and the cover 4. Furthermore, since the MTL 5 is interposed between the cover 4 and the core 1, there is no possibility that they will interact with each other to cause chemical changes.

また,第7図は本発明の他の実施例である光フアイバの
縦断面図,第8図は同横断面図である。
Further, FIG. 7 is a longitudinal cross-sectional view of an optical fiber according to another embodiment of the present invention, and FIG. 8 is a cross-sectional view thereof.

図中1は,高屈折率の石英系フアイバよりなるコア,2
は低屈折率の石英系ガラスからなるコア1に同心円状の
クラツド,5は銀合金からなるMTL,4はナイロンか
らなるカバーである。 この場合、ほとんど全ての入射
光はコア1の壁面に反射するとともにクラツド2に漏洩
した光はMTL5に反射して遮断されカバー4には伝わ
らない。そのため、カバー4への漏洩光によるカバー4
の劣化はない。
In the figure, 1 indicates a core made of quartz fiber with a high refractive index, and 2
A core 1 made of quartz glass having a low refractive index has a concentric cladding, 5 an MTL made of a silver alloy, and 4 a cover made of nylon. In this case, almost all of the incident light is reflected by the wall surface of the core 1, and the light leaked to the cladding 2 is reflected by the MTL 5 and blocked, and does not reach the cover 4. Therefore, cover 4 due to leakage light to cover 4
There is no deterioration.

次に本発明の他の実施例である光フアイバを第9図,第
10図を用いて説明する。
Next, an optical fiber according to another embodiment of the present invention will be explained with reference to FIGS. 9 and 10.

第9図は本発明の他の実施例である光フアイバの縦断面
図,第10図は同横断面図である。
FIG. 9 is a longitudinal cross-sectional view of an optical fiber according to another embodiment of the present invention, and FIG. 10 is a cross-sectional view thereof.

図中1は石英系フアイバよりなるコア,5はアルミニウ
ム薄膜よりなるMTL,4はシリコンからなるカバー,
6はニツケルからなるMTLである。
In the figure, 1 is a core made of quartz fiber, 5 is an MTL made of an aluminum thin film, 4 is a cover made of silicon,
6 is an MTL made of nickel.

なお、MTL5とMTL6との間隔は高周波インピーダ
ンス75Ωになるようにシリコン樹脂からなるカバー4
の厚さを調整している。
Note that the gap between MTL5 and MTL6 is such that the cover 4 made of silicone resin has a high frequency impedance of 75Ω.
The thickness is adjusted.

このようにすることにより、コア1を介して光の伝搬を
行なうことができるとともにMTL5、6を介して高周
波電流(信号)の伝送をも行なうことができる。
By doing so, it is possible to propagate light through the core 1 and also to transmit high frequency currents (signals) through the MTLs 5 and 6.

又,MTL5,6を介して直流,交流電力(小電力)の
伝送もできる。またMTLは2層でなくより多層のもの
でもよい。
Further, direct current and alternating current power (small power) can also be transmitted via the MTLs 5 and 6. Furthermore, the MTL may have more than two layers.

上記4つの実施例により明らかな通り,MTL5設ける
ことにより伝搬特性の向上と安定化を図ることができる
。また,カバー4をポリエチレンとし、カバー4をもコ
ア1とは別の光路として用いてもよい。
As is clear from the above four embodiments, the provision of the MTL 5 can improve and stabilize the propagation characteristics. Further, the cover 4 may be made of polyethylene and the cover 4 may also be used as an optical path separate from the core 1.

次に本発明の光フアイバの応用例を第11図を用てい説
明する。
Next, an application example of the optical fiber of the present invention will be explained using FIG. 11.

第11図は,第7図,第8図に示す光フアイバの応用例
を示す縦断面図であるが,他の実施例の光フアイバでも
同様である。
FIG. 11 is a longitudinal sectional view showing an example of application of the optical fiber shown in FIGS. 7 and 8, but the same applies to optical fibers of other embodiments.

図中3は心線,5はMTL,4はカバー,6aは心線3
に対し同心円状の多数の翼を持つ銅よりなる冷却器であ
り,冷却器6aはMTL5に半田7により接続されてい
る。
In the figure, 3 is the core wire, 5 is the MTL, 4 is the cover, and 6a is the core wire 3
The cooler 6a is made of copper and has a large number of concentric blades, and the cooler 6a is connected to the MTL 5 by solder 7.

次に,この動作を説明する。Next, this operation will be explained.

大出力レーザ(図示せず)から発射された光は心線3内
を反射をくり返しながら伝搬する。
Light emitted from a high-output laser (not shown) propagates within the core wire 3 while being repeatedly reflected.

このとき出力端においてミスマツチングに伴う熱が発生
する。 しかしながらMTL5は熱を直ちに吸収し、出
力端に接続された冷却器6aに效率よく伝達される。そ
のため、この冷却器6aを空冷することにより出力端近
傍の心線3は従来に比べ温度上昇は著しく軽減され、光
フアイバの寿命を伸すことができる。
At this time, heat is generated at the output end due to mismatching. However, the MTL 5 immediately absorbs the heat and efficiently transfers it to the cooler 6a connected to the output end. Therefore, by air cooling the cooler 6a, the temperature rise of the core wire 3 near the output end is significantly reduced compared to the conventional case, and the life of the optical fiber can be extended.

本応用例ではクラツド2を有する光フアイバの例を示し
たがこの限りではなく第3図、第4図に示すようにクラ
ツドのない光フアイバについても実施可能であり、クラ
ツドがない方が冷却効果が大きい。 しかし、この場合
,コアが細いため強度補強の点から冷却器6aをMTL
5に接続するとともに金具等を用いてカバー4にも固定
するようにした方式がよい。
Although this application example shows an example of an optical fiber having a cladding 2, it is not limited to this, and it is also possible to use an optical fiber without a cladding, as shown in FIGS. 3 and 4, and the cooling effect is better when there is no cladding. is large. However, in this case, since the core is thin, the cooler 6a is set to MTL in order to strengthen the core.
It is preferable that the cover 5 is connected to the cover 5 and also fixed to the cover 4 using metal fittings or the like.

次に、本発明の一実施例である光フアイバの光伝搬特性
を第12図,第13図を用いて説明する。
Next, the light propagation characteristics of an optical fiber that is an embodiment of the present invention will be explained using FIGS. 12 and 13.

第12図は従来の光フアイバを直角に曲げた状態を示す
断面図,第13図は本発明の一実施例である光フアイバ
を直角に曲げた状態を示す断面図である。 図中1はコ
ア,2はクラツド,4はカバー,5はMTLである。
FIG. 12 is a cross-sectional view showing a conventional optical fiber bent at a right angle, and FIG. 13 is a cross-sectional view showing an optical fiber according to an embodiment of the present invention bent at a right angle. In the figure, 1 is the core, 2 is the cladding, 4 is the cover, and 5 is the MTL.

第12図から明らかなように従来の光フアイバでは、コ
ア1が急角度に曲がるとたとえクラツド2が設けられて
いても入射角が小さくなり,光はコア1の壁面ではほん
のわずかしか反射せず大部分の光が屈折光線となつてク
ラツド2内に漏洩し,熱になる。 このため、曲げによ
る減衰量が増大し,光信号を伝送することができなくな
り光フアイバとして役立たなくなる。
As is clear from Figure 12, in conventional optical fibers, when core 1 is bent at a steep angle, the incident angle becomes small even if cladding 2 is provided, and only a small amount of light is reflected on the wall of core 1. Most of the light becomes refracted rays and leaks into the cladding 2, turning into heat. As a result, the amount of attenuation due to bending increases, making it impossible to transmit optical signals and rendering the fiber useless as an optical fiber.

これに対して、第13図に示す本実施例の光フアイバで
は入射角の大小に拘らずコア1の壁面が鏡面状態になつ
ているため全反射し,曲げに伴なう減衰はほとんど零で
あり,曲がりくねつた状態での布設が可能となる。又応
力歪に対してもほとんど影響を受けないという利点があ
る。 これはコア自体の屈折率に基づく全反射と,MT
Lによる鏡面作用の反射とが相乗効果を発揮するためで
ある。
On the other hand, in the optical fiber of this embodiment shown in FIG. 13, the wall surface of the core 1 is mirror-like, so total reflection occurs regardless of the incident angle, and the attenuation due to bending is almost zero. This enables installation in winding conditions. It also has the advantage of being almost unaffected by stress and strain. This is due to total internal reflection based on the refractive index of the core itself and MT
This is because the reflection of the mirror effect by L exerts a synergistic effect.

上記5つの実施例では金属薄膜層(MTL)を単層形成
した例を示したが,これに限ることはなく,例えば石英
系コア,又はプラスチツクコアの外周表面に,まず反射
效率のよいアルミニウム(Al)を厚さ20μmのMT
Lとしてスパツタリング法により形成し,次に半田にな
じみのよい銅(Cu)をイオンプレーテイング法により
厚さ20μmのMTLとしてAl層の外に形成する。こ
のようにすることにより,コアの反射率の向上(伝搬特
性の改善)と半田接続精度の向上(接続作業の簡易化)
とを同時に図ることができる。 また上記のように2層
でなくより多層のものでもよい。また金属薄膜形成材料
としてはクロム(Cr),ニツケル(Ni),アルミニ
ウム(Al),銅(Cu),鉄(Fe),亜鉛(Zn)
など。又はこれらの金属と他の金属との合金でもよく,
さらに他の金属、又は導電性材料であつてもよい。 い
かなる材料を選択すべきかはコアに伝搬されるべき光の
波長,帯域,伝送路の長短およびMTLの利用法(例え
ば高周波信号伝送路として用いるのか,電力供給路とし
て用いるのか,半田接続だけを目的とするのか,コア材
の保護を目的とするのか、又は単位長当りの重量の軽減
を目的とするのかなど)により決定すればよい, しか
しここで大切なことは光の波長,帯域とMTLの材料の
種類,特にコアの壁面で鏡面を形成する金属薄膜材料の
種類とコア内を伝搬する光の減衰量との間に相関関係が
あるため,光の波長、帯域および伝送距離により材料を
決定し,又厚さを決すべきであるということである。
In the above five embodiments, examples were shown in which a single metal thin film layer (MTL) was formed, but the invention is not limited to this. Al) with a thickness of 20 μm
Next, copper (Cu), which is compatible with solder, is formed outside the Al layer as an MTL with a thickness of 20 μm by an ion plating method. By doing this, the reflectivity of the core is improved (improved propagation characteristics) and the solder connection accuracy is improved (simplified connection work).
This can be achieved at the same time. Further, as described above, the structure may have more than two layers instead of two layers. In addition, metal thin film forming materials include chromium (Cr), nickel (Ni), aluminum (Al), copper (Cu), iron (Fe), and zinc (Zn).
Such. Alternatively, alloys of these metals and other metals may be used.
Furthermore, other metals or conductive materials may be used. The material to be selected depends on the wavelength of the light to be propagated to the core, the band, the length of the transmission path, and the usage of MTL (for example, whether it will be used as a high-frequency signal transmission path, a power supply path, or only for solder connection). However, what is important here is the wavelength, band, and MTL of the light. There is a correlation between the type of material, especially the type of metal thin film material that forms the mirror surface on the core wall, and the amount of attenuation of light propagating within the core, so the material is determined based on the wavelength, band, and transmission distance of the light. However, the thickness must also be determined.

例えば,MTLが厚さ10μmの銅である光フアイバで
は遠赤外光の伝搬特性は他の材料に比べて優れているが
,赤外光〜可視光の伝搬特性はよくなく,減衰が著しい
For example, an optical fiber whose MTL is made of copper and has a thickness of 10 μm has better propagation characteristics for far-infrared light than other materials, but the propagation characteristics for infrared to visible light are poor and are significantly attenuated.

次に本発明の一実施例である光フアイバ破断検知装置を
第14図を用いて説明する。
Next, an optical fiber breakage detection device which is an embodiment of the present invention will be described with reference to FIG.

第14図は本発明の一実施例である光フアイバ破断検知
装置のブロツク図である。
FIG. 14 is a block diagram of an optical fiber breakage detection device which is an embodiment of the present invention.

図中1は コア径50μmのコア,5は厚さ20μmの
MTL,4はシリコンよりなるカバー,7は破断部,8
は大出力レーザ光発振器(以下,レーザという),9は
レーザ8の発振用電源部,10は電源部9からの電源供
給を遮断するための制御部,11は電池,12は抵抗で
ある。
In the figure, 1 is a core with a core diameter of 50 μm, 5 is an MTL with a thickness of 20 μm, 4 is a cover made of silicon, 7 is a broken part, and 8
Reference numeral denotes a high-output laser beam oscillator (hereinafter referred to as a laser), 9 a power supply section for oscillating the laser 8, 10 a control section for cutting off power supply from the power supply section 9, 11 a battery, and 12 a resistor.

次に,この装置の動作を説明する。Next, the operation of this device will be explained.

電源部9からの電源供給によりレーザ8は発振し,レー
ザ光をコア1内へ矢印方向に送出する。このとき,それ
ほど破断していなかつたコア1の途中に荷重が加わり,
コア1が折れ,破断部7が生じたとする。 このとき,
コア1の外周に設けられたMTL5も厚さが薄いため共
に破断する。そのため,それまで電池11,抵抗12お
よびMTL5により形成していた電気的閉回路は,破断
部7で遮断され開回路となるため電流は流れない。 制
御部10はこの電流の変化を検知し,直ちに電源部9か
らの電源供給を遮断し,レーザ8の発振を停止させ、光
ケーブル破断による災害を未然に防止する。
The laser 8 oscillates when power is supplied from the power supply section 9, and sends laser light into the core 1 in the direction of the arrow. At this time, a load was applied to the middle of core 1, which had not broken so much, and
Assume that the core 1 is broken and a fractured portion 7 is generated. At this time,
Since the MTL 5 provided on the outer periphery of the core 1 is also thin, it breaks together. Therefore, the electrical closed circuit previously formed by the battery 11, resistor 12, and MTL 5 is interrupted by the breakage portion 7 and becomes an open circuit, so that no current flows. The control section 10 detects this change in current and immediately cuts off the power supply from the power supply section 9 to stop the oscillation of the laser 8, thereby preventing a disaster caused by a breakage of the optical cable.

このように本実施例によれば,外部からは目に見えない
コアの破断を簡単に判別できるため,光フアイバの断線
の有無を容易かつ正確に検知することができる。
As described above, according to this embodiment, it is possible to easily detect a break in the core, which is invisible from the outside, and therefore it is possible to easily and accurately detect whether or not the optical fiber is broken.

次に本発明の一実施例である光フアイバを用いた光通信
装置を第15図を用いて説明する。
Next, an optical communication device using an optical fiber, which is an embodiment of the present invention, will be explained with reference to FIG.

第15図は本発明の一実施例である光フアイバを用いた
光通信装置のブロツク図である。
FIG. 15 is a block diagram of an optical communication device using an optical fiber, which is an embodiment of the present invention.

図中1は石英系ガラスフアイバよりなるコア,4はシリ
コンよりなるカバー,5は厚さ50μmのニツケルより
なるMTL,6bは網状に編んだ銅線よりなる外部導体
である。13は半導体レーザ発振器,14は変調器,1
5は受光素子,16は復調器,17は高周波送信器,1
8は受信器である。 なお,MTL5と外部導体6bと
は高周波インピーダンス75Ωの同軸ケーブルを構成し
ている。また、半導体レーザ発振器(GaAs LED
)13とMTL5とは半田接続されている。
In the figure, 1 is a core made of quartz-based glass fiber, 4 is a cover made of silicon, 5 is an MTL made of nickel with a thickness of 50 μm, and 6b is an outer conductor made of copper wire knitted in a net shape. 13 is a semiconductor laser oscillator, 14 is a modulator, 1
5 is a light receiving element, 16 is a demodulator, 17 is a high frequency transmitter, 1
8 is a receiver. Note that the MTL 5 and the outer conductor 6b constitute a coaxial cable with a high frequency impedance of 75Ω. In addition, semiconductor laser oscillators (GaAs LEDs)
)13 and MTL5 are connected by solder.

次にこの装置の動作を説明する。Next, the operation of this device will be explained.

半導体レーザ13から送出される光は変調器14により
変調された光であり,コア1の壁面で全反射をくり返し
ながら受光素子15に伝搬される。受光素子15はこの
光を電気信号に変えて復調器16に送り復調させて元の
信号に再現する。 このようにして光通信をコア1を介
して行なうことができる。 また、送信器17からMT
L5と外部導体6bに送出された中心周波数350MH
zの高周波信号は,MTL5と外部導体6bおよびカバ
ー4により構成される同軸ケーブルを伝搬し,受信器1
8に加えられ復調される。
The light emitted from the semiconductor laser 13 is modulated by the modulator 14, and is propagated to the light receiving element 15 while being repeatedly totally reflected on the wall surface of the core 1. The light receiving element 15 converts this light into an electrical signal and sends it to the demodulator 16 for demodulation and reproduction into the original signal. In this way, optical communication can be performed via the core 1. Also, from the transmitter 17
Center frequency 350MH sent to L5 and outer conductor 6b
The high frequency signal of
8 and demodulated.

このとき高周信号の周波数が高いので表皮効果が強く,
薄膜のMTL5で十分通信可能である。
At this time, since the frequency of the high-frequency signal is high, the skin effect is strong,
Communication is possible with thin film MTL5.

このように1本の光フアイバケーブルで光通信と高周波
通信の双方を完全に独立して行なうことができ,極めて
経済的である。 また通常は光通信を行なうようにし,
光通信器が故障したときなどに高周波通信を行なうよう
にしてもよい。 さらい,MTL5と外部導体6bとが
互いに絶縁されていることからこの両導体を行いて,直
流電流を受光素子15,復調器16または中継局用光増
幅器(図示せず)などに供給し、これらの電源供給線と
して用いることもできる。
In this way, one optical fiber cable can perform both optical communication and high frequency communication completely independently, which is extremely economical. Also, optical communication is normally used,
High frequency communication may be performed when the optical communication device fails. Since the MTL 5 and the external conductor 6b are insulated from each other, the DC current is supplied to the light receiving element 15, the demodulator 16, or the relay station optical amplifier (not shown), etc. It can also be used as a power supply line.

本実施例では同軸型光ケーブルを用いた例を示したがこ
れに限るものではなく,第3図,第4図に示す光フアイ
バを2本又はそれ以上を第21図に示すように互いに絶
縁してカバー4で囲みそれそれに電源11aを接続し電
源供給するようにしてもよく,又高周波通信線として用
いてもよい。また同軸とせず、一方をアースを介して接
続してもよい,さらに上記実施例では同軸ケーブルの外
部導体を網状銅線を用いて構成したが,これに限ること
はなく,金属薄膜や金属管などで形成してもよい。
In this example, an example using a coaxial optical cable is shown, but the invention is not limited to this. Two or more optical fibers shown in Figs. 3 and 4 are insulated from each other as shown in Fig. 21. They may be surrounded by a cover 4 and connected to a power source 11a to supply power, or may be used as high frequency communication lines. In addition, one side of the coaxial cable may be connected via ground instead of being coaxial. Furthermore, in the above embodiment, the outer conductor of the coaxial cable was constructed using a reticulated copper wire, but it is not limited to this. It may also be formed by

次に,本発明の一実施例である光フアイバ接続方法を第
16図ないし第18図を用いて説明する。
Next, an optical fiber connection method according to an embodiment of the present invention will be explained with reference to FIGS. 16 to 18.

第16図ないし第18図は本発明の一実施例である光フ
アイバ接続方法の接続工程図である。
16 to 18 are connection process diagrams of an optical fiber connection method according to an embodiment of the present invention.

図中1a,1bは接続すべきコア,5a,5bは内側が
厚さ10μmのアルミ薄膜と外側が厚さ20μmの銅薄
膜とからなる2層式のMTL,4はナイロンからなるカ
バー,19は半田である。
In the figure, 1a and 1b are cores to be connected, 5a and 5b are two-layer MTLs consisting of an aluminum thin film with a thickness of 10 μm on the inside and a thin copper film with a thickness of 20 μm on the outside, 4 is a cover made of nylon, and 19 is a It's solder.

まず,第16図に示すように接続損失を軽減させるため
コア1a,1bの切断面を切断器(図示せず)で鏡面切
断する。 次に治具(図示せず)のV溝に両コア1a,
1bを,第16図矢印で示すように両コア1a,1bを
移動させて軸心を一致させて第17図に示すようにして
固定する。 次にMTL5a,5bの外周から半田19
を用いて両MTL5a,5bを接着する。
First, as shown in FIG. 16, the cut surfaces of the cores 1a and 1b are mirror-cut using a cutter (not shown) in order to reduce connection loss. Next, insert both cores 1a into the V groove of the jig (not shown).
1b is fixed as shown in FIG. 17 by moving both cores 1a and 1b as shown by arrows in FIG. 16 so that their axes coincide. Next, solder 19 from the outer periphery of MTL5a, 5b.
Both MTLs 5a and 5b are glued together using

このようにすることによりアーク放電などの設備を要せ
ずに接続できるとともに必要に応じ半田19を溶すこと
により容易に両コア1a,1bを離脱させることができ
る。 また,MTL5a,5bが2層式であるためコア
1a,1bに対してはアルミ薄膜が鏡面となり,半田1
9に対しては外側の銅薄膜が露出するため容易,確実に
半田接続ができる。 又、両MTL5a,5bは半田1
9により電気的にも接続されるため このようにして接
続した光フアイバは,前記実施例の破断検知装置により
容易に破断の有無を検知することができる。
By doing so, the connection can be made without requiring equipment such as arc discharge, and both cores 1a and 1b can be easily separated by melting the solder 19 if necessary. Also, since MTLs 5a and 5b are of a two-layer type, the aluminum thin film becomes a mirror surface for the cores 1a and 1b, and the solder 1
9, the outer copper thin film is exposed, allowing for easy and reliable solder connection. Also, both MTLs 5a and 5b are soldered 1
Since the optical fibers connected in this way are also electrically connected by 9, the presence or absence of breakage of the optical fibers connected in this manner can be easily detected by the breakage detection device of the embodiment described above.

又,接続点による光の伝達ロスに伴なう熱はMTL5a
,5b および半田19により直ちに吸収され外部へ放
射,伝達される。しかしそれが十分でないときは接続点
の半田19を介して冷却器(図示せず),例えは第11
図に示すような冷却器を接続すれはよい。
In addition, the heat associated with light transmission loss due to the connection point is MTL5a
, 5b and the solder 19, and is radiated and transmitted to the outside. However, if this is not sufficient, a cooler (not shown), for example the 11th
You can connect a cooler as shown in the figure.

次に本発明の光フアイバ製造方法の一実施例を第19図
を用いて説明する。
Next, an embodiment of the optical fiber manufacturing method of the present invention will be described using FIG. 19.

第19図は本発明の光フアイバ製造方法の一実施例を示
す製造工程図である。
FIG. 19 is a manufacturing process diagram showing an embodiment of the optical fiber manufacturing method of the present invention.

図中1はコア径50μmの石英系フアイバよりなるコア
,5はニツケル蒸着薄膜よりなるMTL,20は溶融ニ
ツケル,22は加熱用ヒータ,21はニツケル蒸気であ
る。これらの蒸着装置は大型真空容器(図示せず)内に
配設されている。
In the figure, 1 is a core made of a quartz fiber with a core diameter of 50 μm, 5 is an MTL made of a nickel vapor-deposited thin film, 20 is molten nickel, 22 is a heater, and 21 is nickel vapor. These vapor deposition devices are arranged in a large vacuum container (not shown).

まず,ヒータ22に電流を流し,コツケルを溶かし、溶
融ニツケル20を作る。この溶融ニツケルからはニツケ
ル蒸気21が蒸発している。このときコア1を矢印方向
に回転させながら図中右から左方向へ移動させることに
よりコア1の全外周に均一にニツケル蒸着薄膜(MTL
)5を形成することができる。 また,本実施例ではコ
ア1を回転させながら蒸着させる例を示したがこれに限
るこことはなく装置の方を,又は両者を互いに逆方向に
回転させてもよい。
First, a current is applied to the heater 22 to melt the nickel and create the molten nickel 20. Nickel vapor 21 is evaporated from this molten nickel. At this time, by moving the core 1 from right to left in the figure while rotating it in the direction of the arrow, a nickel vapor-deposited thin film (MTL) is uniformly distributed over the entire outer circumference of the core 1.
)5 can be formed. Furthermore, although this embodiment shows an example in which the core 1 is rotated for vapor deposition, the present invention is not limited to this, and the apparatus or both may be rotated in opposite directions.

また、第20図は本発明の光フアイバ製造方法の他の実
施例を示す製造工程図である。
Moreover, FIG. 20 is a manufacturing process diagram showing another embodiment of the optical fiber manufacturing method of the present invention.

図中23,24は電子線発生用フイラメント,25,2
6はアルミ合金からなるインゴツト,27は真空ポンプ
,28はインゴツト25,26から放出されるアルミ合
金分子,29はスパツタリング装置である。第20図で
はフイラメント23,24とインゴツト25,26とを
2組示したが,スパツタリング装置29内にはほぼ等間
隔、すなわち90°ごとにフイラメント23,24およ
びインゴツト25,26を含めて4組のフイラメントと
インゴツトが配設されている。したがつてスパツタリン
グ装置29内を通過するコア1の全外周にほぼ均一なア
ルミ合金薄膜(MTL)5が形成される。
In the figure, 23 and 24 are filaments for electron beam generation, 25 and 2
6 is an ingot made of aluminum alloy, 27 is a vacuum pump, 28 is aluminum alloy molecules discharged from the ingots 25 and 26, and 29 is a sputtering device. Although two sets of filaments 23, 24 and ingots 25, 26 are shown in FIG. 20, four sets including filaments 23, 24 and ingots 25, 26 are arranged at approximately equal intervals, that is, every 90 degrees, in the sputtering device 29. filaments and ingots are arranged. Therefore, a substantially uniform aluminum alloy thin film (MTL) 5 is formed on the entire outer periphery of the core 1 passing through the sputtering device 29.

コア1は今、上から下へゆつくりと移動1、下部に設け
られた巻取用ボビレ(図示せず)に巻取られる。このと
きコア1の移動方向が重力方向と一致するため、コア1
に無理な応力が作用しないので歪の少ない光フアイバを
得ることができる。
The core 1 is now slowly moved 1 from top to bottom and wound up on a winding bobile (not shown) provided at the bottom. At this time, since the moving direction of core 1 coincides with the direction of gravity, core 1
Since no unreasonable stress is applied to the optical fiber, an optical fiber with less distortion can be obtained.

なお,これらのスパツタリング装置29,コア1を供給
するための供給ボビン(図示せず)および巻取ボビンは
、さらに大型真空容器(図示せず)内に収納されている
The sputtering device 29, a supply bobbin (not shown) for supplying the core 1, and a take-up bobbin are further housed in a large vacuum container (not shown).

このようにすることにより,コア1を前記実施例のよう
に回転することなく、コア1の全外周に均一なMTL5
を形成でき,量産性,均一性に優れている。
By doing this, the core 1 does not need to be rotated as in the previous embodiment, and the MTL 5 is uniform over the entire outer circumference of the core 1.
It has excellent mass productivity and uniformity.

なお,上記実施例では蒸着法,スパツタリング法,の例
を挙げたがこれに限るものではなく,無電解メツキ法,
メツキ法,イオンプレーテイング法,吹付け法などによ
つて金属薄膜を形成してもよい。
In addition, in the above example, the vapor deposition method and the sputtering method were given as examples, but the method is not limited to these, and electroless plating method,
The metal thin film may be formed by a plating method, an ion plating method, a spraying method, or the like.

また,コアには石英系フアイバを用いたがポリエチレン
,ポリプロピレン,アクリルなどからなるプラスチツク
フアイバでも同様に実施可能である。また、多層式金属
薄膜層を形成するには前記した装置のインゴツト等を変
えて同様の工程を連続的に経由するようにすればよい。
Further, although quartz fiber is used for the core, plastic fibers made of polyethylene, polypropylene, acrylic, etc. can also be used. Further, in order to form a multilayer metal thin film layer, the ingots and the like of the above-described apparatus may be changed and the same steps may be continuously performed.

また,このようにして得た光フアイバは光コンピユータ
,光ICにも応用できる。さらに胃カメラなどにも有效
である。
Furthermore, the optical fiber thus obtained can be applied to optical computers and optical ICs. It is also effective for gastroscopy.

以上のように本発明によれば、次のような効果を発揮す
ることができる。
As described above, according to the present invention, the following effects can be achieved.

(1)本発明の光フアイバによれば,伝搬特性が大巾に
向上でき,曲げ損失を低減できるとともに被接続装置と
の接続が極めて容易にでき,かつ必要時の離脱も容易に
行なうことができる。
(1) According to the optical fiber of the present invention, propagation characteristics can be greatly improved, bending loss can be reduced, connection with connected devices can be extremely easily made, and disconnection can be easily performed when necessary. can.

(2)本発明の光フアイバ破断検知装置によれば、光ケ
ーブルの途中の破断の有無を極めて容易かつ簡単に検知
でき,災害等の未然防止を図ることができる。
(2) According to the optical fiber breakage detection device of the present invention, the presence or absence of breakage in the middle of an optical cable can be detected very easily and simply, and disasters and the like can be prevented.

(3)本発明の光通信装置によれば,一本の光フアイバ
で光通信と電気通信若しくは光通信と電力伝送などを同
時かつ独立して行なうことができ光フアイバ・ケーブル
の有效利用を図ることができる。
(3) According to the optical communication device of the present invention, optical communication and electrical communication, or optical communication and power transmission, etc. can be performed simultaneously and independently with a single optical fiber, thereby achieving effective use of optical fiber cables. be able to.

(4)本発明の光フアイバ接続方法を用いれば,光フア
イバを発光ダイオードや半導体レーザ素子又は受光素子
などに直接接続できるとともに光フアイバ同志の接続も
半田ゴテ1本で極めて容易にしかも確実に行なうことが
できる。また本発明の接続方法によれば,コア接続点で
発生する接続ロスによる発熱を速やかに外部へ伝達する
ことができるので光フアイバの寿命を伸すことができる
(4) By using the optical fiber connection method of the present invention, optical fibers can be directly connected to light emitting diodes, semiconductor laser elements, light receiving elements, etc., and optical fibers can be connected extremely easily and reliably with a single soldering iron. be able to. Furthermore, according to the connection method of the present invention, the heat generated by the connection loss generated at the core connection point can be quickly transmitted to the outside, so that the life of the optical fiber can be extended.

(5)本発明の光フアイバ製造方法によれば,金属薄膜
をコア若しくはクラツドの全外周に均一に形成すること
ができ量産化が容易になる。また金属薄膜層の多層化が
容易になる。
(5) According to the optical fiber manufacturing method of the present invention, a thin metal film can be uniformly formed on the entire outer periphery of the core or cladding, facilitating mass production. Further, multilayering of metal thin film layers becomes easy.

尚,第20図の製造方法において,コア1を上から下へ
移動させる例を示したが逆に下から上へ移動させるよう
に構成してもよい。また,コア1の外周表面にMTL5
を形成する例を示したが,クラツドの外周表面にMTL
5を形成してもよいことは上記実施例に示すとおりであ
る。 また,コア,心線は外付けCVD法,内付けCV
D法(MCVD法),又我国で広く実用化されているV
AD法のいずれの方法で形成されたグラスフアイバであ
つてもよく,さらにプラスチツクフアイバであつても実
施可能である。
In the manufacturing method shown in FIG. 20, an example is shown in which the core 1 is moved from the top to the bottom, but it may be configured to be moved from the bottom to the top. In addition, MTL5 is added to the outer peripheral surface of core 1.
An example was shown in which MTL is formed on the outer peripheral surface of the cladding.
5 may be formed as shown in the above embodiment. In addition, the core and conductor are external CVD method and internal CVD method.
D method (MCVD method), and V method, which is widely used in Japan.
Glass fibers formed by any of the AD methods may be used, and even plastic fibers may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光フアイバの縦方向からの部分断面図,
第2図は同横断面図,第3図は本発明の一実施例である
光フアイバの縦断面図,第4図は同横断面図,第5図,
第7図,第9図は本発明の他の実施例である光フアイバ
の縦断面図,第6図,第8図,第10図は同フアイバの
横断面図,第11図は本発明実施の光フアイバの応用例
を示す縦断面図,第12図は従来の光フアイバの光伝搬
特性を示す断面図,第13図は本発明の光フアイバの光
伝搬特性を示す断面図,第14図は本発明の一実施例で
ある光フアイバ破断検知装置のブロツク図,第15図は
本発明の一実施例である光通信装置のブロツク図,第2
1図は同装置の他の例を示す要部ブロツク図,第16図
,第17図,第18図は本発明の光フアイバ接続方法の
一実施例を示す接続工程図,第19図は本発明の光フア
イバ製造方法の一実施例を示す工程図,第20図は本発
明の光フアイバ製造方法の他の実施例を示す工程図であ
る。 1.1a,1b−−−−−−−コア, 2−−−−−−−−−−−−−クラツド,3−−−−−
−−−−−−−−心線, 4−−−−−−−−−−−−−カバー(被覆),5,5
a,51,6−−−−−MTL(金属薄膜層),6−−
−−−−−−−−−−−外部導体,6a−−−−−−−
−−−−−冷却器,7−−−−−−−−−−−−−破断
部,8−−−−−−−−−−−−−大出力レーザ光発生
器(レーザ),9−−−−−−−−−−−−−電源部,
10−−−−−−−−−−−−制御部,11−−−−電
池,12−−−−−−−−−−−−抵抗,13−−−−
−半導体レーザ発振器,14−−−−−−−−変調器,
15−−−−受光素子,16−−−−復調器,17−−
−高周波送信器,18−−−−−−−−受信器,19−
−−−半田,20−−−−溶融ニツケル,21−−−−
ニツケル蒸気,22−−−−−ヒータ,23,24−−
−−フイラメント,25,26−−−−−インゴツト。
Figure 1 is a partial cross-sectional view of a conventional optical fiber taken from the vertical direction.
FIG. 2 is a cross-sectional view of the optical fiber, FIG. 3 is a vertical cross-sectional view of an optical fiber according to an embodiment of the present invention, FIG. 4 is a cross-sectional view of the optical fiber, and FIG.
7 and 9 are longitudinal cross-sectional views of optical fibers according to other embodiments of the present invention, FIGS. 6, 8, and 10 are cross-sectional views of the optical fibers, and FIG. 11 is a cross-sectional view of optical fibers according to other embodiments of the present invention. FIG. 12 is a cross-sectional view showing the light propagation characteristics of the conventional optical fiber, FIG. 13 is a cross-sectional view showing the light propagation characteristics of the optical fiber of the present invention, and FIG. 14 15 is a block diagram of an optical fiber breakage detection device which is an embodiment of the present invention, FIG. 15 is a block diagram of an optical communication device which is an embodiment of the present invention, and FIG.
Fig. 1 is a block diagram of the main parts showing another example of the same device, Figs. 16, 17, and 18 are connection process diagrams showing an embodiment of the optical fiber connection method of the present invention, and Fig. 19 is a diagram of the main parts of the device. FIG. 20 is a process diagram showing one embodiment of the optical fiber manufacturing method of the invention, and FIG. 20 is a process diagram showing another embodiment of the optical fiber manufacturing method of the invention. 1.1a, 1b------core, 2------------clad, 3---------
−−−−−−−− Core wire, 4−−−−−−−−−−−− Cover (sheathing), 5, 5
a, 51, 6---MTL (metal thin film layer), 6---
-------------Outer conductor, 6a------
--------Cooler, 7---------Broken part, 8---------High power laser beam generator (laser), 9 −−−−−−−−−−−−−Power supply section,
10---------Control unit, 11---Battery, 12------Resistance, 13------
- semiconductor laser oscillator, 14------- modulator,
15-----Photo-receiving element, 16-----Demodulator, 17--
-High frequency transmitter, 18------- Receiver, 19-
--- Solder, 20 --- Melted nickel, 21 ---
Nickel steam, 22------ heater, 23, 24---
--Filament, 25, 26-----Ingot.

Claims (5)

【特許請求の範囲】[Claims] (1)光が伝搬するコアの外周若しくはクラツドの外周
外周に金属薄膜層を設けたことを特徴とする光フアイバ
(1) An optical fiber characterized in that a metal thin film layer is provided on the outer periphery of the core or the outer periphery of the clad through which light propagates.
(2)光が伝搬するコアの外周若しくはクラツドのに金
属薄膜層を設けた光フアイバを被接続装置の金属部に当
接した後、前記光フアイバの金属薄膜層と前記被接続装
置の金属部とを半田接続することを特徴とする光フアイ
バ接続方法。
(2) After an optical fiber with a metal thin film layer provided on the outer periphery or cladding of the core through which light propagates is brought into contact with a metal part of a connected device, the metal thin film layer of the optical fiber and the metal part of the connected device are brought into contact. An optical fiber connection method characterized by soldering and connecting.
(3)透光性のガラス繊維若しくはプラスチツク繊維の
外周に、スパツタリング法,蒸着法若しくはメツキ法を
用いて金属薄膜層を形成することを特徴とする光フアイ
バの製造方法。
(3) A method for producing an optical fiber, which comprises forming a metal thin film layer on the outer periphery of a translucent glass fiber or plastic fiber using a sputtering method, a vapor deposition method, or a plating method.
(4)光が伝搬するコアの外周若しくはクラツドの外周
に金属薄膜層を有する光フアイバの一端の前記金属薄膜
層と前記光フアイバの他端の金属薄膜層との間の抵抗値
を測定することにより、前記光フアイバの破断の有無を
検知するように構成したことを特徴とする光フアイバの
破断検知装置。
(4) Measuring the resistance value between the metal thin film layer at one end of an optical fiber having a metal thin film layer on the outer periphery of the core or the outer periphery of the cladding through which light propagates and the metal thin film layer at the other end of the optical fiber. An optical fiber breakage detection device, characterized in that it is configured to detect the presence or absence of breakage of the optical fiber.
(5)光が伝搬するコアの外周若しくはクラツドの外周
に金属薄膜層を有する光ケーブルと、前記光ケーブルの
一端より光を印加するための発光部と,前記光ケーブル
の他端で前記光を受けるための受光部とを備え,かつ前
記光ケーブルの金属薄膜層を介して信号の伝送若しくは
電力の供給を行なうように構成したことを特徴とする光
通信装置。
(5) An optical cable having a metal thin film layer on the outer periphery of the core or the outer periphery of the clad through which light propagates, a light emitting part for applying light from one end of the optical cable, and a light emitting part for receiving the light at the other end of the optical cable. 1. An optical communication device comprising: a light receiving section; and configured to transmit signals or supply power via a metal thin film layer of the optical cable.
JP58044775A 1983-03-16 1983-03-16 Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device Pending JPS59170802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044775A JPS59170802A (en) 1983-03-16 1983-03-16 Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044775A JPS59170802A (en) 1983-03-16 1983-03-16 Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device

Publications (1)

Publication Number Publication Date
JPS59170802A true JPS59170802A (en) 1984-09-27

Family

ID=12700786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044775A Pending JPS59170802A (en) 1983-03-16 1983-03-16 Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device

Country Status (1)

Country Link
JP (1) JPS59170802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117446A (en) * 1984-06-30 1986-01-25 Koden Kogyo Kk Production of optical fiber
JPS62245203A (en) * 1986-04-17 1987-10-26 Marui Sangyo Kk Structure of optical fiber cable
JP2016139098A (en) * 2015-01-29 2016-08-04 京セラ株式会社 Optical fiber with ferrule and light guide device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117446A (en) * 1984-06-30 1986-01-25 Koden Kogyo Kk Production of optical fiber
JPS62245203A (en) * 1986-04-17 1987-10-26 Marui Sangyo Kk Structure of optical fiber cable
JP2016139098A (en) * 2015-01-29 2016-08-04 京セラ株式会社 Optical fiber with ferrule and light guide device

Similar Documents

Publication Publication Date Title
US3808549A (en) Optical waveguide light source
TW451084B (en) Optical-electro wiring board, mounted board, and manufacturing method of optical-electro wiring board
JP2003344729A (en) Combined optical and electrical transmission cable
JPH07119856B2 (en) Optical transmission device
CN105403954A (en) Optical fiber input end structure
EP0261484B1 (en) Infrared transmitting fibre
US4398795A (en) Fiber optic tap and method of fabrication
JP2015034942A (en) Optical combiner, laser apparatus using the same, and manufacturing method of optical combiner
US8260101B2 (en) System and method for an in-plane hollow metal waveguide optical power beam splitter
US4398794A (en) Dual directional tap coupler
US20040213516A1 (en) Optical transceiver systems and methods
JPS59170802A (en) Optical fiber, method for manufacturing and connecting optical fiber, detector for its fracture, and optical communication device
JP3615763B2 (en) Fiber reflector
JPH07270642A (en) Optical fiber end with reflecting type lens integrated in one body
CN115051230A (en) Device with functions of preventing light reflection and monitoring light signal and monitoring method
WO1990002966A1 (en) Optical fiber polarizer and a method of producing the same
JPH0618728A (en) Optical waveguide and its production
JP2015109179A (en) Coaxial cable
JP3313559B2 (en) Light trigger thyristor
JPH0196603A (en) Hollow optical waveguide
JPH0222482A (en) Production of hollow waveguide
JP2599715B2 (en) Hollow optical waveguide and method of manufacturing the same
US20060283711A1 (en) Method of electroplating
US20020126975A1 (en) Optical fiber with metal coating for illumination
JP2004191760A (en) Fusion splicing method of photonic crystal fiber