JPS59170736A - Quartz thermometer - Google Patents

Quartz thermometer

Info

Publication number
JPS59170736A
JPS59170736A JP4346183A JP4346183A JPS59170736A JP S59170736 A JPS59170736 A JP S59170736A JP 4346183 A JP4346183 A JP 4346183A JP 4346183 A JP4346183 A JP 4346183A JP S59170736 A JPS59170736 A JP S59170736A
Authority
JP
Japan
Prior art keywords
output
crystal
sintered body
crystal oscillator
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4346183A
Other languages
Japanese (ja)
Inventor
Shuzo Fujii
修三 藤井
Yuzo Shimada
嶋田 勇三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4346183A priority Critical patent/JPS59170736A/en
Priority to DE8383112593T priority patent/DE3382208D1/en
Priority to EP83112593A priority patent/EP0111890B1/en
Priority to US06/561,506 priority patent/US4574255A/en
Priority to AU22427/83A priority patent/AU563467B2/en
Publication of JPS59170736A publication Critical patent/JPS59170736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties

Abstract

PURPOSE:To perform exact measurement with a small-sized instrument by providing a quartz oscillator and an active element on the surface of a laminated sintered body to constitute an oscillating part and counting the output signals from the oscillating part. CONSTITUTION:A resistor and a capacitor are laminated and are made ceramic, by which a laminated sintered body 50 is constituted. Transistors 14, 16 and a quartz oscillator 6 are formed on the body 50. The body 50 is held in a case 51 and the output from the body 50 is taken to the outside through an output cable 52 and a connector 53. After the output is divided down by a frequency divider, the divided outputs are counted with a counter. The count value is displayed as a temp. on a display part.

Description

【発明の詳細な説明】 本発明は水晶振動子を利用した温度計に関する。[Detailed description of the invention] The present invention relates to a thermometer using a crystal oscillator.

従来、大気中あるいは水中等の周囲温度を測定する温度
計として、サーミスタ、白金等の感熱可変抵抗素子を使
用した温度計や、水晶発振子の共振周波数が周囲温度に
よシ変化する性質を利用した水晶温度計が知られている
。これらの温度計の中で、水晶温度計は、高精度に温度
を測定でき、かつディジタル信号処理に適しているため
広く使用されている。従来の水晶温度計は、水晶発振子
を含む水晶発振部と、この発振部の出力を計数するカウ
ンタとから構成されている。この水晶発振部は、第1図
に示すように水晶発振子6と、抵抗7〜10と、コンデ
ンサ11〜13と、トランジスタ14と、水晶発振子と
発振回路を結ぶペア線15(A−B間)とから構成され
ている。このペア線は、温度計の先端部左小型化できる
よう発振子と発振回路とを分離するために用いられてい
る。
Conventionally, thermometers used to measure ambient temperature in air or water have used thermometers that use heat-sensitive variable resistance elements such as thermistors or platinum, or that utilize the property that the resonant frequency of crystal oscillators changes depending on the ambient temperature. quartz thermometers are known. Among these thermometers, quartz thermometers are widely used because they can measure temperature with high precision and are suitable for digital signal processing. A conventional crystal thermometer includes a crystal oscillation section including a crystal oscillator, and a counter that counts the output of this oscillation section. As shown in FIG. 1, this crystal oscillator includes a crystal oscillator 6, resistors 7 to 10, capacitors 11 to 13, a transistor 14, and a pair of wires 15 (A-B) connecting the crystal oscillator and the oscillation circuit. (between). This pair of wires is used to separate the oscillator and oscillation circuit so that the tip of the thermometer can be made smaller.

この場合ベア線15の長さやベア線間の間隔等によシ等
価的な水晶発振子のリアウタンス成分が変化し、水晶発
振部の発振周波数が不安定になるという問題がある。ま
た、周囲温度変動に対する発振周波数変化率も変化する
という欠点がある。これらの問題を解決するためには、
第1図のペア線15の長さを極力短かくすることが望ま
しいが、各構成部品の形状が大きいため、水晶発振子単
品をセンサーとしてあつかう場合に比べて形状が大幅に
犬きくなシ、物体の表面温度を測定する場合や、狭い領
域の温度を測定する場合には正確な測定や短時間での温
度変動測定が困難である。
In this case, there is a problem that the equivalent reoutance component of the crystal oscillator changes depending on the length of the bare wires 15, the interval between the bare wires, etc., and the oscillation frequency of the crystal oscillator becomes unstable. Another drawback is that the rate of change in oscillation frequency with respect to ambient temperature changes also changes. In order to solve these problems,
It is desirable to make the length of the pair of wires 15 in Fig. 1 as short as possible, but since the shape of each component is large, the shape is much smaller than when using a single crystal oscillator as a sensor. When measuring the surface temperature of an object or measuring the temperature in a narrow area, it is difficult to accurately measure or measure temperature fluctuations in a short time.

本発明の目的は上述の欠点を除去し小型でかつ正確な測
定が可能な水晶温度計を提案することにある。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the above-mentioned drawbacks and to propose a compact quartz thermometer that is capable of accurate measurements.

第2図は本発明の一実施例を示すブロック図で、温度検
出部100と、検出部の出力を分周する分周部200と
、分周部200の出力を計数するカウンタ300と、計
数部の出力を表示する表示部400とから構成されてい
る。
FIG. 2 is a block diagram showing an embodiment of the present invention, which includes a temperature detection section 100, a frequency division section 200 that divides the output of the detection section, a counter 300 that counts the output of the frequency division section 200, and a counter 300 that counts the output of the frequency division section 200. and a display section 400 that displays the output of the section.

第3図は温度検出部100の具体的構成を示す一部断面
図である。図において、検出部100は、抵抗およびコ
ンデンサが積層セラミック化されている積層焼結体50
と、この焼結体上に形成されたトランジスタ14および
16と、この焼結体上に形成された水晶発振子6と、焼
結体を保持するケース51と、焼結体50の出力を外部
に取出す出カケープル52およびコネクタ53とから構
成されている。
FIG. 3 is a partial cross-sectional view showing a specific configuration of the temperature detection section 100. In the figure, a detection unit 100 includes a multilayer sintered body 50 in which a resistor and a capacitor are made of multilayer ceramics.
, transistors 14 and 16 formed on this sintered body, crystal oscillator 6 formed on this sintered body, case 51 holding the sintered body, and output of the sintered body 50 externally. It consists of an output cable 52 and a connector 53.

第4図は本発明に適した水晶発振器の回路図である。図
において、本発明の水晶発振器では、第1図の回路の他
にトランジスタ16を含むバッファ一段を設け、これに
よシ出力線、電源線、グランド線40間の分布容量等に
よる発振周波数の影響を防止でき、周囲温度変動に対す
る発振周波数変化率の変化も防止できる。
FIG. 4 is a circuit diagram of a crystal oscillator suitable for the present invention. In the figure, the crystal oscillator of the present invention is provided with one stage of buffer including a transistor 16 in addition to the circuit shown in FIG. It is also possible to prevent changes in the oscillation frequency change rate due to ambient temperature fluctuations.

第5図は、第4図に示す水晶発振器を複合積層セラミッ
ク化した組立断面図である。
FIG. 5 is an assembled sectional view of the crystal oscillator shown in FIG. 4 made into a composite laminated ceramic.

第5図において、複数層の絶縁体生シート200および
計電体生シート210と、これらシートの上に設けられ
た導体N260と、抵抗体シート片240とによシ第4
図記載の各コンデンサおよび抵抗が形成されている。例
えば、第5図におけるコンデンサ形成部320は、誘電
体生シート210と、このシート210の上下に形成さ
れた電極を形成する導体層26Aおよび26Bとから構
成されている。また、この複合構造体においては、抵抗
やコンデンサなどの各素子間の接続は、各シートを貫通
するよう形成された接続導体310を介して行なわれる
。第4図に示す回路の水晶振動子6およびトランジスタ
14.16は、最上層または最下層、ず々わち複合構造
体の表面に取伺けられている。また、複合構造体の裏面
にLi:、構造体内部に形成できない集子、例えば前記
トランジスタや水晶振動子などの取付や、外部回路との
接続に使用される端子330が形成されている。なお参
照数字32ONはコンデンサ形成部を示す。
In FIG. 5, a plurality of layers of an insulator raw sheet 200 and an electric meter raw sheet 210, a conductor N260 provided on these sheets, and a resistor sheet piece 240 are combined into a fourth layer.
Each capacitor and resistor shown in the figure is formed. For example, the capacitor forming section 320 in FIG. 5 is composed of a dielectric green sheet 210 and conductive layers 26A and 26B forming electrodes formed above and below this sheet 210. Furthermore, in this composite structure, connections between each element such as a resistor and a capacitor are made via a connecting conductor 310 formed so as to penetrate each sheet. The crystal 6 and transistors 14, 16 of the circuit shown in FIG. 4 are located on the top or bottom layer, either on the surface of the composite structure. Further, on the back surface of the composite structure, terminals 330 are formed, which are used for attaching Li and collectors that cannot be formed inside the structure, such as the above-mentioned transistors and crystal resonators, and for connection to external circuits. Note that reference numeral 32ON indicates a capacitor forming portion.

、以上の実施例で用いる絶縁体生シート200は酸化ア
ルミニウム40〜60重量多、結晶化ガラス40〜60
重量俸の組成範囲で総量100チとなるように選んだ混
合粉末をポリビニールブチラールなどの有機結合材(バ
インダー)、ブチルカルピトールまたはエチルセルンル
ブなどの有機溶媒およびBPB()(ブチル・ブタリル
ブテルグリコレート)などの可塑剤と共に泥漿状にし、
ドクターブレード法等のスリノブキャスティング製膜方
娑によυ、20μn1〜300μmの生シートをポリエ
ステルフィルム上に成形し剥離したのち所望の寸法にパ
ンチングして得られる。ここで用いた結晶化ガラス粉末
の組成は酸化物換算表記に従ったとき、ト化釦、酸化ホ
ウ素、二酸化ケイ素、B族元素酸化物、IV族元素(但
し戻素、ケイ素、鉛tま除<)酸化物をそれぞれホ拾比
3〜65%、2〜50チ。
The insulating raw sheet 200 used in the above embodiments contains aluminum oxide 40 to 60% by weight and crystallized glass 40 to 60% by weight.
A mixed powder selected to have a total amount of 100 cm within the composition range of weight is mixed with an organic binder such as polyvinyl butyral, an organic solvent such as butyl calpitol or ethyl cerene lubricant, and BPB (butyl/butyral butyl). glycolate) and other plasticizers to form a slurry.
It is obtained by molding a green sheet of 20 μm to 300 μm onto a polyester film using a slinob casting method such as a doctor blade method, peeling it off, and punching it into desired dimensions. The composition of the crystallized glass powder used here is according to the oxide conversion notation: oxidized button, boron oxide, silicon dioxide, group B element oxide, group IV element (with the exception of return element, silicon, and lead t). <) Oxide with a pick-up ratio of 3-65% and 2-50%, respectively.

4〜65チ、01〜50%、0.02〜20チの組成範
囲でai′100、%となるように選んだ組成物で1h
成されている。
1 hour with a composition selected to give ai'100% in the composition range of 4 to 65 inches, 01 to 50%, and 0.02 to 20 inches.
has been completed.

誘へ2体生シート(ケ、k’ e20x + Pbun
 N bz Oa * WOIの粉末をF3r定貸秤t
し、ボールミルによシ混合してろ過乾燥後700〜80
0℃で予焼を行なったのちホールミルによυ粉砕した粉
末をバインダー有機溶媒、可塑剤と共に混合し、泥漿往
生シートの作成と同様にドクターブレード法等のスリッ
プキャスティング製脱方法によ、910μm〜200 
pmのシートを得た。ここで用いたulh、体制料はf
’b(FeいNbl/1)(Jj  Pb(Fe$WV
S)Os二元系複合ヘロフ、x。
Two-body raw sheet (Ke, k' e20x + Pbun
N bz Oa * WOI powder on F3r fixed scale
After mixing in a ball mill and filtering and drying, the
After pre-baking at 0°C, the powder was pulverized by a hole mill and mixed with a binder organic solvent and a plasticizer, and then mixed with a slip casting method such as a doctor blade method to form a powder with a diameter of 910 μm to 910 μm. 200
A pm sheet was obtained. The ulh used here, the system fee is f
'b(FeNbl/1)(Jj Pb(Fe$WV
S) Os binary complex Herov, x.

カイト化合物でるる。The kite compound comes out.

また抵抗体生シートは、二鯵化ルテニウム粉末と絶縁体
生シートに用いた結晶化ガラス粉末とをそれぞれ重量比
10:90〜50:50の範囲で所望の抵抗値が得られ
るように混合しエチルセルソルブ、ブチルカルピトール
、ブチルフタリル酸ブチルおよびポリビニルブチラール
等を加えて泥漿化し、上述同様に製膜し20μm〜20
0μmのシートを得ている。電極層および信号線に用い
る導体はAμ、Ag。
The raw resistor sheet is made by mixing ruthenium dianide powder and the crystallized glass powder used for the raw insulator sheet at a weight ratio of 10:90 to 50:50 to obtain the desired resistance value. Add ethyl cellosolve, butyl calpitol, butyl butyl phthalate, polyvinyl butyral, etc. to form a slurry, and form a film in the same manner as above.
A sheet of 0 μm was obtained. The conductors used for the electrode layers and signal lines are Aμ and Ag.

Pd、pt等の金属の単体もしくは1以上含んだ合金粉
末を有機ビヒクルと伴に混線しペースト状にしたものを
使用している。このような材料から構成される各シート
を第5図に示すように積層した後、焼結し、その後、水
晶振動子等の取付を行う。
A paste made by mixing a single metal such as Pd, PT, or an alloy powder containing one or more metals with an organic vehicle is used. After sheets made of such materials are laminated as shown in FIG. 5, they are sintered, and then a crystal resonator and the like are attached.

以上の様な構成にて水晶温度計を実現した結果、小型、
高性能な水晶温度計を実現できた。
As a result of realizing a crystal thermometer with the above configuration, it is small,
We were able to create a high-performance crystal thermometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水晶温度計に使用される発振部の回路図
、第2図は本発明の一実施例を示すブロック図、第3図
〜第5図は本発明の一部を示す詳細図である。 第3図において、6・・・・・・水晶発振子、50・・
・・・・積層焼結体、52・・・・・・ケーブル、53
・・・・・・コネクタ、14.16・・・・・・トラン
ジスタ、。 箭2図 第4図
Fig. 1 is a circuit diagram of an oscillation unit used in a conventional crystal thermometer, Fig. 2 is a block diagram showing an embodiment of the present invention, and Figs. 3 to 5 are details showing a part of the present invention. It is a diagram. In Fig. 3, 6... crystal oscillator, 50...
...Laminated sintered body, 52...Cable, 53
......Connector, 14.16...Transistor. Bamboo 2 Figure 4

Claims (1)

【特許請求の範囲】 複数の絶縁体層と少なくとも1層の誘電体層とを有し内
部に水晶発振器を構成する抵抗およびコンデンサが形成
された積層焼結体と、この焼結体の表面に取付けられた
水晶振動子および能動素子とを有する発振部と、 この発振部の出力信号を計数する手段と、この計数手段
の出力を表示する表示手段とから構成されたことを特徴
とする水晶温度計。
[Scope of Claim] A laminated sintered body having a plurality of insulating layers and at least one dielectric layer and in which a resistor and a capacitor forming a crystal oscillator are formed, and A crystal temperature device comprising: an oscillating section having an attached crystal resonator and an active element; means for counting output signals of the oscillating section; and display means for displaying the output of the counting means. Total.
JP4346183A 1982-12-15 1983-03-16 Quartz thermometer Pending JPS59170736A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4346183A JPS59170736A (en) 1983-03-16 1983-03-16 Quartz thermometer
DE8383112593T DE3382208D1 (en) 1982-12-15 1983-12-14 MONOLITHIC MULTILAYER CERAMIC SUBSTRATE WITH AT LEAST ONE DIELECTRIC LAYER MADE OF A MATERIAL WITH PEROVSKIT STRUCTURE.
EP83112593A EP0111890B1 (en) 1982-12-15 1983-12-14 Monolithic multicomponents ceramic substrate with at least one dielectric layer of a composition having a perovskite structure
US06/561,506 US4574255A (en) 1982-12-15 1983-12-15 MMC Substrate including capacitors having perovskite structure dielectric and electrical devices including MMC substrate
AU22427/83A AU563467B2 (en) 1982-12-15 1983-12-15 Ceramic substrate for piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346183A JPS59170736A (en) 1983-03-16 1983-03-16 Quartz thermometer

Publications (1)

Publication Number Publication Date
JPS59170736A true JPS59170736A (en) 1984-09-27

Family

ID=12664345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346183A Pending JPS59170736A (en) 1982-12-15 1983-03-16 Quartz thermometer

Country Status (1)

Country Link
JP (1) JPS59170736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398099A (en) * 1986-10-04 1988-04-28 ヘレウス・ゼンゾール・ゲーエムベーハー Transmission of signal from sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398099A (en) * 1986-10-04 1988-04-28 ヘレウス・ゼンゾール・ゲーエムベーハー Transmission of signal from sensor

Similar Documents

Publication Publication Date Title
US5896081A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
JPS5913901A (en) Detecting element for strain sensor
US3890841A (en) Thermal noise measurement system
US3759104A (en) Capacitance thermometer
JPS59170736A (en) Quartz thermometer
JP2971200B2 (en) Thermistor
JPH04148844A (en) Oxygen gas sensor
JPH0468803B2 (en)
SU879484A1 (en) Device for measuring current
JPS59156002A (en) Temperature compensation piezoelectric oscillator
JPS59169209A (en) Crystal oscillator having thermostatic chamber
JPH11101765A (en) Humidity sensor
JPH1090073A (en) Radiation sensor and manufacture thereof
JPH0341332A (en) Superconducting pressure sensor
JPS63253259A (en) Acceleration measuring device
JPS5846693B2 (en) Ondo sensor
JPS59183508A (en) Piezoelectric oscillator
JPS6227483B2 (en)
JPS59168705A (en) Laminated type voltage controlled piezoelectric oscillator
JPH035876Y2 (en)
JPH06109571A (en) Pressure sensor
JPS60247901A (en) Moisture sensitive material
JPS62105406A (en) Manufacture of temperature measuring resistance element
JPH05248965A (en) Temperature sensor
JPS5818915A (en) Cr composite part