JPS59170578A - Control method of reversible proportionate expansion valve - Google Patents

Control method of reversible proportionate expansion valve

Info

Publication number
JPS59170578A
JPS59170578A JP58042417A JP4241783A JPS59170578A JP S59170578 A JPS59170578 A JP S59170578A JP 58042417 A JP58042417 A JP 58042417A JP 4241783 A JP4241783 A JP 4241783A JP S59170578 A JPS59170578 A JP S59170578A
Authority
JP
Japan
Prior art keywords
valve
temperature
expansion valve
degree
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58042417A
Other languages
Japanese (ja)
Other versions
JPH0133713B2 (en
Inventor
Yasuo Komiya
小宮 靖雄
Seiichi Nakahara
誠一 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP58042417A priority Critical patent/JPS59170578A/en
Publication of JPS59170578A publication Critical patent/JPS59170578A/en
Publication of JPH0133713B2 publication Critical patent/JPH0133713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To accurately control the valve opening by controlling a reversible proportionate expansion valve at every timing pulse, and controlling in the reverse direction at more than the maximum value of dispersion of hysteresis of the valve in a case when driven in a direction opposite to a previous direction of the valve operation. CONSTITUTION:In a case where a power source 4 of a reversible proportionate expansion valve disposed in a freezing cycle, respective outputs from a temperature sensor 6 and a pressure sensor 7 which detect the temperature and pressure on the outlet side of an evaporator are inputted to a controller 16 via temperature-voltage signal and pressure-voltage signal transducers 13, 14 and an A/D transformer 15. Here, the difference between a temperature TE of refrigerant and a pressure equivalent temperature TP of the refrigerant is computed to obtain the degree of super-heating SH, and have it memorized. When the direction of operation of the valve is same between the previous and the following valve operation, a power source 4 is controlled relative to the deviation of said degree of superheating SH, while in a case the directions are opposite, control is made by adding a signal of more than the maximum value of the dispersion of hysteresis to an electrical signal which corresponds to said deviation.

Description

【発明の詳細な説明】 本発明は冷凍装置の冷媒流路中に設けられ、冷媒流量を
調整するための電磁力を利用し、あるいはモータの回転
力を利用した可逆式比例型膨張弁の制御方法に関し、機
械的摺動部の摩擦によるヒステリシスの影響を補償しよ
うとするものである。
Detailed Description of the Invention The present invention provides control of a reversible proportional expansion valve that is installed in a refrigerant flow path of a refrigeration system and uses electromagnetic force to adjust the refrigerant flow rate or the rotational force of a motor. The method attempts to compensate for the effects of hysteresis due to friction in mechanical sliding parts.

冷凍装置における冷凍システムは第1図に示す如き構成
のもので、1は圧縮機、2は室外側熱交換器(凝縮器)
、3は可逆式比例型膨張弁、4は該膨張弁3の開度を入
力信号に応じて一整する電磁石、モータ等の駆動源、5
は室内側熱交換器(蒸発器L6.7は該蒸発器5の出口
側の温度と圧力とを検出する温度センサと圧力センサで
ある。
The refrigeration system in the refrigeration equipment has a configuration as shown in Figure 1, where 1 is a compressor and 2 is an outdoor heat exchanger (condenser).
, 3 is a reversible proportional expansion valve; 4 is a drive source such as an electromagnet or motor that adjusts the opening degree of the expansion valve 3 according to an input signal; 5
is an indoor heat exchanger (evaporator L6.7 is a temperature sensor and a pressure sensor that detect the temperature and pressure on the outlet side of the evaporator 5.

また、8は温度センサ6で検出した温度を電気信号に変
換する温度検出回路、9は圧力センサ7で検出した圧力
を電気信号に変換する圧力検出回路、10は圧力検出回
路9よりの圧力信号を飽和蒸気圧相当温度の信号に変換
する関数発生回路、11は温度検出回路8よシの信号か
ら関数発生回路10よりの信号を減算し過熱度(スーパ
ーヒート)を得る減算(ロ)路、12は該減算回路11
よりの過熱度を、予じめ設定された幅の中立帯内に存在
させるため、上記駆動源3を制御するためのコントロ−
ラである。
Further, 8 is a temperature detection circuit that converts the temperature detected by the temperature sensor 6 into an electrical signal, 9 is a pressure detection circuit that converts the pressure detected by the pressure sensor 7 into an electrical signal, and 10 is a pressure signal from the pressure detection circuit 9. 11 is a subtraction path (b) for subtracting the signal from the function generation circuit 10 from the signal from the temperature detection circuit 8 to obtain the degree of superheat (superheat); 12 is the subtraction circuit 11
A controller for controlling the drive source 3 is used to maintain the degree of superheating within a neutral zone with a preset width.
It is la.

次に動作について説明するに1膨張弁3の開度を制御す
る駆動源4(例えばパルスモータ)は、コントローラ1
2よりの出力によって制御される。
Next, to explain the operation, a drive source 4 (for example, a pulse motor) that controls the opening degree of the expansion valve 3 is connected to a controller 1.
It is controlled by the output from 2.

すなわち、第2図に示す如く予じめ設定されたサンプリ
ング時間tS毎に操作パルスPをコントローラ12は出
力するので、この操作パルスPによってパルスモータ4
は制御される。ところで、この操作パルスPは、第3図
に示す如く実際の過熱度SH(減算回路11よシの出力
)と、予じめ設定された過熱度81(oとの偏差ΔSH
の度合に比例した出力である。
That is, as shown in FIG. 2, since the controller 12 outputs the operation pulse P at every preset sampling time tS, the operation pulse P causes the pulse motor 4 to
is controlled. By the way, as shown in FIG.
The output is proportional to the degree of

、、Δ8H−8H−8H6 そして、上記した第2図と第3図との組合せにより、操
作パルスPの状聾は3通シあることがわかる。
,, Δ8H-8H-8H6 From the combination of FIG. 2 and FIG. 3 described above, it can be seen that there are three states of deafness of the operation pulse P.

(1)偏差ΔSHが+側にあるときは、弁を開く方向に
パルスを出力する。
(1) When the deviation ΔSH is on the + side, a pulse is output in the direction of opening the valve.

(It)  偏差Δ19)tが不感帯内にあるときは、
出力のタイミングが来てもパルスを出力しない(第2図
の鎖線)。
(It) When deviation Δ19)t is within the dead zone,
No pulse is output even when the output timing comes (dashed line in Figure 2).

(ID  偏差ΔSMが一側にあるときは、弁3を閉じ
る方向にパルスを出力する。
(When the ID deviation ΔSM is on one side, a pulse is output in the direction of closing the valve 3.

ところで、モータ駆wbm膨張弁3の開度対流量特性は
第4図に示す如<+f線的であり、またパルス数対弁の
開f″W性も第5図に示す如く直線的である。上記第4
,5図では理想的な弁特性としたが、実際には開方向と
閉方向の流量特性は同じでハナく、ヒステリシスを有す
る。これをパルス数対流癒特性で図示すると第6図の如
くになる。
Incidentally, the opening versus flow rate characteristic of the motor-driven WBM expansion valve 3 is linear as shown in FIG. 4, and the pulse number versus opening f''W characteristic of the valve is also linear as shown in FIG. .4th above
, 5 shows ideal valve characteristics, but in reality, the flow characteristics in the opening and closing directions are the same and have hysteresis. This is illustrated in terms of pulse number convection healing characteristics as shown in FIG. 6.

今、任意の流iQMを得るのに必要な開方向のパルス数
をPMs閉方向のパルス数をPM′とすれば、弁3のヒ
ステリシスPhは次式にて表わすことができる。
Now, if the number of pulses in the opening direction required to obtain an arbitrary flow iQM is PM and the number of pulses in the closing direction is PM', the hysteresis Ph of the valve 3 can be expressed by the following equation.

ph=pM−PM’ 従って、弁3を操作するに当υ、開操作→閉操作ま六は
閉操作→開操作というような動作の反転は、 Pα>Pb なるパルス数Pαを与えなければ、弁3は反転しない。
ph=pM-PM' Therefore, when operating the valve 3, the reversal of the operation, such as opening operation → closing operation or six, closing operation → opening operation, requires the pulse number Pα such that Pα>Pb. Valve 3 does not reverse.

ところで、同じ用途の九めに弁を製造したとき、ヒステ
リシスにバラツキがあり、そのためパルス数Pαの値を
弁3と制御装置との1対1で対応させ、各製品毎に決定
しなければならないという生産性の悪さがあった。
By the way, when the ninth valve for the same application was manufactured, there were variations in the hysteresis, so the value of the pulse number Pα had to be determined for each product by making a one-to-one correspondence between the valve 3 and the control device. There was poor productivity.

また、1対1で対応させるのではなく、バラツキの平均
値をとって、その値からパルス数Pαを決定するという
ことも考えられるが、この方法によるとt!は、ヒステ
リシスの大きい弁は一度の制御では補正できず、サンプ
リング時間毎に何回か操作し、初めて弁が動くというこ
とKなシ、一方、ヒステリシスの小さい弁にあっては、
一度の制御で補正し過ぎて、ハンチングを誘発する等の
問題が生じる。
Alternatively, instead of making a one-to-one correspondence, it is possible to take the average value of the variations and determine the number of pulses Pα from that value, but according to this method, t! This means that valves with large hysteresis cannot be corrected by one-time control, and must be operated several times at each sampling time before the valve moves for the first time.On the other hand, for valves with small hysteresis,
Problems such as excessive correction caused by one-time control may occur, such as inducing hunting.

本発明社叙上の点に着目して成されたもので、その目的
とするところは、弁のもつヒステリシスのバラツキに関
係なく、演算結果分だけ弁の開閉を迅速かつ正確に制御
し得る可逆式比例型膨張弁の制御方法を提供するKlる
This invention has been developed by focusing on the points mentioned above, and its purpose is to provide a reversible system that can quickly and accurately control the opening and closing of the valve according to the calculation result, regardless of the variation in the hysteresis of the valve. This invention provides a method for controlling a proportional type expansion valve.

以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

第7図において、13は温度センサ6の信号を受けて、
後段のム/D変換器15の入力に適した信号レベルとな
るように演算、増幅を行う温度−電圧信号変換器、14
は圧力センサ7の信号を受けて、ム/D変換器150入
力に適した信号レベルとなるように演算、増幅を行う圧
カー亀圧信号変換器、15はコントローラ16によって
制御され、入力データの選択、アナログデータよりデジ
タルデータへの変換、デジタルデータの出力等を行うム
/D変換器、16はROMX!(AM、I10ポート等
を内蔵した1チツプマイクロコンピユータであり、予じ
め記憶されているプログラムに従ってム/D変換器15
を制御し、そのデジタルデータを入力し、プログラムに
基き演算し、その結果をモータ駆動部17に出力する。
In FIG. 7, 13 receives the signal from the temperature sensor 6, and
a temperature-voltage signal converter 14 that performs calculations and amplification to obtain a signal level suitable for input to the subsequent Mu/D converter 15;
15 is a pressure car pressure signal converter that receives the signal from the pressure sensor 7 and calculates and amplifies it to a signal level suitable for input to the MU/D converter 150; 15 is controlled by a controller 16, and input data is A MU/D converter that performs selection, conversion from analog data to digital data, output of digital data, etc., 16 is ROMX! (It is a 1-chip microcomputer with built-in AM, I10 ports, etc., and according to a pre-stored program, the MU/D converter 15
, inputs the digital data, performs calculations based on the program, and outputs the results to the motor drive section 17 .

17はコントローラ16よりの出力信号に基いてモータ
駆動型膨張弁3のモータ4にパルス信号を送出し回転さ
せるモータ駆動部である。
Reference numeral 17 denotes a motor drive unit that sends a pulse signal to the motor 4 of the motor-driven expansion valve 3 to rotate it based on the output signal from the controller 16.

次に上記した撰成に基いて動作を説明するに、冷媒の流
量はパルス数の増減によって制御されるので、コントロ
ーラ16の記憶機能によシ、そのパルス数を記憶してお
けば任意の開度りにおける操作パルスΔpMを必要に応
じて演算できる。この場合、基準位置の検出が必要とな
る。そこで、弁3を制御開始前に全閉か全開状態となし
、これを基準位置として、制御を開始するようにする。
Next, to explain the operation based on the above selection, the flow rate of the refrigerant is controlled by increasing or decreasing the number of pulses. The operating pulse ΔpM at a certain temperature can be calculated as necessary. In this case, it is necessary to detect the reference position. Therefore, the valve 3 is brought into a fully closed or fully open state before starting the control, and this is used as a reference position to start the control.

すなわち、全閉から全開までに要するパルス数をPIT
)Oとすると、コントローラ16の電源が確立したとき
、常に弁を閉じる方向にP ’> P son  !る
パルス数P′を与える。これにより弁3の前回における
開度がどのようなものであっても、該弁3は全閉状態と
なる。なお、弁3が前回において全開でなく、P“〈P
l。。なるパルス数P’で全閉状態と彦ったときには、
p’−p’なるパルスが余分となるが、このパルスはモ
ータ4において磁気ロスとして消費される。以上の操作
によって、全閉位置Loを基準位置とすることができる
In other words, the number of pulses required from fully closed to fully open is PIT
)O, when the power to the controller 16 is established, P'> P son ! is always in the direction of closing the valve. The number of pulses P' is given. As a result, regardless of the previous opening degree of the valve 3, the valve 3 becomes fully closed. Note that valve 3 was not fully open last time, and P
l. . When the fully closed state is achieved with the number of pulses P',
Although the pulse p'-p' is extra, this pulse is consumed in the motor 4 as magnetic loss. Through the above operations, the fully closed position Lo can be set as the reference position.

以上のような作業をコントローラ16において行った後
、実際の制御に入る。以下、その動作について説明する
After performing the above operations in the controller 16, actual control begins. The operation will be explained below.

蒸発器5の出口部における冷媒の温度TEはム/D変換
器13でデジタル信号に変換され、このデジタルデータ
をコントローラ16は読み込み記憶する。
The temperature TE of the refrigerant at the outlet of the evaporator 5 is converted into a digital signal by the M/D converter 13, and the controller 16 reads and stores this digital data.

また、蒸発器5の出口部における冷媒の圧力PEはム/
D変換器14でデジタル信号に変換され、このデジタル
データをコントローラ16は読み込み記憶する。
Moreover, the pressure PE of the refrigerant at the outlet of the evaporator 5 is
The data is converted into a digital signal by the D converter 14, and the controller 16 reads and stores this digital data.

そして、コントローラ16内において、冷媒の温度TE
と冷媒の圧力相当温度TPとの差を求め過熱度SRを得
、この過熱度8Hの値を記憶する。
Then, within the controller 16, the refrigerant temperature TE
The difference between the temperature and the refrigerant pressure equivalent temperature TP is obtained to obtain the superheat degree SR, and the value of this superheat degree 8H is stored.

なお、上記において、圧力P=から圧力相当温度TPを
得るには、使用している冷媒の飽和蒸気圧線図より求め
ることができる。すなわち、圧力相当温度TPは、圧力
PEの関数になっているので、これを式で表わせば、 Tp=f(PK) となる。
In the above, the pressure equivalent temperature TP can be obtained from the pressure P= from the saturated vapor pressure diagram of the refrigerant used. That is, since the pressure equivalent temperature TP is a function of the pressure PE, this can be expressed as follows: Tp=f(PK).

pEはデジタルデータであるから、個々の7’−タに対
応するTPの値をプログラムしておけば、圧力→温度の
変換はコントローラ16により容易に変換できる。
Since pE is digital data, pressure→temperature conversion can be easily performed by the controller 16 by programming the value of TP corresponding to each 7′-ta.

次にコントローラ16は過熱度の偏差ΔSHを求めるの
であるが、第3図に示す不感帯の中心を設定過熱度SR
8とすれば、偏差ΔSHは下式より演算し、この値を記
憶する。
Next, the controller 16 calculates the superheat degree deviation ΔSH, and sets the superheat degree SR at the center of the dead zone shown in FIG.
8, the deviation ΔSH is calculated from the formula below and this value is stored.

Δ5H−8H−、8H0 また、この過熱度の偏差値ΔSHの値よりサンプリング
時間1回当りの操作パルス数ΔPMヲ下式より演算し、
この値を記憶する。
Δ5H-8H-, 8H0 Also, from the value of this deviation value ΔSH of the degree of superheating, the number of operation pulses ΔPM per sampling time is calculated from the formula below,
Remember this value.

ΔP M −K*ΔSM ここで、Kは冷凍装置の特性によって決まる固有の定数
にして、予じめコントローラ16内に記憶されているの
で、上記操作パルス数ΔPMを容易に求めることができ
る。
ΔP M −K*ΔSM Here, K is a unique constant determined by the characteristics of the refrigeration system and is stored in advance in the controller 16, so that the number of operating pulses ΔPM can be easily determined.

そして、第1図に示すサンプリング時間ts毎にコント
ローラ16が、上記操作パルスΔpMを出力し、モータ
駆動部17によシモータ4を制御する。
Then, the controller 16 outputs the operation pulse ΔpM at every sampling time ts shown in FIG. 1, and the motor driving section 17 controls the motor 4.

との時の操作パルスΔpMの出力状態には3通りある。There are three output states of the operation pulse ΔpM when .

すなわち、 中 偏差ΔSHが+側にあるとき、 ΔPM=に・ΔSH にて計算されるパルス数ΔpMだけ弁3を開く。That is, Medium: When the deviation ΔSH is on the + side, ΔPM=ni・ΔSH Open the valve 3 by the number of pulses ΔpM calculated by .

(11)偏差ΔSI(が不感帯内にあるとき、ΔpM−
(11) When the deviation ΔSI( is within the dead zone, ΔpM−
.

となシ、サンプリングパルスが出ても操作パルスは出力
されない。
However, even if the sampling pulse is output, the operation pulse is not output.

G11l  偏差ΔSHが一側にあるとき、ΔPM=に
拳ΔfsH にて計算されるパルス数ΔpMだけ弁3を閉める。
G11l When the deviation ΔSH is on one side, close the valve 3 by the number of pulses ΔpM calculated by ΔfsH at ΔPM=.

このとき、一般的には、Ph〉ΔpMであるから、1回
前の操作が閉であれば問題なく作動するが、開動作より
閉動作に反転する時はヒステリシスのためパルスを出力
しても流量は変化しない。
At this time, generally Ph>ΔpM, so if the previous operation was closing, it will operate without any problem, but when the operation is reversed from opening to closing, even if a pulse is output due to hysteresis. The flow rate does not change.

そこで、上記不具合を無くすために、上記演算された操
作パルス数ΔpMだけ弁3を閉じる→次にPα> Ph
なるパルス′ePαだけさらに閉じる→次にPα>Ph
なるパルス数Pαだけ開ける。
Therefore, in order to eliminate the above problem, the valve 3 is closed by the number of operation pulses ΔpM calculated above → then Pα> Ph
The pulse 'ePα is further closed → then Pα>Ph
It is opened by the number of pulses Pα.

以上の操作により、弁3は開方向特性上で72Mだけ閉
じられたことになる。
By the above operation, the valve 3 is closed by 72M in terms of opening direction characteristics.

すなわち、第6図に示す如く、現在の数がpMであれば
、出力のタイミングがきた後のパルス数は上記した(い
、 (II) 、 OI+に対応して、(I)  PM
=PM十ΔPM (II)  PM=PM 1り  PH−PM十ΔpM−pα+Pαとなる。
That is, as shown in FIG. 6, if the current number is pM, the number of pulses after the output timing is as described above (I, (II), corresponding to OI+, (I) PM
= PM + ΔPM (II) PM = PM 1ri PH - PM + ΔpM - pα + Pα.

第8図にコントローラ16の上記した動作をフローチャ
ート図で示す。
FIG. 8 shows a flowchart of the above-described operation of the controller 16.

なお、上記した実施例にあっては、1つ前のタイミング
パルスのときに開動作が行われ、次のタイミングパルス
のときに閉動作が行われるものについての説明であるが
、これとは逆に、1つ前のタイミングパルスのときに閉
動作が行われていて、次のタイミングパルスのときに開
動作が行われた場合におけるパルス数PMld、 (1)の場合、PM”PM+ΔpM−pα+Pα(11
)の場合、pM−pM Oloの場合、PM−PM+ΔPM となる。
In the above embodiment, the opening operation is performed at the previous timing pulse and the closing operation is performed at the next timing pulse, but this is the opposite. Then, the number of pulses PMld in the case where the closing operation was performed at the time of the previous timing pulse and the opening operation was performed at the time of the next timing pulse, In the case of (1), PM''PM + ΔpM - pα + Pα ( 11
), in the case of pM-pM Olo, it becomes PM-PM+ΔPM.

また、上記実施例は弁3の駆動源としてモータを利用し
パルス数によって制御したものを示したが、駆動源とし
て電磁石を利用することも可能であり、この場合はパル
ス数に代え駆動電流とすれば良い。
Furthermore, in the above embodiment, a motor is used as the drive source for the valve 3, and the control is controlled by the number of pulses. However, it is also possible to use an electromagnet as the drive source, and in this case, the drive current is controlled by the number of pulses instead of the number of pulses. Just do it.

本発明の方法が利用分野としては、冷凍装置の外に、冷
暖房装置全般に亘って冷媒流量を制御するものに応用で
きる。
The method of the present invention can be applied not only to refrigeration systems but also to controlling the flow rate of refrigerant in air-conditioning systems in general.

本発明は上記したように、モータあるいは電磁石を駆動
源とする可逆式比例型It張弁の制御を、タイミングパ
ルス毎に行うと共に前回のタイミング時における弁の開
閉方向と同じ方向に駆動する場合には演算結果通シに制
御し、また逆方向に駆動する場合には弁のもつヒステリ
シスのバラツキの最大値以上に逆方向に制御し、その後
、その値だけ反対方向に制御して演算結果分だけ弁を制
御するようにしたので、弁のもつヒステリシスのバラツ
キに関係なく正確に弁の開度を制御できると共に弁と制
御装置との接続に互換性があり、また弁の調整時間が短
かくなシ制御性が増す外、省エネ化を図ることができる
等の効果を有するものである。
As described above, the present invention controls a reversible proportional type It tension valve using a motor or an electromagnet as a driving source for each timing pulse and drives the valve in the same direction as the opening/closing direction of the valve at the previous timing. is controlled according to the calculation result, and when driving in the opposite direction, it is controlled in the opposite direction beyond the maximum value of the hysteresis variation of the valve, and then controlled in the opposite direction by that value and only by the calculation result. Since the valve is controlled, the opening degree of the valve can be accurately controlled regardless of variations in the hysteresis of the valve, the connection between the valve and the control device is compatible, and the time required for adjusting the valve is short. This has effects such as improved controllability and energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の可逆式比例型膨張弁の制御装置の一例を
示すブロック図、第2図は膨張弁の制御タイミングを示
す波形図、第3図は過熱度の偏差に対する操作パルス数
との関係を示す図、第4図は弁の開閉度と流量との関係
を示す図、第5図は操作パルス数と弁の開度との関係を
示す図、第6図は弁のヒステリシスを考慮した操作パル
ス数と弁の開度との関係を示す図、第7図は本発明の方
法に用いるブロック図、第8図は同上におけるコントロ
ーラのフローチャート図である。 3 P
Fig. 1 is a block diagram showing an example of a conventional reversible proportional expansion valve control device, Fig. 2 is a waveform chart showing the control timing of the expansion valve, and Fig. 3 is a graph showing the relationship between the number of operating pulses and the deviation in degree of superheat. Figure 4 is a diagram showing the relationship between the valve opening/closing degree and flow rate, Figure 5 is a diagram showing the relationship between the number of operating pulses and the valve opening degree, and Figure 6 is a diagram showing the relationship between the valve opening degree and the valve hysteresis. FIG. 7 is a block diagram used in the method of the present invention, and FIG. 8 is a flowchart of the controller in the same. 3P

Claims (1)

【特許請求の範囲】[Claims] 冷凍装置等の蒸発器の出口部における冷媒の過熱度を、
予じめ設定された不感帯内に存在させるべくタイミング
パルス毎に出力される電気信号で駆動されて開度を調整
し、その開度によシ冷媒の流量を制御する膨張弁の制御
方法にして、前回のタイミングパルスの制御時における
弁の開閉方向と次回における弁の開閉方向が同じ時には
加熱度の偏差に応じた電気信号で制御し、また逆方向に
駆動する時には弁のもつヒステリシスのバラツキの最大
値以上の電気信号を上記偏差に応じた電気信号に加えて
制御し、その後、その最大値以上の電気信号分だけ反対
方向に制御するようにしたことを特徴とする可逆式比例
型膨張弁の制御方法。
The degree of superheating of the refrigerant at the outlet of the evaporator of a refrigeration system, etc.
A control method for an expansion valve in which the opening degree is adjusted by being driven by an electric signal output at each timing pulse so that the expansion valve exists within a preset dead zone, and the flow rate of the refrigerant is controlled according to the opening degree. When the valve opening/closing direction during the previous timing pulse control and the next valve opening/closing direction are the same, control is performed using an electric signal according to the deviation in heating degree, and when driving in the opposite direction, the valve is controlled using an electric signal that corresponds to the variation in hysteresis of the valve. A reversible proportional expansion valve characterized in that an electrical signal greater than the maximum value is controlled by adding it to the electrical signal corresponding to the deviation, and then controlled in the opposite direction by an amount of the electrical signal greater than the maximum value. control method.
JP58042417A 1983-03-16 1983-03-16 Control method of reversible proportionate expansion valve Granted JPS59170578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042417A JPS59170578A (en) 1983-03-16 1983-03-16 Control method of reversible proportionate expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042417A JPS59170578A (en) 1983-03-16 1983-03-16 Control method of reversible proportionate expansion valve

Publications (2)

Publication Number Publication Date
JPS59170578A true JPS59170578A (en) 1984-09-26
JPH0133713B2 JPH0133713B2 (en) 1989-07-14

Family

ID=12635483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042417A Granted JPS59170578A (en) 1983-03-16 1983-03-16 Control method of reversible proportionate expansion valve

Country Status (1)

Country Link
JP (1) JPS59170578A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397046U (en) * 1986-12-10 1988-06-23
JPS63164017U (en) * 1987-04-15 1988-10-26
EP0316565A2 (en) * 1987-11-13 1989-05-24 Eaton Corporation Superheat control of air conditioning system incorporating fuel cooler
JPH0257774A (en) * 1988-08-18 1990-02-27 Iseki & Co Ltd Output control device of proportional solenoid valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397046U (en) * 1986-12-10 1988-06-23
JPS63164017U (en) * 1987-04-15 1988-10-26
EP0316565A2 (en) * 1987-11-13 1989-05-24 Eaton Corporation Superheat control of air conditioning system incorporating fuel cooler
JPH0257774A (en) * 1988-08-18 1990-02-27 Iseki & Co Ltd Output control device of proportional solenoid valve

Also Published As

Publication number Publication date
JPH0133713B2 (en) 1989-07-14

Similar Documents

Publication Publication Date Title
US5099654A (en) Method for controlling a motor vehicle air conditioning system
US5323619A (en) Control method for starting an air conditioner compressor
US5226472A (en) Modulated temperature control for environmental chamber
JP2006266533A (en) Valve control system and valve control method
US10337768B2 (en) Methods for controlling a compressor with double suction for refrigeration systems
CA2098680A1 (en) Microprocessor-based controller
EP1398584B1 (en) Method for controlling a multiple cooling compartment refrigerator, and refrigerator using such method
JPS6136671A (en) Controller for flow rate of refrigerant
US8539782B2 (en) Method for controlling the power of a sorption refrigeration system and device therefor
JPS59170578A (en) Control method of reversible proportionate expansion valve
JP2689599B2 (en) Operation control device for air conditioner
JPH11173631A (en) Air conditioner controller
JPH0322555B2 (en)
JPH0668410B2 (en) Air conditioner
JPS5824771A (en) Controller for flow rate of refrigerant
JP3167809B2 (en) Floor heating controller
JPS5824770A (en) Controller for flow rate of refrigerant
JPH0225090Y2 (en)
JP3059534B2 (en) Control method of reversible proportional expansion valve
JPH0236019Y2 (en)
JPH0339227B2 (en)
JPS60196569A (en) Controller for flow rate of refrigerant
JPH0674573A (en) Method for controlling expansion valve in vapor-compression refrigerating apparatus
JPH04244557A (en) Expansion valve controlling method for air conditioner
JPH0599517A (en) Air conditioner