JPS5917054B2 - Manufacturing method of optical fiber base material - Google Patents
Manufacturing method of optical fiber base materialInfo
- Publication number
- JPS5917054B2 JPS5917054B2 JP12543280A JP12543280A JPS5917054B2 JP S5917054 B2 JPS5917054 B2 JP S5917054B2 JP 12543280 A JP12543280 A JP 12543280A JP 12543280 A JP12543280 A JP 12543280A JP S5917054 B2 JPS5917054 B2 JP S5917054B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction tube
- heating burner
- optical fiber
- gas
- glass layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
- C03B37/01815—Reactant deposition burners or deposition heating means
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01876—Means for heating tubes or rods during or immediately prior to deposition, e.g. electric resistance heaters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は光ファイバの母材の製造法の改良に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the method of manufacturing an optical fiber preform.
石英よりなる反応管内に屈折率; 制御用のドーパント
の四塩化ゲルマニウム(GeCl4)を混合した四塩硅
素(S1Cl4)と酸素(O2)ガスを導入し、前記反
応管の外壁を管軸方向に移動する加熱バーナで加熱し、
前記ガラス形成用原料ガスのSlCl4等を酸化したの
ち、0 ガラス層として反応管内に堆積させる光ファイ
バ母材の製造法は周知である。従来このような内付けC
VD法で光ファイバの母材を製造する場合、第1図に示
すように前記SiCl4およびGeCl4を担持したア
ルゴン゛5(Ar)ガスとO2ガスとを反応管1のガス
導入端部2より導入し、加熱バーナ3を管軸方向に往復
移動して、前記反応管の外壁を加熱してガラス層4を反
応管内に堆積さぜている。Silicon tetrachloride (S1Cl4) mixed with germanium tetrachloride (GeCl4) as a dopant for controlling the refractive index and oxygen (O2) gas are introduced into a reaction tube made of quartz, and the outer wall of the reaction tube is moved in the tube axis direction. Heat it with a heating burner,
A method for producing an optical fiber preform is well known, in which the glass-forming raw material gas, such as SlCl4, is oxidized and then deposited as a zero glass layer in a reaction tube. Conventionally, this type of internal C
When manufacturing an optical fiber base material by the VD method, as shown in FIG. Then, the heating burner 3 is reciprocated in the tube axis direction to heat the outer wall of the reaction tube and deposit the glass layer 4 inside the reaction tube.
ここで5は反応管のガス排気端6に接続され、反応管よ
り内径をj0大きくして不要なガラス形成酸化物を堆積
させるための排出管である。しかしこのような方法で光
ファイバ用母材を製造すると、形成される原料ガスの酸
化物力坊口熱バーナの移動方向側に尾を引いて堆積され
、その酸■5 化物が加熱バーナの移動によつて順次ガ
ラス化されるため、形成されるガラス層4が反応管のガ
ス排出端部5へ到達するほど分厚く形成されるような不
都合を生じる。Here, 5 is an exhaust pipe connected to the gas exhaust end 6 of the reaction tube and having an inner diameter j0 larger than that of the reaction tube to deposit unnecessary glass-forming oxides. However, when optical fiber base materials are manufactured using this method, the oxides of the raw material gas that are formed are deposited with a trail in the direction of movement of the heating burner, and the oxides are deposited in the direction of movement of the heating burner. Therefore, since the glass layer 4 is successively vitrified, it becomes inconvenient that the formed glass layer 4 becomes thick enough to reach the gas discharge end 5 of the reaction tube.
このようにして形成されたガラス層をコアガラス層とし
て光ファイバ用母材を30形成して該母材より光ファイ
バを製造した場合、光ファイバのコア径が光ファイバの
長手方向に均一にならないといつた欠点を生じる。本発
明は前記した欠点を除去し、反応管内にガラス形成用原
料ガスを導入し、管軸方向に移動す35る加熱バーナで
反応管の外壁を加熱して、前記反応管内にガラス層を堆
積させる光ファイバ母材の製造法において、前記堆積さ
れるガラス層の厚さが反応管のガス導入端より搬出端に
わたつて均一な厚さとなるような光フアイバ母材の製造
法の提供を目的とするものである。When 30 optical fiber preforms are formed using the glass layer thus formed as a core glass layer and optical fibers are manufactured from the preforms, the core diameter of the optical fibers is not uniform in the longitudinal direction of the optical fibers. This causes the following drawbacks. The present invention eliminates the above-mentioned drawbacks, introduces a raw material gas for glass formation into a reaction tube, heats the outer wall of the reaction tube with a heating burner that moves in the tube axis direction, and deposits a glass layer inside the reaction tube. An object of the present invention is to provide a method for manufacturing an optical fiber preform in which the thickness of the deposited glass layer is uniform from the gas introduction end to the discharge end of the reaction tube. That is.
かかる目的を達成するための光フアイバ母材の製造法は
前記反応管のガス導入端部に前記移動する主加熱バーナ
とは別個に補助加熱バーナを設け、前記反応管に導入さ
れる原料ガスを前記移動する主加熱バーナと補助加熱バ
ーナとを用いてガラス化して反応管内に堆積させること
を特徴とするものである。A method for producing an optical fiber base material to achieve such an objective is to provide an auxiliary heating burner at the gas introduction end of the reaction tube, separate from the moving main heating burner, to control the raw material gas introduced into the reaction tube. The vitrification is performed using the moving main heating burner and the auxiliary heating burner, and the vitrification is deposited in the reaction tube.
以下図面を用いて本発明の一実施例につき詳細に説明す
る。An embodiment of the present invention will be described in detail below with reference to the drawings.
第2図は本発明の光フアイバの母材の製造方法を説明す
るための概略図である。FIG. 2 is a schematic diagram for explaining the method for manufacturing the optical fiber base material of the present invention.
図示するように本発明の光フアイバの母材の製造法にお
いては、反応管1のガス導入端部2より反応管のガス排
出端部6へ移動する主加熱バーナ11の他に、別個に補
助加熱バーナ12が反応管のガス導入端部2に設けられ
て固定されている。このような反応管内にSlCl4お
よびGeCl4を担持したArガスおよび02ガスをガ
ス導入端部2より反応管に導入し、前記補助加熱バーナ
12は固定し、主加熱バーナ11のみをガス導入端部2
よりガス搬出端部6へ移動させたのち、再びガス導入端
部2へ戻す。この場合主加熱バーナの移動速度は60f
n/分程の遅い速度でガス導入端部よりガス搬出端部ま
で移動させ原料ガスを充分酸化したのち生成物をガラス
化し、しかるのちガス搬出端部よりガス導入端部まで素
早く移動させる。ここで主加熱バーナをガス導入端部よ
りガス搬出端部に移動させる場合、補助加熱バーナの火
力は弱めておき、ガス導入端部であまりガラス形成酸化
物が生成されないようにしておく。その後主加熱バーナ
をガス排出端後よりガス導入端部まで素早く戻す時点で
、補助加熱バーナの火力を上昇させガス導入端部にガラ
ス形成酸化物を分厚く堆積させる。次に主加熱バーナが
ガス導入端部よりガス排出端部へ再び移動し始めた時点
で、補助加熱バーナの火力を弱めて前記主加熱バーナで
すでにガス導入端部に分厚く堆積しているガラス形成酸
化物をも含めて、反応管内に形成されるガラス形成酸化
物をガラス化して堆積させる。このようにすればガス導
入端側でガラスの堆積量が増加するため反応管のガス排
出端側に近づくにつれてガラス層厚が分厚くなるといつ
た欠点が除去され、均一な厚さのガラス層がほぼ管の全
長に亘つて反応管内に形成される。またこのように補助
加熱バーナを用いることで反応管内に導入される原料ガ
スが充分ガラス化されるので、不要なガラス形成用酸化
物が反応管に接続されている排出管の方向に飛来して付
着するようなこともはるかに少なくなり、したがつて排
出管に堆積される不要なガラス形成酸化物を除去する作
業も容易となる利点も併せ生じる。もちろんクラツド用
ガラスを最初に堆積し、しかるのちコア用ガラスを堆積
する場合にも同様にして差支えない。以上述べたように
本発明の方法によつて光フアイバ母材を形成すれば反応
管内に均一にコアガラス層が堆積され、このような光フ
アイバ母材を用いて光フアイバを形成すれば、コア径と
クラツド層の径の比が均一な長尺の光フアイバを得るこ
とが可能となる優れた利点がある。As shown in the figure, in the method for manufacturing the optical fiber base material of the present invention, in addition to the main heating burner 11 that moves from the gas introduction end 2 of the reaction tube 1 to the gas discharge end 6 of the reaction tube, a separate auxiliary heating burner 11 is used. A heating burner 12 is provided and fixed at the gas introduction end 2 of the reaction tube. Ar gas and O2 gas carrying SlCl4 and GeCl4 are introduced into the reaction tube from the gas introduction end 2 into the reaction tube, the auxiliary heating burner 12 is fixed, and only the main heating burner 11 is connected to the gas introduction end 2.
After being moved to the gas discharge end 6, it is returned to the gas introduction end 2 again. In this case, the moving speed of the main heating burner is 60f.
The material gas is moved from the gas inlet end to the gas outlet end at a slow speed of about n/min to sufficiently oxidize the raw material gas, the product is vitrified, and then quickly moved from the gas outlet end to the gas inlet end. When the main heating burner is moved from the gas introduction end to the gas discharge end, the heating power of the auxiliary heating burner is kept low to prevent too much glass-forming oxide from being generated at the gas introduction end. Thereafter, when the main heating burner is quickly returned from the gas discharge end to the gas introduction end, the heating power of the auxiliary heating burner is increased to deposit a thick glass-forming oxide at the gas introduction end. Next, when the main heating burner starts to move from the gas inlet end to the gas discharge end again, the heating power of the auxiliary heating burner is weakened to remove the glass that has already been thickly deposited on the gas inlet end by the main heating burner. The glass-forming oxides, including the formed oxides, are vitrified and deposited in the reaction tube. In this way, the disadvantage that the glass layer becomes thicker as it approaches the gas discharge end of the reaction tube due to the increased amount of glass deposited on the gas introduction end side is eliminated, and a glass layer of almost uniform thickness can be achieved. is formed within the reaction tube over the entire length of the tube. In addition, by using the auxiliary heating burner, the raw material gas introduced into the reaction tube is sufficiently vitrified, so that unnecessary glass-forming oxides are not flown in the direction of the discharge pipe connected to the reaction tube. There is also the added advantage that there is far less adhesion, and therefore it is easier to remove unwanted glass-forming oxides deposited on the discharge pipe. Of course, the same procedure may be used when the cladding glass is first deposited and then the core glass is deposited. As described above, if an optical fiber base material is formed by the method of the present invention, a core glass layer will be deposited uniformly in the reaction tube, and if an optical fiber is formed using such an optical fiber base material, the core glass layer will be deposited uniformly in the reaction tube. An advantage is that it is possible to obtain a long optical fiber with a uniform diameter to cladding layer diameter ratio.
第1図は従来の方法で光フアイバの母材を製造する場合
の説明図、第2図は本発明の方法で光フアイバの母材を
製造する場合の一実施例を示す説明図である。
1・・・・・・反応管、2・・・・・・ガス導入端、3
・・・・・・加熱バーナ、4・・・・・・ガラス層、5
・・・・・・排気管、6・・・・・・ガス排出端、11
・・・・・・主加熱バーナ、12・・・・・・補助加熱
バーナ。FIG. 1 is an explanatory diagram showing an example of manufacturing an optical fiber base material by the conventional method, and FIG. 2 is an explanatory diagram showing an example of manufacturing an optical fiber base material by the method of the present invention. 1...Reaction tube, 2...Gas introduction end, 3
... Heating burner, 4 ... Glass layer, 5
...Exhaust pipe, 6...Gas discharge end, 11
...Main heating burner, 12...Auxiliary heating burner.
Claims (1)
の長手方向に往復移動する加熱バーナで前記反応管の外
壁を加熱して反応管内にガラス層を堆積させる光ファイ
バ母材の製造法において、前記反応管のガス導入端部に
前記移動する主加熱バーナとは別個に補助加熱バーナを
設けて、該ガス導入端部付近のガスを前記補助加熱バー
ナで加熱することにより、前記ガス導入端部付近にガラ
ス層を堆積させ、前記補助加熱バーナにより前記ガス導
入端部で堆積したガラス層と、主加熱バーナにより、反
応管内部で堆積したガラス層とを共に主加熱バーナで加
熱してガラス化させることを特徴とする光ファイバ母材
の製造法。1. A method for producing an optical fiber preform in which a glass-forming raw material gas is introduced into a reaction tube, and a heating burner that moves back and forth in the longitudinal direction of the reaction tube heats the outer wall of the reaction tube to deposit a glass layer inside the reaction tube. , an auxiliary heating burner is provided at the gas introduction end of the reaction tube separately from the moving main heating burner, and the gas near the gas introduction end is heated by the auxiliary heating burner, so that the gas introduction end is heated. A glass layer is deposited near the reaction tube, and the glass layer deposited at the gas introduction end is heated by the auxiliary heating burner, and the glass layer deposited inside the reaction tube is heated by the main heating burner. 1. A method for manufacturing an optical fiber preform, characterized in that the preform is made into a preform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12543280A JPS5917054B2 (en) | 1980-09-09 | 1980-09-09 | Manufacturing method of optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12543280A JPS5917054B2 (en) | 1980-09-09 | 1980-09-09 | Manufacturing method of optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5751140A JPS5751140A (en) | 1982-03-25 |
JPS5917054B2 true JPS5917054B2 (en) | 1984-04-19 |
Family
ID=14909940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12543280A Expired JPS5917054B2 (en) | 1980-09-09 | 1980-09-09 | Manufacturing method of optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5917054B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0444474B2 (en) * | 1982-11-19 | 1992-07-21 | Sony Corp |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109608031B (en) * | 2019-02-20 | 2022-04-15 | 长飞光纤光缆股份有限公司 | Method for preparing optical fiber preform by PCVD (plasma chemical vapor deposition) process |
-
1980
- 1980-09-09 JP JP12543280A patent/JPS5917054B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0444474B2 (en) * | 1982-11-19 | 1992-07-21 | Sony Corp |
Also Published As
Publication number | Publication date |
---|---|
JPS5751140A (en) | 1982-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI68391C (en) | CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE | |
CA1170924A (en) | Method and apparatus for forming an optical waveguide preform having a continuously removable starting member | |
EP0067050B1 (en) | Method of forming an optical waveguide fiber | |
CA1154579A (en) | Lightguide preform fabrication | |
JP2959877B2 (en) | Optical fiber manufacturing method | |
US4302230A (en) | High rate optical fiber fabrication process using thermophoretically enhanced particle deposition | |
US4932990A (en) | Methods of making optical fiber and products produced thereby | |
US20050063654A1 (en) | Low loss optical fiber and method for fabricating an optical fiber preform | |
WO1983003600A1 (en) | Reducing the taper in an optical fiber preform | |
JPS5917054B2 (en) | Manufacturing method of optical fiber base material | |
JP3517848B2 (en) | Manufacturing method of optical fiber preform | |
JPS646132B2 (en) | ||
JPS6012981B2 (en) | Manufacturing method of optical fiber base material | |
CN109399909A (en) | A kind of method that PCVD technique makes low hydroxyl optical fiber prefabricated rod mandrel | |
JPH0742131B2 (en) | Method for manufacturing glass base material for optical fiber | |
JPS6020333B2 (en) | Manufacturing method of optical fiber base material | |
JPS591222B2 (en) | Optical fiber manufacturing method | |
KR100619332B1 (en) | Method for manufacturing optical fiber preform using MCVD and electric furnace for manufacturing the same | |
CA1061617A (en) | Limited mode optical fiber | |
JPS6136134A (en) | Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber | |
JPS5747735A (en) | Manufacture of base material for optical fiber | |
JPH09100132A (en) | Preform for optical fiber | |
US20060185397A1 (en) | Multimode optical fiber and method for manufacturing same | |
JPS591220B2 (en) | Manufacturing method of optical fiber base material | |
JPH02304B2 (en) |