JPS59170488A - Compressor - Google Patents

Compressor

Info

Publication number
JPS59170488A
JPS59170488A JP4494183A JP4494183A JPS59170488A JP S59170488 A JPS59170488 A JP S59170488A JP 4494183 A JP4494183 A JP 4494183A JP 4494183 A JP4494183 A JP 4494183A JP S59170488 A JPS59170488 A JP S59170488A
Authority
JP
Japan
Prior art keywords
suction
cylinder
flow path
vane
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4494183A
Other languages
Japanese (ja)
Inventor
Teruo Maruyama
照雄 丸山
Shinya Yamauchi
信也 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4494183A priority Critical patent/JPS59170488A/en
Publication of JPS59170488A publication Critical patent/JPS59170488A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To obtain a miniture, simple variable capacity compressor by forming at least two suction flow paths communicating with vane chamber and blocking the flow path in the latter half of suction stroke thereby minimizing suction loss. CONSTITUTION:Suction flow paths 56, 57 are formed in the sideboard of cylinder 50 or rear plate 51 while a suction hole 58 communicating with a vane chamber 59 is formed in the rear plate while having sufficient open area. The end of spool 60 of solenoid 59 is contained in a gap 62 between said flow paths 56, 57 through a through-hole 61 of spool 60 formed in the case 53 to block the refrigerant flow path. When increasing the open area of suction port 58 and blocking the effective flow path in the latter half of suction stroke, suction loss can be reduced considerably. Furthermore the outerdiameter of cylinder 50 can be reduced as conventional resulting in a miniture, simple variable capacity compressor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ロータリー圧縮機を用いたエアコンシステム
における冷凍能力の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the control of refrigeration capacity in an air conditioner system using a rotary compressor.

従来週の構成とその問題点 本発明の説明に先立ち、捷ず、スライディングベーン式
のカークーラー用ロータリー圧縮機について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the explanation of the present invention, a sliding vane type rotary compressor for a car cooler will be explained.

一般のスライディングベーン式の圧縮機は、第1図に示
す様に、内部に円筒空間を有するシリンダ1と、この両
側面に固定され、シリンダ1の内部空間である羽根室2
をその側面において密閉する側板(第1図では図示せず
)と、前記シリンダ1内に偏芯して配置されるロータ3
と、このロータ3に設けた溝4に摺動可能に係合された
ベーン5より構成される。6は側板に形成された吸入孔
、7はシリンダ1に形成された吐出孔である。ベーン5
は、ロータ3の回転に伴い、遠心力によって外側に飛出
し、その先端面がシリンダ1の内壁面を摺動しつつ、圧
縮機のガスの漏洩防市を計っている。
As shown in Fig. 1, a general sliding vane type compressor consists of a cylinder 1 having a cylindrical space inside, and a blade chamber 2 fixed to both sides of the cylinder and serving as an internal space of the cylinder 1.
a side plate (not shown in FIG. 1) that seals the cylinder 1 on its side, and a rotor 3 eccentrically arranged within the cylinder 1.
and a vane 5 slidably engaged with a groove 4 provided in the rotor 3. 6 is a suction hole formed in the side plate, and 7 is a discharge hole formed in the cylinder 1. vane 5
As the rotor 3 rotates, it flies outward due to centrifugal force, and its tip surface slides on the inner wall surface of the cylinder 1, thereby preventing leakage of gas from the compressor.

この様なスライディングベーン式のロータリー圧縮機は
構成が複雑で、部品点数の多いレシプロ式の圧縮機と比
べ、小型シンプルな構成が可能でちり、近年、カークー
ラー用の圧縮機に適用されるよう(でなった。
Compared to reciprocating compressors, which have a complex structure and many parts, this type of sliding vane rotary compressor has a smaller and simpler structure, and has recently been applied to compressors for car coolers. (It turned out.

第1図で示したロータリー圧縮機を能力可変にする手段
として、吸入側と羽根室間に・くイ・ζス経路を形成し
、高圧の吐出ガスによって作動する)(ルブを上記バイ
パス経路内に設けることにより、外部から任意に能力可
変を計る方法が提案されている。しかし、この方法は能
力制御をかけない状態、すなわち、バルブOFFの状態
で圧縮機の高い効率を維持するために羽根室における/
くイノ(ス路の開口部のクリアランス・ロスを僅少にす
る必要がある。そのため、高圧ガスで駆動する上記〕(
ルブをシリンダの内部形成する必要があり、構成の複雑
さと、7リンダ外径の増加によるコンノくクト性を失う
欠点があった。
As a means of making the rotary compressor shown in Fig. 1 variable in its capacity, a screw path is formed between the suction side and the blade chamber, and the rotary compressor is operated by high-pressure discharge gas. A method has been proposed in which the capacity can be arbitrarily varied from the outside by providing a valve in the in the room/
It is necessary to minimize the clearance loss at the opening of the air passage.
It is necessary to form the valve inside the cylinder, resulting in a complicated structure and a loss of continuity due to an increase in the outside diameter of the cylinder.

発明の目的 本発明は、上記問題点を解消した能力可変圧縮機の基本
構造を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a basic structure of a variable capacity compressor that solves the above problems.

発明の構成 本発明は個々の羽根室に流入する冷媒力玉互いに独立し
て吸入孔から冷媒が供給される様に、少なくとも2つ以
上の吸入孔と流通路を形成し、上記流通路の少なくとも
一つに、冷媒の流入を遮断可能にするバルブを設けたも
のであり、極めてシンプルな構成で、能力可変付圧縮機
を実現することができる。
Structure of the Invention The present invention forms at least two or more suction holes and a flow path so that the refrigerant flowing into each blade chamber is supplied from the suction holes independently from each other, and at least one of the flow paths is One is that it is equipped with a valve that can shut off the inflow of refrigerant, making it possible to realize a variable capacity compressor with an extremely simple configuration.

実施例の説明 以下本発明の実施例につい、て説明する。Description of examples Examples of the present invention will be described below.

第2図は、本発明の一実施例を示す圧縮機の正面断面図
と冷媒の流通路のモデルを示すもので、11はシリンダ
、12はベーン、13はベーンの摺動溝、14はロータ
、15は吸入孔A、4oは側板、17は吸入孔B、22
は吐出孔、23は流通路A、24は流通路B、25は電
磁バルブ、26は流通路C127は流通路D128は冷
媒の供給源である。
FIG. 2 shows a front cross-sectional view of a compressor showing an embodiment of the present invention and a model of a refrigerant flow path, in which 11 is a cylinder, 12 is a vane, 13 is a sliding groove of the vane, and 14 is a rotor. , 15 is suction hole A, 4o is side plate, 17 is suction hole B, 22
23 is a discharge hole, 23 is a flow path A, 24 is a flow path B, 25 is an electromagnetic valve, 26 is a flow path C127, and a flow path D128 is a refrigerant supply source.

以下、第3図イ〜ホを用いて、能力制御を施こさない場
合の本圧縮機の吸入行程について説明する。
Hereinafter, the suction stroke of this compressor when capacity control is not performed will be explained using FIG. 3A to 3E.

18a、18b、18cは各羽根室、19はシリンダ1
1のトップ部、20a、20bは各ベーンである。ロー
タ14の回転中6二〇を中心とし、シリンダ11のトッ
プ部19にベーン20 aの先端が通過する位置をθ−
Qとし、前記θ=0を原点として、ベーン先端の任意の
位置VC,t−″ける角度をOとする。羽根室1 ’8
 aに着目すれば、第3図イはベーン20aが、トップ
部19を通過した直後の状態を示す。第3図口はベーン
20aが吸入孔A15と吸入孔B17の中間の位置にあ
る状態を示し、このとき、羽根室18aには、吸入孔A
15のみから冷媒が供給される。
18a, 18b, 18c are each blade chamber, 19 is cylinder 1
The top part 1, 20a, 20b is each vane. While the rotor 14 is rotating, the position where the tip of the vane 20a passes through the top part 19 of the cylinder 11 is θ-
Let Q be the origin, and let O be the angle taken at an arbitrary position VC,t-'' of the vane tip.Blade chamber 1 '8
Focusing on point a, FIG. 3A shows the state immediately after the vane 20a passes through the top portion 19. The opening in FIG. 3 shows a state in which the vane 20a is located between the suction hole A15 and the suction hole B17, and at this time, the blade chamber 18a has the suction hole A.
Refrigerant is supplied only from 15.

図ハはベーン20aが吸入孔B17を通過しており同時
にベーン20 aに追従して走行するベーン2obが吸
入孔A15の上を通過している状態を示す。これ以後吸
入孔A15から羽根室18aへの冷媒の供給はベーン2
0bによって遮断され、代わって、吸入孔17からの供
給が開始される。
Figure C shows a state in which the vane 20a is passing through the suction hole B17, and at the same time, the vane 2ob, which runs following the vane 20a, is passing over the suction hole A15. After this, refrigerant is supplied from the suction hole A15 to the blade chamber 18a by the vane 2.
0b, and the supply from the suction hole 17 is started instead.

第3図二は吸入孔B17のみから羽根室18aに冷媒が
供給されている状態を示す。
FIG. 3 2 shows a state in which refrigerant is supplied to the blade chamber 18a only from the suction hole B17.

第3図ホはベーン20bが吸入孔B1了を通過した直後
の状態を示し、吸入孔B17からの冷媒の供給はベー7
20bによって遮断されるため、この時点で吸入行程は
終了する。また、通常の4ベ一ン圧縮機ではθ=θs1
:225°となり、この時点で羽根室容積は最大となる
FIG. 3E shows the state immediately after the vane 20b passes through the suction hole B1, and the refrigerant is supplied from the suction hole B17 to the vane 20b.
20b, the suction stroke ends at this point. Also, in a normal 4-vein compressor, θ=θs1
:225°, and the blade chamber volume is at its maximum at this point.

第4図は本圧縮機の吸入行程中の羽根室へ流入する流路
の有効面積の変化を示すもので、図中イは第3図で説明
した様に能力制御を施こさない場合、口は電磁パルプ2
5(第2図)をOFFの状態にして、吸入孔B17から
の冷媒の流入を遮断した場合を示す。1電磁パルプ26
をOFFにした場合箱3図二、ホで示す様な冷媒の羽根
室18aへの流入はない。両者のP■特性を比較した結
果を第6図に示す。第5図において、イは能力制御を施
こした場合、口は能力を抑制した場合を示すが、口の場
合、a点(第4図のθ=135°)から流通路の遮断に
よって急峻に冷媒圧力が降下する。その結果吸入行程終
了時:b点における冷媒の総重量の大幅な低下をもたら
すことになる。
Figure 4 shows the change in the effective area of the flow path flowing into the blade chamber during the suction stroke of this compressor. is electromagnetic pulp 2
5 (FIG. 2) is turned off to block the inflow of refrigerant from the suction hole B17. 1 electromagnetic pulp 26
When it is turned off, the refrigerant does not flow into the blade chamber 18a as shown in Figure 2 and E in Box 3. The results of comparing the P■ characteristics of both are shown in FIG. In Fig. 5, A shows the case where the capacity is controlled, and the mouth shows the case where the capacity is suppressed. Refrigerant pressure drops. As a result, the total weight of the refrigerant at point b at the end of the suction stroke is significantly reduced.

従来圧縮機(第1図)において吸入孔6につながる流通
路を絞ることにより、冷凍能力を抑制することができる
。しかしこの場合の吸入行程における圧力特性はハで示
す様になり、大幅な吸入損失の増加をもたらして、L;
まう。(損失は面積:Sに相当)本方式の特徴は、羽根
室へ連絡する吸入流通路を少なくとも2つ以上形成し、
吸入行程の後半で有効な流路を遮断することにより、極
力吸入損失を僅少化させた点にある。
In the conventional compressor (FIG. 1), the refrigerating capacity can be suppressed by narrowing the flow path connected to the suction hole 6. However, in this case, the pressure characteristics during the suction stroke become as shown in C, resulting in a significant increase in suction loss, resulting in L;
Mau. (Loss corresponds to area: S) The feature of this system is that at least two suction flow passages are formed that connect to the blade chamber,
By blocking the effective flow path in the latter half of the suction stroke, suction loss is minimized as much as possible.

本発明を具体的に本実施例を以下に示す。Examples of the present invention will be specifically described below.

第6図において60はシリンダ、61はリアープレート
、62はへラドカバー、53はリアーケース、54はへ
ノドカバー52内の吸入室、65(は吸入孔A、56は
流通路D、57は流通路B、58は羽根室59へ通ずる
吸入孔B、59は電磁ンレノイド、60は61のスプー
ル(稼動部分)、61はリアケース63に形成された前
記スプール60の貫通穴、62は流通路056と流通路
80間に形成された円形の空隙部で、前記電磁ンレノイ
ド59のスプール60の端部が収納されることにより、
冷媒の流路を遮断する。63は吸入室54から流通路り
への連絡穴、64は吸入配管継手、65はクラッチであ
る。
In Fig. 6, 60 is a cylinder, 61 is a rear plate, 62 is a heald cover, 53 is a rear case, 54 is a suction chamber in the hennod cover 52, 65 (is suction hole A, 56 is a flow path D, and 57 is a flow path B, 58 is a suction hole B leading to the blade chamber 59, 59 is an electromagnetic lens, 60 is a spool (moving part) of 61, 61 is a through hole of the spool 60 formed in the rear case 63, and 62 is a flow path 056. By storing the end of the spool 60 of the electromagnetic lens 59 in the circular gap formed between the flow paths 80,
Block the refrigerant flow path. 63 is a communication hole from the suction chamber 54 to the flow path, 64 is a suction pipe joint, and 65 is a clutch.

第7図に本圧縮機の正面断面図を示し流通路56.57
を想像線で示す。
Fig. 7 shows a front sectional view of this compressor, and the flow passages 56, 57
is shown with an imaginary line.

実施例では吸入流通路56.57をシリンダ5゜の側板
であるリアプレート51に形成し、かつ吸入孔858を
十分に大きな開口面積で、前記リアプレート53に形成
したために、供給側から羽根室へ至る流通路の有効面積
を十分大きくとることが出来た。その結果冷凍能力の抑
制を施こさない状態で、羽根室へ十分に冷媒を供給する
ことが出・来吸入行程における吸入損失を僅少出来た。
In the embodiment, the suction flow passages 56 and 57 are formed in the rear plate 51, which is a side plate of the cylinder 5°, and the suction holes 858 are formed in the rear plate 53 with a sufficiently large opening area, so that the blade chamber can be accessed from the supply side. We were able to make the effective area of the flow path sufficiently large. As a result, a sufficient amount of refrigerant can be supplied to the blade chamber without restricting the refrigerating capacity, and suction loss during the suction stroke can be minimized.

また、シリンダ50の外径も従来同様小さくできるため
に、シンプル、コンパクトな能力可変付ロータリー圧縮
機を構成することができる。
Further, since the outer diameter of the cylinder 50 can be made smaller as in the conventional case, a simple and compact rotary compressor with variable capacity can be constructed.

第7,8図は本発明の他の実施例を示すもので、100
はシリンダ、101はシェル容器、102はンレノイド
、103は吸入孔B、104は吸入孔A、105は流通
路B、106は流通路りである。ンレノイドはシリンダ
100の内部に収納している。
Figures 7 and 8 show other embodiments of the present invention.
101 is a cylinder, 101 is a shell container, 102 is a renoid, 103 is a suction hole B, 104 is a suction hole A, 105 is a flow path B, and 106 is a flow path. The lenoid is housed inside the cylinder 100.

発明の効果 以上本発明により、シンプル、コンバクトナ構成で能力
可変付圧縮機を実現することができ、能力可変が必要な
ロータリー圧縮機に広く用いることが出来、又、ベーン
枚数に限らず、例えば、3ベーン、5ベーン等に用いる
ことができる。あるいは、シリンダが概略楕円形状の場
合、ローリングピストン式の場合にも用いることができ
、その効果は顕著なものがある。
Effects of the Invention According to the present invention, a compressor with a variable capacity can be realized with a simple compaction structure, and can be widely used in rotary compressors that require variable capacity. It can be used for 3 vanes, 5 vanes, etc. Alternatively, if the cylinder is approximately elliptical, it can also be used in the case of a rolling piston type, and the effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスライディングベーン圧縮機の正面断面
図、第2図は本発明の原理を示す図、第3図イ〜ホは本
発明の一実施例における圧縮機の吸入行程を示す図、第
4図は吸入有効面積とベーン走行角度との関係を示す図
、第5図は羽根室圧力と体積とのPV特性を示す図、第
6図は本発明の一実施例における圧縮機の一部断面の分
解斜視図、第7図は同正面断面図、第8図(ri、本発
明の他の実施例を示す正面断面図、第9図(は同圧縮様
の一部断面の分解斜視図である。 14・・・・・・ロータ、11 ・・シリンダ、13・
・・・ベーン、15.17・・・・・吸入孔、23,2
4.27・・・・・流通路、28 ・・・〕くルブ、4
0 ・・・・側板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 −526− 第3図 20α 200゜ 第6図 t)5 527− D1 第9図
FIG. 1 is a front sectional view of a conventional sliding vane compressor, FIG. 2 is a diagram showing the principle of the present invention, and FIGS. Fig. 4 is a diagram showing the relationship between the effective suction area and the vane running angle, Fig. 5 is a diagram showing the PV characteristics between the blade chamber pressure and volume, and Fig. 6 is a diagram showing the relationship between the effective suction area and the vane running angle. 7 is a front sectional view of the same, FIG. 8 (ri) is a front sectional view showing another embodiment of the present invention, and FIG. 9 (is an exploded perspective view of a partial cross section similar to compression). Fig. 14: Rotor, 11: Cylinder, 13:
... Vane, 15.17 ... Suction hole, 23,2
4.27... Distribution path, 28...] Lube, 4
0...Side plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure-526- Figure 3 20α 200° Figure 6 t) 5 527- D1 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 吸入行程に2ける前記羽根室圧力が、冷媒の供給源圧力
よりも降下する吸入損を利用して駆動時の冷凍能力の抑
制を行う圧縮機において、ロータおよびベーンを収納す
るシリンダと、前記シリンダの両側面に固定され、前記
ベーン、前記ロータ、前記シリンダで形成される羽根室
の空間をその側面において密閉する側板と、前記シリン
ダもしくは前記側板に形成された少なくとも2つ以上の
吸入孔と、前記吸入孔と冷媒の供給源側を連絡する流通
路と、前記流通路の少々ぐとも1つに設けられたバルブ
より構成される圧縮機。
A compressor that suppresses the refrigerating capacity during operation by utilizing suction loss in which the pressure in the blade chamber in the suction stroke 2 is lower than the supply source pressure of the refrigerant, the cylinder housing the rotor and the vanes; a side plate fixed to both sides of the vane, the rotor, and the cylinder, the side plate sealing the space of the blade chamber formed by the vane, the rotor, and the cylinder; and at least two or more suction holes formed in the cylinder or the side plate; A compressor comprising a flow path that communicates the suction hole with a refrigerant supply source side, and a valve provided at one end of the flow path.
JP4494183A 1983-03-17 1983-03-17 Compressor Pending JPS59170488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4494183A JPS59170488A (en) 1983-03-17 1983-03-17 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4494183A JPS59170488A (en) 1983-03-17 1983-03-17 Compressor

Publications (1)

Publication Number Publication Date
JPS59170488A true JPS59170488A (en) 1984-09-26

Family

ID=12705508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4494183A Pending JPS59170488A (en) 1983-03-17 1983-03-17 Compressor

Country Status (1)

Country Link
JP (1) JPS59170488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526999U (en) * 1991-09-05 1993-04-06 株式会社アイチコーポレーシヨン Attitude control device for gripping device
JP2011220229A (en) * 2010-04-09 2011-11-04 Mitsubishi Heavy Ind Ltd Scroll compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559787A (en) * 1978-10-26 1980-05-06 Commissariat Energie Atomique Method of manufacturing semiconductor element having photoelectric converting characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559787A (en) * 1978-10-26 1980-05-06 Commissariat Energie Atomique Method of manufacturing semiconductor element having photoelectric converting characteristic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526999U (en) * 1991-09-05 1993-04-06 株式会社アイチコーポレーシヨン Attitude control device for gripping device
JP2011220229A (en) * 2010-04-09 2011-11-04 Mitsubishi Heavy Ind Ltd Scroll compressor

Similar Documents

Publication Publication Date Title
JPH06117366A (en) Reciprocating compressor
JPH10176690A (en) Rotary compressor having discharge chamber pressure relief groove
JPS5827105Y2 (en) Lay By Atsushiyukuki
JPS59170488A (en) Compressor
JPH0424558B2 (en)
CN105736369B (en) Vane compressor
US3809510A (en) Combination pressure relief and anti-slugging valve for a screw compressor
JPH02264189A (en) Horizontal type rotary compressor
JPH01193095A (en) Rotary compressor
JPS6026194A (en) Low delivery pulse compressor
JPS59585A (en) Rotary compressor
JP4008616B2 (en) Gas compressor
JP2604818B2 (en) Rotary compressor
KR940007511Y1 (en) Pump valve
JPS5930231Y2 (en) Rotating swash plate compressor
JPH0117672Y2 (en)
JPS5898674A (en) Multicylinder compressor
JPH01121589A (en) Rotary compressor
JPS6245109Y2 (en)
JPS6246164A (en) Variable displacement compressor
JPS6212878Y2 (en)
JPS6316191A (en) Rotary compressor
JPH04321792A (en) Rotary compressor
JPS63124891A (en) Rotary compressor
JPH05332250A (en) Compressor