JPS59170407A - Vibration monitoring device for steam turbine - Google Patents

Vibration monitoring device for steam turbine

Info

Publication number
JPS59170407A
JPS59170407A JP4311683A JP4311683A JPS59170407A JP S59170407 A JPS59170407 A JP S59170407A JP 4311683 A JP4311683 A JP 4311683A JP 4311683 A JP4311683 A JP 4311683A JP S59170407 A JPS59170407 A JP S59170407A
Authority
JP
Japan
Prior art keywords
turbine
vibration
vibration amplitude
speed
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4311683A
Other languages
Japanese (ja)
Inventor
Tetsuo Shigeari
茂在 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4311683A priority Critical patent/JPS59170407A/en
Publication of JPS59170407A publication Critical patent/JPS59170407A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

PURPOSE:To prevent a monitoring device from erroneously operating upon starting of a turbine at a high speed-up rate, by providing vibration and speed detectors to the turbine so that the limit values of vibration amplitude and amplitude changing rate are selected in accordance with the speed-up rate of the turbine to monitor vibrations. CONSTITUTION:A vibration amplitude abnormal detecting circuit 2 receives signals from a steam turbine vibration amplitude detector 1 and a vibration amplitude changing rate circuit 3. Meanwhile a signal from a turbine speed detector 7 is delivered to a switch 6 through a speed-up rate discriminating circuit. This switch 6 has a contact 6a for switching between amplitude limit value circuits 4a, 4b having different set values. Upon starting of the turbine when the discriminating circuit 5 switches the contact 6a in accordance with the speed-up rate of the turbine, the detecting circuit 2 determines whether vibration amplitudes and amplitude changing rates are within their stable ranges or not, and closes alarm issuing contacts 21a, 21b or a turbine stopping contact 22 if they are in a dangerours range.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンの振動監視装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vibration monitoring device for a steam turbine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図はタービン起動中の振動振幅値の傾向の一例を示
す図である。図において横軸はタービンの回転数、縦軸
は振動振幅値を示す。横軸の点b3はタービンの定格回
転数であり、点す、と点b2との間の回転数領域は、危
険速度域と呼ばれ、一般には1200rpmから230
Orpmの回転数範囲である。同図からも解るように、
タービン起動中の振動振幅値の特性は曲線イで示すよう
に一般的に危険速度域に入る点boで急激に増加する傾
向を持っている。
FIG. 1 is a diagram showing an example of the tendency of vibration amplitude values during turbine startup. In the figure, the horizontal axis shows the rotation speed of the turbine, and the vertical axis shows the vibration amplitude value. Point b3 on the horizontal axis is the rated rotational speed of the turbine, and the rotational speed region between point b3 and point b2 is called the critical speed range, and generally ranges from 1200 rpm to 230 rpm.
This is the rotational speed range of Orpm. As can be seen from the figure,
As shown by curve A, the characteristics of the vibration amplitude value during turbine startup generally tend to increase rapidly at point bo, which enters the critical speed range.

このような振動振幅値特性を持つ蒸気タービンの従来の
振動監視装置は、振動振幅変化率に対する振動振幅値と
して制限値曲線を持ち、この制限値曲線以上の振動振幅
値全検出すると、警報出力処理、またはタービン停止処
理を行うものである。
Conventional vibration monitoring devices for steam turbines with such vibration amplitude value characteristics have a limit value curve as the vibration amplitude value for the vibration amplitude change rate, and when all vibration amplitude values exceeding this limit value curve are detected, an alarm output process is performed. , or performs turbine stop processing.

従来の振動監視装置の一例を第2図に示す。同図におい
て振動振幅検出器1により検出された振動振幅値特性1
′は、振動振幅異常検出回路2に入力されると同時に、
振動振幅変化率演算器3に入力され、振動振幅変化率演
算器3で演算された振動振幅変化率信号3′も振動振幅
異常検出回路2に入力される。また振動振幅異常検出回
路2には振動振幅変化率と振動振幅とを関係付けたター
ビンを停止するための制限値と、振動大警報を発するた
めの制限値とを内蔵する制限値回路4の信号4′も振動
振幅異常検出回路2に入力される。振動振幅異常検出回
路2では振動振幅信号1′と振動振幅変化率信号3′と
を演算し、さらに制限値回路の信号4′とを演算比較し
制限値回路4の信号4′ヲオーバーする振動振幅値と判
断されfC場合には、警報出力用の接点21a、21b
 7に:同時に出力する。また振動振幅値が警報値以上
に大きい場合はタービンを停止するための接点22を出
力する。特報用接点21aFi警報用として利用され、
21bの接点はタービンの回転数が危険速度域にある場
合は、タービンをこれ以上昇速するとさらに危険な状態
に至らせしめるため、図示していないが、他のタービン
自動起動装置に入力させ、タービンを安全な回転数まで
降速させるために用いられる。また、クービンを停止す
るための接点22はタービンを保護するために用いられ
ており、図示していないがタービン停止回路に入力され
、接点22が動作するとタービンを直ちに停止するよう
にしている。
An example of a conventional vibration monitoring device is shown in FIG. In the figure, vibration amplitude value characteristic 1 detected by vibration amplitude detector 1
' is input to the vibration amplitude abnormality detection circuit 2, and at the same time,
A vibration amplitude change rate signal 3' input to the vibration amplitude change rate calculator 3 and calculated by the vibration amplitude change rate calculator 3 is also input to the vibration amplitude abnormality detection circuit 2. In addition, the vibration amplitude abnormality detection circuit 2 includes a signal from a limit value circuit 4 that includes a limit value for stopping the turbine that relates the vibration amplitude change rate and the vibration amplitude, and a limit value for issuing a large vibration alarm. 4' is also input to the vibration amplitude abnormality detection circuit 2. The vibration amplitude abnormality detection circuit 2 calculates the vibration amplitude signal 1' and the vibration amplitude change rate signal 3', and further calculates and compares the vibration amplitude signal 1' and the signal 4' of the limit value circuit 4 to detect the vibration amplitude that exceeds the signal 4' of the limit value circuit 4. If the value is determined to be fC, the alarm output contacts 21a and 21b
7: Output simultaneously. Further, if the vibration amplitude value is larger than the alarm value, a contact point 22 is output to stop the turbine. Special notification contact 21aFi is used for alarm,
When the rotational speed of the turbine is in the critical speed range, the contact point 21b is connected to an input to another turbine automatic start device (not shown), and the turbine is activated. It is used to reduce the speed of the motor to a safe speed. Further, the contact 22 for stopping the Kubin is used to protect the turbine, and although not shown, is input to a turbine stop circuit, so that when the contact 22 operates, the turbine is immediately stopped.

第2図は説明を簡単にするため、検出器1個の例を用い
て説明しているが、一般にタービン発電機の各軸受に相
当する数だけこの第2図に示す回路を有している。
In order to simplify the explanation, Fig. 2 is explained using an example of one detector, but generally the number of circuits shown in Fig. 2 is equivalent to each bearing of a turbine generator. .

さらに従来の振動監視方法について第3図をもとに詳細
説明する。
Further, a conventional vibration monitoring method will be explained in detail with reference to FIG.

第3図は、代表的な例として従来の振動監視制限値曲線
を示す図である。
FIG. 3 is a diagram showing a conventional vibration monitoring limit value curve as a typical example.

同図において横軸は振動振幅変化率、縦軸は振動振幅値
を示しており、曲線口はタービン停止制限値曲線を、曲
線ノ・はタービン振動監視制限値曲線を示す。
In the figure, the horizontal axis shows the vibration amplitude change rate, the vertical axis shows the vibration amplitude value, the curved line indicates the turbine stop limit value curve, and the curved line indicates the turbine vibration monitoring limit value curve.

領域Aは安全域でタービンの振動値がこの領域にある場
合は安全であることを示しており、曲線口と曲線ノ・に
かこまれた領域Bは振動値が警報状態にあることを示し
、領域Cは振動値が大きく、タービンを直ちに停止させ
る必要があることを示している。
Area A is a safe area, and if the vibration value of the turbine is within this area, it indicates that it is safe. Area B, which is surrounded by the curve opening and the curve mark, indicates that the vibration value is in an alarm state. Region C has a large vibration value, indicating that the turbine must be stopped immediately.

振動値の監視は第3図に示す曲線でも解るように、制限
値は振動振幅変化率に対する振動振幅値を制限値として
おり、振動振幅変化率が小さい場合、例えば振動振幅変
化率の小さいalの場合は、振動振幅値が警報点に達す
るのはα3の値以上であり、また振動振幅変化率が大き
いa2の場合は、振動振幅値の小さいα1の値以上で警
報を出力する。
As can be seen from the curve shown in Figure 3, when monitoring vibration values, the limit value is set to the vibration amplitude value relative to the vibration amplitude change rate, and when the vibration amplitude change rate is small, for example, In this case, the vibration amplitude value reaches the alarm point when the vibration amplitude value reaches the value of α3 or more, and in the case of a2 where the vibration amplitude change rate is large, an alarm is output when the vibration amplitude value reaches the small value of α1 or more.

即ち、振動振幅変化率が大きい場合には、振動振動値が
小さい値でも、また振動振幅変化率が小さい場合は、振
動振幅値が比較的大きな値になってから警報を発するよ
うにしそいる。
That is, if the vibration amplitude change rate is large, the alarm is likely to be issued even if the vibration value is small, and if the vibration amplitude change rate is small, the alarm is likely to be issued after the vibration amplitude value reaches a relatively large value.

従って、タービンの振動振幅値が急激に増加しようとし
ている傾向の時はいち速くその異常状態を検出し、警報
を出力すると同時に必要な処置例えばタービンを降速す
るまたはタービンを非常停止するなどを行なうようにす
るものである。
Therefore, when the vibration amplitude value of the turbine tends to increase rapidly, the abnormal condition is quickly detected, an alarm is output, and at the same time necessary measures are taken, such as reducing the speed of the turbine or making an emergency stop of the turbine. It is intended to do so.

また、監視全行うための制限値曲線は、第3図に示すよ
うにタービンの速度上昇率には特に関係を持たせず、固
定の制限値曲線としている。
Further, as shown in FIG. 3, the limit value curve for performing full monitoring has no particular relation to the speed increase rate of the turbine, and is a fixed limit value curve.

一方、タービンの起動方法はタービンの状態即ちタービ
ンのメタル温度から、冷機、暖機の状態を判定し、ノー
ピンの昇速率を決定しており、50H2のタービンに於
いては、一般に10o rpm /分、150rprn
/分の昇速率が用いられている。
On the other hand, the method of starting a turbine is to determine whether it is cold or warm up based on the turbine condition, that is, the turbine metal temperature, and determine the no-pin speed increase rate. , 150rprn
A ramp rate of /min is used.

しかし、変圧運転プラントの場合は、蒸気加減弁をほぼ
全開にして運転するため、従来の定圧プラントのように
蒸気加減弁の絞りによるタービンメタルの冷却が行なわ
れなくなり、タービンを停止した場合、タービンのメタ
ル温度は従来の足圧プラントに比べ高いメタル温度のま
ま停止することになる。従って短かい停止時間後にター
ビンを再起動すると、タービンメタル温度は高い状態で
維持されているため、タービンを極力短い時間で起動を
完了させ、タービンの熱応力を少なくさせる必要性が生
じて来た為タービンの昇速率として300rpn1/分
を採用するようになった。
However, in the case of a variable pressure operation plant, the steam control valve is operated with the steam control valve almost fully open, so the turbine metal is not cooled by throttling the steam control valve as in conventional constant pressure plants. The metal temperature of the plant will stop at a higher metal temperature than that of conventional foot pressure plants. Therefore, when the turbine is restarted after a short shutdown time, the turbine metal temperature remains high, so there is a need to complete startup of the turbine in the shortest possible time and reduce thermal stress on the turbine. Therefore, 300 rpm/min was adopted as the speed increase rate of the turbine.

タービン昇速率として300rpIv′分を採用した場
合、タービン起動過程の振動振幅増加率は大きくなり、
従来のタービン昇速率100rprrV分、 150r
pm/分と比べ、約2倍程度の値となる。
When 300 rpIv' is adopted as the turbine speed increase rate, the vibration amplitude increase rate during the turbine startup process becomes large.
Conventional turbine speed increase rate 100rprrV, 150r
The value is about twice that of pm/min.

第4図を用いてその詳細を説明する。第4図は第1図に
示すboの回転数からblの回転数に至るまでのタービ
ン起動過程の振動振幅特性を示す図であり、横軸は時刻
を、縦軸は振動振幅値を示す。
The details will be explained using FIG. 4. FIG. 4 is a diagram showing vibration amplitude characteristics in the turbine startup process from the rotation speed of bo to the rotation speed of bl shown in FIG. 1, where the horizontal axis shows time and the vertical axis shows the vibration amplitude value.

また図の曲線二と曲線ホは説明の便宜上、タービンの回
転数に対して振動振幅値が同じ値になると仮定した特性
で図示している。図に於いて曲線二はタービンk 30
.0rpr]1/分で、曲線ホはタービンk 150r
pm/分で夫々を昇速した場合の特性を示す。
Furthermore, for convenience of explanation, curve 2 and curve H in the figure are illustrated with characteristics assuming that the vibration amplitude value is the same value with respect to the rotational speed of the turbine. In the figure, curve 2 is turbine k 30
.. 0rpr] 1/min, curve E is turbine k 150r
The characteristics are shown when the respective speeds are increased in pm/min.

同図において、振動振幅値α。の場合、曲線二との交点
eTt時刻時刻2ホ線ホ交点’r T3時刻、また振動
振幅値がα2の場合、曲線二との交点をTt時刻。
In the figure, the vibration amplitude value α. In the case of , the intersection with curve 2 is time eTt, the time 2 is the intersection of ho and e, 'r T3 time, and if the vibration amplitude value is α2, the intersection with curve 2 is time Tt.

曲線ホとの交点k T4時刻とすると、夫々の昇速率で
タービンを昇速した場合、振動振幅値α0の回転数から
振動振幅値α2の回転数に到達するに必要な時間は夫々
下記となる。
Assuming that the intersection point with curve E is k at time T4, when the turbine is sped up at each speed increase rate, the time required to reach the rotation speed from the vibration amplitude value α0 to the vibration amplitude value α2 is as follows. .

Tt  Tl”’t1時間 ’r4T3”’t2時間 さらに振動振幅値α0からα2へ至るまでの回転数をX
とすると、L50rprrv/分で上昇させた場合の時
間1、と、300rprrV/分で上昇させた場合の時
間t1との関係は次式のようになる。
Tt Tl"'t1 time'r4T3"'t2 time Further, the number of rotations from the vibration amplitude value α0 to α2 is
Then, the relationship between time 1 when increasing at L50 rprrv/min and time t1 when increasing at 300 rprrV/min is as shown in the following equation.

故にt、−2t!となり150rprrV分で上昇させ
た場合は、30OrprrV分で上昇させた場合の2倍
の時間全必要とする。
Therefore t, -2t! Therefore, when the voltage is increased by 150 rprrV, the total time is twice as long as when the voltage is increased by 30 orprrV.

またその間の振動振幅増加率は毎々次の式で求められる
Further, the rate of increase in vibration amplitude during that time can be calculated using the following formula.

150rpプ分で昇速した場合の振動振幅変化率;a0
8゜−ヶ−h エ1((r;1Zo) tz    2   tt 300 r pm/分で昇速した場合の振動振幅増加率
:a2、、−!!Uニム 1 従って、同じ振動振幅変化V(α2−α。)でも300
rpm 7分で昇速した場合の振動振幅変化率は150
rpm 7分で昇速した場合の2倍の振動振幅変化率と
なる。
Vibration amplitude change rate when increasing speed by 150 rpm; a0
8゜-month-h E1((r;1Zo) tz 2 tt 300 r Vibration amplitude increase rate when increasing speed at pm/min: a2,,-!!Unim1 Therefore, the same vibration amplitude change V( α2-α.) But 300
The vibration amplitude change rate when increasing speed at rpm 7 minutes is 150
The rate of change in vibration amplitude is twice that when the speed is increased at 7 minutes per rpm.

上述の関係を第3図に尚てはめて説明する。The above relationship will be explained with reference to FIG.

まず150 r pm/分で昇速した場合を考えると、
振動振幅値がα0からα2に至るまでの振動振幅変化率
はaoであり、その時の振動振幅値はα2となるのでそ
の交点はXとなる。この交点XはA領域丁なゎち安全域
にあることになる。一方300rpm/分で昇速した場
合には、振動振幅変化率はaoの2倍(2go)となる
ので、同じ振動振幅値α2時にはその交点はYとなりB
領域、即ち警報状態の領域に入ってしまうことになる。
First, consider the case where the speed is increased at 150 rpm/min.
The vibration amplitude change rate from α0 to α2 is ao, and the vibration amplitude value at that time is α2, so the intersection point is X. This intersection X is within the safe area of area A. On the other hand, when increasing the speed at 300 rpm/min, the vibration amplitude change rate is twice ao (2go), so at the same vibration amplitude value α2, the intersection becomes Y and B
It will enter the area of alarm condition.

即ち、従来の振動監視方法にあっては、タービンの昇速
率を高くするとその影響を受け、誤検出をしてしまい、
タービン全自動的に隆運させてしまう。さらにはタービ
ンを非常停止に至らしめるなどプラント起動を粗害する
重大な要因となる。
In other words, in conventional vibration monitoring methods, when the speed increase rate of the turbine is increased, it is affected by the increase in speed, resulting in erroneous detection.
The turbine will be fully automatic. Furthermore, it becomes a serious factor that impairs the start-up of the plant by causing the turbine to come to an emergency stop.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を解決すべくなされたもので、タ
ービンの昇速率に対応させた振動振幅増加率を設け、昇
速率に応じて上記制限値全切換えることにより昇速率の
大きさに影響を受けない蒸気タービンの振動監視装置を
得ることを目的とする。
The present invention has been made to solve the above-mentioned drawbacks, and by providing a vibration amplitude increase rate corresponding to the speed increase rate of the turbine, and changing all of the above limit values according to the speed increase rate, the magnitude of the speed increase rate is influenced. The purpose of the present invention is to obtain a vibration monitoring device for a steam turbine that is free from vibrations.

〔発明の実施例〕[Embodiments of the invention]

以下米発明を図面を参照して説明する。、第5図は本発
明の一実施例を示すブロック図であり、第2図に示す従
来装置と同一部分には同一符号を付して説明は省略する
The invention will be explained below with reference to the drawings. , FIG. 5 is a block diagram showing an embodiment of the present invention, and the same parts as those of the conventional device shown in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

図に於いて、7はタービン速度検出器、7′はその速度
信号、5は昇速率判定回路、5′はその出力信号、6は
制限値切換器、6aはその切換接点、4a、4bはター
ビンの昇速率に対応した夫々の振動振幅制限値回路であ
る。
In the figure, 7 is a turbine speed detector, 7' is its speed signal, 5 is a speed increase rate determination circuit, 5' is its output signal, 6 is a limit value switch, 6a is its switching contact, 4a, 4b are These are respective vibration amplitude limit value circuits corresponding to the speed increase rate of the turbine.

以上の説明から明らかなように、本発明は従来のタービ
ン振動監視装置にタービンの昇速率全判定する昇速率判
定回路5と、その判定結果により制限値を切換える切換
器6及びタービン昇速率に対応した制限値回路4a、4
b k付加し構成したもので、タービン速度検出器7の
速度信号7′を昇速率判定回路5に入力し、昇速率判定
回路5でタービンの昇速率を判定し、その時に使用すべ
きタービン振動振幅制限値曲線を決定する。昇速率判定
回路5の出力5′は切換器6に入力される1、振動振幅
制限値としては昇速率に対応した制限値回路4a。
As is clear from the above description, the present invention provides a conventional turbine vibration monitoring device with a speed increase rate determination circuit 5 that determines the entire turbine speed increase rate, a switch 6 that switches a limit value based on the determination result, and a turbine speed increase rate. limit value circuits 4a, 4
The speed signal 7' of the turbine speed detector 7 is input to the speed increase rate determination circuit 5, the speed increase rate determination circuit 5 determines the speed increase rate of the turbine, and the turbine vibration to be used at that time is Determine the amplitude limit value curve. The output 5' of the speed increase rate determination circuit 5 is inputted to the switching device 6, and the vibration amplitude limit value is provided to a limit value circuit 4a corresponding to the speed increase rate.

4bの内いづれかの振動振幅制限値曲線が切換器6の接
点6aにより選択され、振動振幅異常検出回路2へ入力
される。
One of the vibration amplitude limit value curves 4b is selected by the contact 6a of the switch 6 and inputted to the vibration amplitude abnormality detection circuit 2.

この振動振幅制限値を基に第2図に示した従来のタービ
ン振動監視と同様の監視が行なわれる。
Based on this vibration amplitude limit value, monitoring similar to the conventional turbine vibration monitoring shown in FIG. 2 is performed.

本発明の上記第5図に示す実施例に於ては、制限回路と
して4a、4bの2個の例を示しているが、これを2個
以上の回路とすることも可能であることは云うまでもな
い。
In the embodiment shown in FIG. 5 of the present invention, two limiting circuits 4a and 4b are shown, but it is possible to use two or more limiting circuits. Not even.

更に上記実施例に於ては、タービンの昇速率を演算する
のにタービンの回転数を使用しているが、タービンの昇
速率はタービン起動直前にタービンのミスマツチからタ
ービンの起動スケジュールとして決定されるので、ター
ビン回転数の代すにタービン起動スケジュール計算機能
を付加し、タービン起動スケジュール計算結果に基づく
タービン昇速率を昇速率判定回路5に入力しても良い。
Furthermore, in the above embodiment, the rotational speed of the turbine is used to calculate the speed increase rate of the turbine, but the speed increase rate of the turbine is determined as the turbine startup schedule based on the turbine mismatch immediately before the turbine startup. Therefore, instead of the turbine rotational speed, a turbine start schedule calculation function may be added, and the turbine speed increase rate based on the turbine start schedule calculation result may be input to the speed increase rate determination circuit 5.

また、タービンスケジュール計算機能を別装置に持たせ
、その装置と本発明の装置とを機能的にリンクさせ、別
装置での演算結果であるタービン昇速率を定めるアナロ
グ値又は接点信号を本装置に人力することにより同様の
作用が実現できる。
Furthermore, it is also possible to provide a separate device with a turbine schedule calculation function, functionally link that device with the device of the present invention, and send an analog value or contact signal that determines the turbine speed increase rate, which is a calculation result of the separate device, to the device. A similar effect can be achieved by manual effort.

また、運転員が別装置又は本装置に設置したタービン昇
速率全決定する押ボタンスイッチ等によりタービンの昇
速率を本装置に入力させるようにしても同様の作用が実
現できる。
Further, the same effect can be achieved even if the operator inputs the turbine speed increase rate into the present device using a separate device or a push button switch installed in the present device that completely determines the turbine speed increase rate.

〔発明の効果〕〔Effect of the invention〕

従来の振動監視装置は、比較的低いタービン昇速率では
十分機能していたが、変圧プラントの採用、さらには最
近のように、火力プラントが本格的なミドル運用化が進
められると、プラント起動時間の短縮等目的で高い昇速
率が採用されることになり、従来の振動監視装置による
監視では誤検出によりタービンをトリップに至らしめる
等プラントの起動を阻害する重大な欠陥を持つことにな
る。
Conventional vibration monitoring devices functioned well at relatively low turbine speed-up rates, but with the adoption of variable voltage plants and the recent move toward full-scale mid-range operation of thermal power plants, the plant start-up time has decreased. A high speed increase rate will be adopted for the purpose of shortening the engine speed, etc., and monitoring using conventional vibration monitoring equipment has serious defects that can hinder plant startup, such as erroneous detection and tripping of the turbine.

本発明を採用することにより、この欠陥が除去できるば
かりか、回転上昇率に対応させた量適な制限値とするこ
とができるので、厳密なタービンの振動監視も実現でき
る1、
By adopting the present invention, this defect can not only be eliminated, but also an appropriate limit value can be set in accordance with the rotational increase rate, so strict monitoring of turbine vibration can be realized1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタービンの起動過程に於ける振動振幅値の特性
の一例を示す曲線図、第2図は従来の振動監視装置の一
例全示すブロック図、第3図は振動振幅制限値の一例を
示す曲線図、第4図は振動振幅値の特性の一例を示す曲
線図、第5図は本発明の一実施例を示すブロック図であ
る。 l・・・振動振幅検出器 2・・・振動振幅異常検出回路 3・・・振動振幅変化率回路 4a、4b・・・制限値回路 5・・・昇速率判定回路
6・・・切換器 代理人 弁理士 則 近 憲 佑 (ほか1名)第1因 her bt    bz    b3□回転畝 第2図
Figure 1 is a curve diagram showing an example of the characteristics of vibration amplitude values during the startup process of a turbine, Figure 2 is a block diagram showing an example of a conventional vibration monitoring device, and Figure 3 is an example of vibration amplitude limit values. FIG. 4 is a curve diagram showing an example of the characteristics of vibration amplitude values, and FIG. 5 is a block diagram showing an embodiment of the present invention. l... Vibration amplitude detector 2... Vibration amplitude abnormality detection circuit 3... Vibration amplitude change rate circuit 4a, 4b... Limit value circuit 5... Acceleration rate determination circuit 6... Switching device substitute Person Patent Attorney Kensuke Chika (and 1 other person) 1st cause her bt bz b3 □ Rotating ridge 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 振動振幅値および振動振幅変化率の両方の値を用いて蒸
気タービンの振動の異常を判定する蒸気タービンの振動
監視装置に於いて、蒸気タービンの昇速率を得る装置と
、この装置の出力を入力され前記蒸気タービンの昇速率
を判定する回路と、振動振幅値と振動振幅変化率の両方
の値により決定される振動制限値を、前記蒸気タービン
の昇速率に応じて内蔵する複数の制限値回路と、この回
路の振動制限値全選択する選択回路とを備え、前記蒸気
タービンの昇速率を検出し、この昇速率に応する前記振
動制限値全選択し、この振動制限値により前記蒸気ター
ビンの振動の異常を判定すること全特徴とする蒸気ター
ビンの振動監視装置。
In a steam turbine vibration monitoring device that uses both the vibration amplitude value and the vibration amplitude change rate to determine abnormalities in the vibration of the steam turbine, a device for obtaining the speed increase rate of the steam turbine and the output of this device are input. a circuit for determining a speed increase rate of the steam turbine; and a plurality of limit value circuits each incorporating a vibration limit value determined by both a vibration amplitude value and a vibration amplitude change rate according to a speed increase rate of the steam turbine. and a selection circuit for selecting all of the vibration limit values of this circuit, detects the speed increase rate of the steam turbine, selects all of the vibration limit values corresponding to this speed increase rate, and uses the vibration limit values to select all of the vibration limit values of the steam turbine. A steam turbine vibration monitoring device whose entire feature is to determine vibration abnormalities.
JP4311683A 1983-03-17 1983-03-17 Vibration monitoring device for steam turbine Pending JPS59170407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4311683A JPS59170407A (en) 1983-03-17 1983-03-17 Vibration monitoring device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4311683A JPS59170407A (en) 1983-03-17 1983-03-17 Vibration monitoring device for steam turbine

Publications (1)

Publication Number Publication Date
JPS59170407A true JPS59170407A (en) 1984-09-26

Family

ID=12654861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4311683A Pending JPS59170407A (en) 1983-03-17 1983-03-17 Vibration monitoring device for steam turbine

Country Status (1)

Country Link
JP (1) JPS59170407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090393B2 (en) * 2002-12-13 2006-08-15 General Electric Company Using thermal imaging to prevent loss of steam turbine efficiency by detecting and correcting inadequate insulation at turbine startup
CN104727866A (en) * 2015-01-31 2015-06-24 浙江浙能中煤舟山煤电有限责任公司 Control method for preventing trip accident caused by steam turbine steam-flow excited vibration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090393B2 (en) * 2002-12-13 2006-08-15 General Electric Company Using thermal imaging to prevent loss of steam turbine efficiency by detecting and correcting inadequate insulation at turbine startup
CN104727866A (en) * 2015-01-31 2015-06-24 浙江浙能中煤舟山煤电有限责任公司 Control method for preventing trip accident caused by steam turbine steam-flow excited vibration
CN104727866B (en) * 2015-01-31 2016-07-06 浙江浙能中煤舟山煤电有限责任公司 The control method of the chaser accident that prevention Steam Flow Excited Vibration on Steam Turbine causes

Similar Documents

Publication Publication Date Title
US4071897A (en) Power plant speed channel selection system
US4667114A (en) Prime mover speed sensing system and method
US4217617A (en) Turbine trip circuit
JPS59170407A (en) Vibration monitoring device for steam turbine
US5012637A (en) Method and apparatus for detecting stalls
USRE34388E (en) Method and apparatus for detecting stalls
US6330515B1 (en) Method for protecting against vibrations in rotary machines
JP2004169624A (en) Shaft vibration monitoring/diagnosing device of rotary machine
JPS5963530A (en) Diagnosing device for rotary machine
JPS61104123A (en) Automatic inspection device of turbine temperature detector
JPS6217843Y2 (en)
JPS62214275A (en) Abnormality detecting system for windmill
JP2635356B2 (en) Speed control device of turbine generator
JPS6130702B2 (en)
JP2850917B2 (en) Diagnosis method for rotating machinery
JPS5934404A (en) Protector of steam turbine
JPS62124461A (en) Abnormality diagnosing device
JPS6151496B2 (en)
JPH08147031A (en) Instrumentation signal abnormality detecting device
JP2647392B2 (en) Controller abnormality diagnosis method
JPH03213696A (en) Prevention device for rotation stall of compressor
JPS60175709A (en) Main steam temperature drop detector for protecting steam turbine
JPS59230491A (en) Malfunction detecting method of rotary electric machine
JP2613225B2 (en) Turbine protection device
JPH01182531A (en) Gas turbine start-up controller