JPS59170289A - Ferrous electroplating method - Google Patents

Ferrous electroplating method

Info

Publication number
JPS59170289A
JPS59170289A JP4155183A JP4155183A JPS59170289A JP S59170289 A JPS59170289 A JP S59170289A JP 4155183 A JP4155183 A JP 4155183A JP 4155183 A JP4155183 A JP 4155183A JP S59170289 A JPS59170289 A JP S59170289A
Authority
JP
Japan
Prior art keywords
metallic
iron
plating
content
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155183A
Other languages
Japanese (ja)
Inventor
Tetsuaki Tsuda
津田 哲明
Kazuo Asano
和夫 浅野
Atsuyoshi Shibuya
渋谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4155183A priority Critical patent/JPS59170289A/en
Publication of JPS59170289A publication Critical patent/JPS59170289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To maintain a uniform concn. of Sn in a plating bath without depending on the case of a plating vessel in an electroplating method of Fe contg. Sn by adding Sn in the form of metallic Sn to the plating bath and limiting the content of Sn in a supply source for metallic Sn to a specific content. CONSTITUTION:This invention relates to an electroplating method of Fe contg. Sn, more particularly an electroplating method of Fe which electroplates discontinuously the surface layer of Fe-Zn-Sn on the underlying electroplating layer of Zn-Ni or Zn-Fe. Sn is added in the form of metallic Sn to a plating layer and the content of Sn in a supply source for metallic Sn is limited to 0.1-20wt%. For example, a soluble anode alloyed with 0.1-20wt% Sn with a steel or pure iron is used. The same supply source for metallic Fe is used for the supply source of metallic Sn and 0.1-20wt% Sn is compounded with the supply source in the stage of using the insoluble anode.

Description

【発明の詳細な説明】 本発明は、Snを含む鉄系電気メツキ法、特にZn−N
1系またはZn−Fe系の下層電気メ・ツキ層にFe−
Zn−5n系表層非連続電気メブキを行う鉄系電気メツ
キ法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an iron-based electroplating method containing Sn, in particular a Zn-N
1 type or Zn-Fe type lower electrical metal layer
This invention relates to an iron-based electroplating method for discontinuous Zn-5n surface layer electroplating.

従来、Snを含むFe系電気メッキを実施する場合、メ
ッキ浴中にSnを供給する方法としては、Snの可溶性
塩類(例えば、塩化第一錫、硫酸第一錫etc、 )を
メッキ槽中に直接投入するのが通例であった。しかしな
がら、そのようにして添加する場合には、Sn塩がメッ
キ浴中で浮遊してしまって、溶解が不十分であったり、
また、メッキ操業中にしばしばみられるメッキ皮膜中の
Sn量の変化に応じてそれを常に一定に保持すべくメッ
キ浴中へのSn塩の投入量を制御するのが困難であった
り、さらにSnイオン濃度が投入口付近のみで高く、メ
ッキ槽の場所によって不均一になる等の欠点があった。
Conventionally, when carrying out Fe-based electroplating containing Sn, the method of supplying Sn into the plating bath is to add Sn soluble salts (e.g., stannous chloride, stannous sulfate, etc.) into the plating bath. It was customary to introduce it directly. However, when added in this way, the Sn salt may float in the plating bath, resulting in insufficient dissolution or
In addition, it is difficult to control the amount of Sn salt added to the plating bath in order to keep the amount of Sn in the plating film constant as it often changes during plating operations. There were drawbacks such as the ion concentration being high only near the input port and becoming non-uniform depending on the location of the plating tank.

特に、Snを微量添加したメッキ層の耐食性が著しく改
善されることが報告されている最近の状況がら、メッキ
層中のSn含有量、したがって、メッキ浴中のSnイオ
ン含有量の正確な制御が要望されている。
In particular, it has recently been reported that the corrosion resistance of plated layers with the addition of a small amount of Sn is significantly improved. It is requested.

したがって、本発明の1つの目的とするとごろは、Sn
を含むFe系電気メツキ法において、浴中Sn量度がメ
ッキ槽の場所によらず均一化する方法を提供することで
ある。
Therefore, one object of the present invention is to
An object of the present invention is to provide a method for making the amount of Sn in a bath uniform regardless of the location of the plating bath in an Fe-based electroplating method including the above.

ざらに、本発明の目的とするところは、Sn添加のため
に特別な供給設備を必要とせず、既存の設備のままで簡
便に実施できる方法を提イバするごとである。
Broadly speaking, it is an object of the present invention to provide a method that does not require special supply equipment for adding Sn and can be easily implemented using existing equipment.

さらに、本発明の別の目的は、メッキ付着量の変動に対
応して、Snn投置量格別の自動制御を行わなくてもよ
い方法を提供することである。
Furthermore, another object of the present invention is to provide a method that does not require automatic control of the Snn deposition amount in response to variations in the plating deposition amount.

ここに、本発明の要旨とするところは、メッキ浴に金属
Snの形態でSnを添加するとともに、該金属Snの供
給源のSn含有量を0.1〜20.0.ii重量%制限
したごとを特徴とする、Snを含む鉄系電気メツキ法で
ある。
Here, the gist of the present invention is to add Sn in the form of metal Sn to a plating bath, and to adjust the Sn content of the source of the metal Sn from 0.1 to 20.0. ii) This is an iron-based electroplating method containing Sn, which is characterized by a limited weight %.

本発明は、一般にSnを含む鉄系電気メツキ法を包含す
るもであって、例えば、Fe系あるいはFe−Zn系の
合金メッキ、複合メッキ、分散メッキ等を包含し、これ
らのメッキ皮膜中に少量のNj、Cr+Co+Cu+M
o+Mn+ν+Cd、 In、TI、Pb、Sb+Ti
、P等の1種または2種以上を含有するものも本発明の
範囲内である。その好適態様にあっては本発明は、特に
Zn−Ni系またはZn−Fe系の下層電気メツキ層に
Fe−Zn−5n系表層非連続電気メッキを行う方法に
特に有利に適用される。ここに「表層非連続電気メッキ
」とば、被メッキ利表面に非連続なメッキ層を形成する
電気メッキの意味であり、例えば、このようなFe−Z
n−3n系表層非連続電気メッキの代表例としては特願
昭57−201427号および特願昭57−20348
8号に係る方法がある。
The present invention generally includes iron-based electroplating methods containing Sn, such as Fe-based or Fe-Zn-based alloy plating, composite plating, dispersion plating, etc. Small amount of Nj, Cr+Co+Cu+M
o+Mn+ν+Cd, In, TI, Pb, Sb+Ti
, P and the like are also within the scope of the present invention. In a preferred embodiment, the present invention is particularly advantageously applied to a method of performing discontinuous surface electroplating of Fe-Zn-5n on a Zn-Ni or Zn-Fe lower electroplating layer. "Surface discontinuous electroplating" here means electroplating that forms a discontinuous plating layer on the surface to be plated.
Representative examples of n-3n surface discontinuous electroplating include Japanese Patent Application No. 57-201427 and Japanese Patent Application No. 57-20348.
There is a method related to item 8.

電気メッキを行う場合、可溶性電極を使用するとき、前
記の金属Snの供給源は鋼もしくは純鉄にSnを0.1
〜20.0重量%合金化させた可溶性陽極としてもよい
。また、不溶性陽極を使用するときには、上記の金属S
nの供給源を金属鉄の供給源と同じにして、該供給源に
Sn0.1〜20.0重量%を配合させてもよい。
When performing electroplating and using a soluble electrode, the source of the metal Sn is steel or pure iron with 0.1
A soluble anode alloyed with ~20.0% by weight may also be used. In addition, when using an insoluble anode, the above metal S
The source of n may be the same as the source of metallic iron, and 0.1 to 20.0% by weight of Sn may be added to the source.

かかる場合、金属鉄供給源としては鋼またば純鉄の粉体
、粒子、塊状体、あるいは板もしくは線状体等か使用さ
れるのであって、これに配合させる金属Snとしては、
それらと合金化したものであっても、あるいは金属Sn
粉末(粒子)を混合したものであってもよい。実際上の
観点からは、Snメッキ鋼板(ブリキ板)のスクラップ
、あるいはその製造ラインでの発生不良品などが、かか
る金属Snの供給源(これは同時に金属鉄供給源でもあ
る)として、有利に使用される。
In such a case, the source of metallic iron is steel or pure iron powder, particles, lumps, plates, or linear bodies, and the metallic Sn to be mixed therewith is as follows:
Even if alloyed with them, or metal Sn
It may also be a mixture of powders (particles). From a practical point of view, scraps of Sn-plated steel sheets (tinplate sheets) or defective products generated on the manufacturing line are advantageously used as a source of such metal Sn (which is also a source of metal iron). used.

なお、本発明にあっては、金属Snの供給源のSn含有
量を所定値の範囲内に制限するが、これは一つの5ni
l、給源についてであって、複数のSn供給源を設けた
場合、それぞれについて上記の所定値の範囲内にくるよ
うに調Vされるのである。したがって、かかるSn含有
量とメッキ浴中のSnイオン量とは直接の相関はなく、
メッキ浴調整ばSn供給源の数の増減あるいはSnを含
まない金属鉄供給源の数の増減によって適宜行うことが
できるのである。また、本発明にあっては、Snの供給
が金属Snの形態で行われるため、メッキ浴へのSnイ
オンの供給は速やかにかつ浴全体に均一に行われ、した
がってメッキ浴中のSnイオン濃度調整4;I:、Sn
供給源の数の増減により容易にかつ正確に行うことがで
き、しかもメッキ付着量の変動に対しても、Snイオン
の供給が速やかに行われるため、格別の制御を行わなく
ても速やかに対応できる。
In addition, in the present invention, the Sn content of the metal Sn supply source is limited within a predetermined value range, but this is limited to one 5ni
Regarding the Sn supply source, if a plurality of Sn supply sources are provided, each of them is adjusted to fall within the above-mentioned predetermined value range. Therefore, there is no direct correlation between the Sn content and the amount of Sn ions in the plating bath.
Adjustment of the plating bath can be made as appropriate by increasing or decreasing the number of Sn supply sources or by increasing or decreasing the number of metal iron supply sources that do not contain Sn. Furthermore, in the present invention, since Sn is supplied in the form of metal Sn, Sn ions are quickly and uniformly supplied to the plating bath throughout the bath, and therefore the Sn ion concentration in the plating bath is Adjustment 4; I:, Sn
This can be done easily and accurately by increasing or decreasing the number of supply sources, and even changes in the amount of plating deposited can be quickly responded to without any special control, as Sn ions are quickly supplied. can.

かくして、本発明にあっては1つのSn供給源におりる
Sn含有量ば0.1〜20.0重量%に制限されるが、
0.1 重fA%未満ではメッキ浴中のSnイオンの量
が十分てなく、特に、内層Fe2O%−Zn80%の合
金電気メッキの上にFe−Zn表層非連続メッキを行う
場合、メッキ製品の化成処理性(P /P+lI比率)
、塗装後耐水密着性が劣悪となる。ここに、Pはリン酸
塩処理皮膜のフォスフメフエライI・(Zn2Fe (
PO4)  2 ・41120)の量を、11はポーハ
イド(Zn3  (PO4)2・旧120)の量をそれ
ぞれ表す。この比率は高い程、すなわちフォスフオフエ
ライト分が多い程、塗装後の塗膜の密着性(つまり塗装
後耐水密着性)が良いことを意味する。なお、鉄(鋼)
中の不純物としてのSn含有レベルは一般的に0.00
1〜0.005%程度(転炉材では最大0.01%であ
って、電気炉材ではこれより多少高い)である。
Thus, in the present invention, the Sn content in one Sn supply source is limited to 0.1 to 20.0% by weight,
If it is less than 0.1 F%, the amount of Sn ions in the plating bath will not be sufficient, especially when performing discontinuous plating of Fe-Zn surface layer on inner layer Fe2O%-Zn 80% alloy electroplating. Chemical treatment properties (P/P+lI ratio)
, the water resistant adhesion becomes poor after painting. Here, P is the phosphoric acid-treated film phosphumeferai I (Zn2Fe (
11 represents the amount of pohide (Zn3 (PO4)2, former 120). The higher this ratio is, that is, the greater the phosphoophierite content, the better the adhesion of the coating film after painting (that is, the water-resistant adhesion after painting). In addition, iron (steel)
The level of Sn content as an impurity in the
It is about 1 to 0.005% (maximum 0.01% for converter materials, and somewhat higher for electric furnace materials).

一方、Sn含有量が20重量%を越える場合、鉄源中に
Snを含有せしめる際に、高Sn含有スクラップ添加、
Sn含有フェロアロイ、Sn金属粒等の添加を電気炉、
転炉等に多量に行う必要があり、副原料コストが高くな
り、不経済であるばかりでなく、可溶性陽極の場合、鋼
電極の溶解が不均一となりやすく、対極である被メッキ
材との極間距離が変化して、メッキ付着量厚みにムラが
生じてしまう。また、同じ(Sn含有量が20.0重量
%を越えると、粒界偏析部の優先熔解により粒状脱落を
生じ、脱落片がメッキ浴中に浮遊で濁して被メッキ材に
付着し、ザラツキ、押込疵等の製品不良率が急増する。
On the other hand, if the Sn content exceeds 20% by weight, adding high Sn-containing scrap or
Addition of Sn-containing ferroalloy, Sn metal particles, etc. in an electric furnace,
It is necessary to use a large quantity in a converter, etc., which increases the cost of auxiliary materials and is not only uneconomical, but also, in the case of a soluble anode, the steel electrode tends to melt unevenly, and the electrode may not adhere to the material to be plated, which is the opposite electrode. The distance between them changes, causing unevenness in the amount and thickness of the plating. In addition, if the Sn content exceeds 20.0% by weight, granular shedding occurs due to preferential melting of the grain boundary segregation, and the shedding pieces float in the plating bath and become cloudy and adhere to the plated material, causing roughness and The rate of product defects such as indentation defects increases rapidly.

次に本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

実施例 エ 本例では、鋼板の連続式横型メッキ槽を使用し、Fe系
ツノ・1−浴 (メッキ浴組成: Fe ”40g /
 It 、Fe ”+] g / e、Na2SO41
50g / (1、pH3、温度70”c)において、
可溶性銅陽極としてC:0.01%の鋼塊を使用した。
Example E In this example, a continuous horizontal plating bath for steel plates was used, and a Fe-based horn 1-bath (plating bath composition: Fe"40g/
It, Fe”+] g/e, Na2SO41
At 50g/(1, pH 3, temperature 70”c),
A steel ingot containing 0.01% C was used as a soluble copper anode.

上記陽極は1つ使用し、そのSn含有量を種々変えて、
一連の連続メッキ操業を行った。
One of the above anodes is used, and its Sn content is varied,
A series of continuous plating operations were conducted.

鋼中Sn含有量が20%を越えると、上記可溶性陽極か
らの粒状剥離が生じ、それらが被処理鋼板上に脱落して
、メッキ後の各種ロール間で押込疵が製品に多発し始め
ることが認められた。このときの操業結果を第1図にグ
ラフで示す。ここに購品格落率は目視検査により押込疵
の有無を調べ、押込疵の認められたものを格落とした。
If the Sn content in the steel exceeds 20%, granular flakes will occur from the soluble anode, which will fall onto the steel plate to be treated, causing frequent indentation scratches between the various rolls after plating to occur on the product. Admitted. The operational results at this time are shown graphically in Figure 1. Here, the purchase rejection rate was determined by visually inspecting the products for the presence of indentation defects, and those found to have indentation defects were rejected.

汰j包]列  2 Fe18%、Zn72%、Cr0.01%の合金電気メ
ッキ層厚さ40g/m2の下層のうえに、 Fe90%
、ZnlO%、Sn含有のメッキ層厚さ5g/m 2の
表層非連続電気メッキを、実施例1と同一製造条件の下
に、不溶性陽極を使って行った。ただし、本例の場合、
金属鉄供給源としては直径1〜3 m mの焼結鋼粒を
充填塔に詰めて、メ/キ液を通液して、/8解供給した
。その際に鉄粒中のSn  含有率を種々変えて、連続
電気メ実施例 次いで、このようにして得られた供試料に刻して、リン
酸塩による化成処理、そして次ぎにカチメーン電着塗装
を施した。このとき形成した化成皮膜の(P/P+lI
 )比率と塗装後耐水密着性を門べた。この塗装後耐水
密着性は塗装後、50゛Cのイオン交換水中(こ10日
間浸漬し、次いで、塗膜に2mm間隔で基盤目状の切れ
目を入れてからセロテープを貼りつけ、そしてまた引き
はがしたときの塗膜残存率により評価した。結果は第2
図および第3図にそれぞれグラフでまとめて示す。これ
からも分かるように、金属鉄供給源中のSn含有率が0
.1%未満では、良好な結果Gま得られなかった。
Column 2 An alloy electroplated layer of 18% Fe, 72% Zn, 0.01% Cr on a lower layer with a thickness of 40 g/m2, and 90% Fe.
Surface discontinuous electroplating of a plating layer thickness of 5 g/m 2 containing , ZnlO%, and Sn was performed using an insoluble anode under the same manufacturing conditions as in Example 1. However, in this example,
As a source of metallic iron, sintered steel grains with a diameter of 1 to 3 mm were packed in a packed tower, and a coating solution was passed therethrough to supply a solution of 1/8. At that time, the Sn content in the iron grains was varied, and the Sn content in the iron grains was varied, followed by continuous electroplating.The sample thus obtained was then carved, chemically treated with a phosphate, and then electrocoated. was applied. The chemical conversion film formed at this time (P/P+lI
) ratio and water resistant adhesion after painting. This water-resistant adhesion after painting was determined by immersing it in 50°C ion-exchange water (for 10 days), then making slits in the paint film at 2 mm intervals, pasting cellophane tape on it, and then removing it again. It was evaluated based on the coating film remaining rate when it was removed.The results are as follows:
They are summarized in graphs in Figure 3 and Figure 3, respectively. As can be seen from this, the Sn content in the metallic iron supply source is 0.
.. If it was less than 1%, good results could not be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、金属鉄供給源中のSn含有率と製品格落率と
の関係を示すグラフ; 第2図は、同じく化成結晶の(P /P+l+ )比率
との関係を示すグラフ;および 第3図は、同しく塗装後耐水密着性との関係を示すグラ
フである。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 − 菓/ 図 金属鉄供給、原中のsr、舎肩年 〈重番え〕募2 図 ド 全通、鉄イ共袷7原中の50含有牽 (重量%)尾3 
FIG. 1 is a graph showing the relationship between the Sn content in the metal iron supply source and the product rejection rate; FIG. 2 is a graph showing the relationship with the (P /P+l+ ) ratio of chemical crystals; FIG. 3 is a graph showing the relationship with water resistant adhesion after painting. Applicant: Sumitomo Metal Industries Co., Ltd. Agent, Patent Attorney Akira Hirose - Ka/Zu Metal Iron Supply, SR in Hara, Shonen Year <Jyuban] 2012 50 content (weight%) tail 3
figure

Claims (4)

【特許請求の範囲】[Claims] (1)メッキ浴に金属Snの形態でSnを添加するとと
もに、該金属Snの供給源のSn含有量を0.1〜20
.0重量%に制限したことを特徴とする、Snを含む鉄
系電気メッキ法。
(1) Adding Sn in the form of metal Sn to the plating bath, and increasing the Sn content of the metal Sn supply source from 0.1 to 20
.. An iron-based electroplating method containing Sn, which is limited to 0% by weight.
(2)前記鉄系電気メツキ法が、Zn−Ni系またはZ
n−Fe系の1層電気メツキ層に行うFe−Zn−3n
系表層非連続電気メ・7キである、特許請求の範囲第(
1)項記載の方法。
(2) The iron-based electroplating method may be applied to Zn-Ni or Z
Fe-Zn-3n applied to n-Fe-based single electroplated layer
Claim No. 7, which is a surface layer discontinuous electrical system
The method described in section 1).
(3)可溶性陽極を使い、前記の金属Snの供給源が鋼
もしくは純鉄にSn0.1〜20.0重量%合金化させ
た可溶性陽極である、特許請求の範囲第(1)項記載の
方法。
(3) A soluble anode is used, and the source of the metal Sn is a soluble anode in which steel or pure iron is alloyed with 0.1 to 20.0% by weight of Sn. Method.
(4)不溶性陽極を使い、前記の金MSnの供給源が、
金属鉄供給源に同じであり、該金属鉄供給源がSn O
,1〜20.0重量%を配合させた鋼もしくは純鉄であ
る、特許請求の範囲第(1ン項記載の方法。
(4) Using an insoluble anode, the source of gold MSn is
is the same as the metallic iron source, and the metallic iron source is SnO
, 1 to 20.0% by weight of steel or pure iron.
JP4155183A 1983-03-15 1983-03-15 Ferrous electroplating method Pending JPS59170289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155183A JPS59170289A (en) 1983-03-15 1983-03-15 Ferrous electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155183A JPS59170289A (en) 1983-03-15 1983-03-15 Ferrous electroplating method

Publications (1)

Publication Number Publication Date
JPS59170289A true JPS59170289A (en) 1984-09-26

Family

ID=12611560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155183A Pending JPS59170289A (en) 1983-03-15 1983-03-15 Ferrous electroplating method

Country Status (1)

Country Link
JP (1) JPS59170289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022913A3 (en) * 2000-09-16 2002-07-25 Degussa Galvanotechnik Gmbh Ternary tin zinc alloy, electroplating solutions and galvanic method for producing ternary tin zinc alloy coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022913A3 (en) * 2000-09-16 2002-07-25 Degussa Galvanotechnik Gmbh Ternary tin zinc alloy, electroplating solutions and galvanic method for producing ternary tin zinc alloy coatings

Similar Documents

Publication Publication Date Title
EP0018841B1 (en) Composition and process for zinc-phosphate coating a metal surface, coated metal surface and a process for painting the coated surface
Jegannathan et al. Formation of zinc–zinc phosphate composite coatings by cathodic electrochemical treatment
EP0047987B1 (en) Cationic electrodeposition lacquer-coated steel material
JPS62500941A (en) Electrodeposition method for iron-zinc alloy coating and electrolyte used in the method
EP0125658B1 (en) Corrosion resistant surface-treated steel strip and process for making
US4249999A (en) Electrolytic zinc-nickel alloy plating
JPS569386A (en) Production of electro-zinc plated steel plate
GB2064584A (en) Steel sheet for making welded and coated cans
JPS59170289A (en) Ferrous electroplating method
JPS60228693A (en) Manufacture of steel plate plated with zn-ni alloy
US5082748A (en) Fe-mn alloy plated steel sheet and manufacturing method thereof
US3364057A (en) Metal hydroxide intermediate coating for metal
JPS6039153A (en) Alloyed hot-galvanized steel sheet with superior resistance to working
JPS59129785A (en) Cold rolled steel sheet with superior suitability to phosphating and manufacture
Lyons Acid Zinc Plating
JPH0123555B2 (en)
JPH0142359B2 (en)
JPS59129783A (en) Cold-rolled steel sheet with superior suitability to phosphating and manufacture
JPH0215152A (en) Hot dip galvanized steel sheet and its production
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH0321632B2 (en)
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JP2982620B2 (en) Iron material for replenishing iron ions in iron-zinc alloy electroplating solution and method for replenishing iron ions and zinc ions
JPS6144157B2 (en)
JPS6379994A (en) Production of steel sheet for welded can