JPS59170280A - Method for preventing corrosion of alkali chloride electrolytic cell - Google Patents

Method for preventing corrosion of alkali chloride electrolytic cell

Info

Publication number
JPS59170280A
JPS59170280A JP58041550A JP4155083A JPS59170280A JP S59170280 A JPS59170280 A JP S59170280A JP 58041550 A JP58041550 A JP 58041550A JP 4155083 A JP4155083 A JP 4155083A JP S59170280 A JPS59170280 A JP S59170280A
Authority
JP
Japan
Prior art keywords
electrolytic cell
cathode chamber
pipe
liquid
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041550A
Other languages
Japanese (ja)
Other versions
JPS6342714B2 (en
Inventor
Takashi Sakaki
孝 榊
Masatoshi Sugimori
正敏 杉森
Yoshinao Ihara
伊原 義尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58041550A priority Critical patent/JPS59170280A/en
Publication of JPS59170280A publication Critical patent/JPS59170280A/en
Publication of JPS6342714B2 publication Critical patent/JPS6342714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent perfectly the corrosion of an alkali chloride electrolytic cell by placing an auxiliary electrode in a pipe for feeding a catholyte, a pipe for drawing a soln. produced in a cathode chamber or a common path in the electrolytic cell and by making the voltage of the auxiliary electrode higher than the anode voltage by >=0.1V. CONSTITUTION:A plurality of unit metallic electrolytic cells are electrically connected in series to install a double electrode type electrolytic cell 1. Auxiliary electrodes 6 are placed in one or more parts selected among pipes 2 for feeding a catholyte, pipes 3 for drawing a soln. produced in cathode chambers, and common paths 4, 5 in the cell 1. Voltage to be applied to the electrodes 6 is made higher than the voltage of the anode terminal of the cell 1 by >=0.1V. Thus, the corrosion of the electrolytic cell can be perfectly prevented.

Description

【発明の詳細な説明】 本発明は塩化アルカリ水溶液のイオン交換脱法電解に関
し、詳しくは複数個の電気的直列に接続した電解槽にお
いて各単位電解槽で生ずる腐食を完全に防止する方法を
提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ion exchange de-electrolysis of aqueous alkali chloride solutions, and more specifically provides a method for completely preventing corrosion occurring in each unit electrolytic cell in a plurality of electrolytic cells electrically connected in series. It is something.

塩化アルカリ水溶液を電解して苛性アルカリと塩素を製
造する方法としてイオン交換膜をはさんで陰、陽極を設
け、陰、陽極室を形成し、塩化アルカリを電解して苛性
アルカリ液を得る、いわゆるイオン交換膜法塩化アルカ
リ土類金属かある。かかる方法を用いる電解槽プラント
はイオン交換膜ンはさんでJ4極型陰、陽極を設けた単
一の単極槽を枠数個電気的に接続して構成される単極式
電解槽を電気的に直列に接続して形成されたり、或いは
イオン交換膜をはさんで抜祢型陰、陽極を設けた単一の
複極槽を単位電解(曹としてこれを電気的に直列に接続
して構成される複極式電解槽を電気的に初数個並列およ
び7才たは直列に接続して形成される。
As a method for producing caustic alkali and chlorine by electrolyzing an aqueous alkali chloride solution, a negative and anode are provided with an ion exchange membrane sandwiched between them, forming a negative and anode chamber, and the alkali chloride is electrolyzed to obtain a caustic alkaline solution. There is an ion exchange membrane method for alkaline earth metal chloride. An electrolytic cell plant using this method is a monopolar electrolytic cell that is constructed by electrically connecting several frames of a single monopolar cell equipped with a J4-pole cathode and anode across an ion exchange membrane. Alternatively, a single bipolar cell with an ion-exchange membrane and a negative and anode can be connected electrically in series as a unit electrolytic cell. It is formed by electrically connecting several bipolar electrolytic cells in parallel and in series.

この様な電解槽プラントを用いて塩化アルカリを電解し
て生成した苛性アルカリ水溶液は鞠数個の単位*解槽間
に亘って設けられた1つの共通の通路を通じてタンク等
に集められる。また初数個の単位電解槽への液供給につ
いても1つの共通の通路を通じて各々の単位電解槽へ供
給される。しかしながら、単位電解槽は電気的に[げ列
接続されているため夫々の単位+1に於ける電位は異γ
よっており、電解時に単位電解槽陰極室への液供給およ
び該電解イ■陰極室で生成した一ui性アルカリ水溶M
を共通の通路に抜き出す際にはかかる液を通じて可解′
直流の一部が漏洩する。かかる電流の漏洩のため電解槽
陰極室本体特に陰極室本体の液供給ノズル2よび生成液
抜出ノズル付近はいわゆる電極の作用をし、この部分で
電解が起り、陽極として作用する箇所では陽極酸化現象
により腐食されることになる。
An aqueous caustic alkali solution produced by electrolyzing alkali chloride using such an electrolyzer plant is collected in a tank or the like through one common passage provided between several units. Also, the liquid is supplied to the first several unit electrolytic cells through one common passage. However, since the unit electrolytic cells are electrically connected in series, the potential at each unit +1 is different γ
Therefore, during electrolysis, the liquid is supplied to the cathode chamber of the unit electrolytic cell, and the monoalkaline aqueous solution M generated in the cathode chamber is
When the liquid is extracted into a common passage, it is decomposed through the liquid.
Part of the DC leaks. Due to this current leakage, the electrolytic cell cathode chamber body, especially the vicinity of the liquid supply nozzle 2 and the produced liquid extraction nozzle of the cathode chamber body, act as so-called electrodes, and electrolysis occurs in these parts, and anodic oxidation occurs in the parts that act as anodes. This phenomenon results in corrosion.

従来このような電解槽本体の腐食を防止するためにトラ
フ内に補助電極を設置し、複極式電解槽のアノード端の
セルと電気的に並列にして旧くことが電食防止法として
提案されている(特公昭56−44951号)。
Conventionally, in order to prevent corrosion of the electrolytic cell body, it has been proposed to install an auxiliary electrode in the trough and electrically parallel it to the cell at the anode end of a bipolar electrolytic cell as a method to prevent electrolytic corrosion. (Special Publication No. 56-44951).

しかしながら、この様な方法を採用した場合。However, if such a method is adopted.

陰極室材質が純Niのような高級材料を用いた場合に限
り腐食をある程度抑えることが可能であるが、経済性、
製作性、操作性等を考慮して陰極室材質およびそれに付
属するノズル類等を鉄あるいはステンレス銅とした場合
高電位側単一電解槽においては依然として自然腐食状態
で腐食溶解反応が進行し、陰極室液供給ノズルおよび生
成液抜出ノズルならびに陰極室本体の一部においては腐
食損傷のため一定時間の電解運転後にはこれを取り換え
掃作成いは溶接肉盛補修等が必要となり、完全に腐食を
防止するこさはできない。
Corrosion can be suppressed to some extent only if the cathode chamber is made of a high-grade material such as pure Ni, but it is not economical or
If the material of the cathode chamber and its attached nozzles are made of iron or stainless steel in consideration of manufacturability and operability, the corrosion and dissolution reaction will still proceed in a natural corrosion state in the single electrolytic cell on the high potential side, and the cathode The chamber liquid supply nozzle, produced liquid extraction nozzle, and part of the cathode chamber main body were damaged by corrosion, so after a certain period of electrolytic operation, it would be necessary to replace them, clean them, or repair the weld overlay to completely eliminate corrosion. There is nothing you can do to prevent it.

ここで自然腐食状態とは外部からの電圧が全く印加され
ない状態を意味し、電食が全く停止した状態を意味する
。また高電位側単一電解槽とは複極式′電解槽であれば
アノード端に近い0個の単一電解槽を意味し、単極式電
解槽であれば、該単極式電解槽を電気的に直列に接続し
て形成される電解槽回路内の高電位側に位置する単極式
電解槽を形成する単一電解槽を意味する。
Here, the natural corrosion state means a state where no external voltage is applied, and means a state where electrolytic corrosion has completely stopped. In addition, a single electrolytic cell on the high potential side means 0 single electrolytic cells near the anode end if it is a bipolar electrolytic cell, and if it is a monopolar electrolytic cell, it means the single electrolytic cell near the anode end. means a single electrolytic cell that is electrically connected in series to form a monopolar electrolytic cell located on the high potential side of a circuit of electrolytic cells.

近年、電解槽浴電圧を低減するために陰極の水素過電圧
を低下させる。いわゆる活性陰極の開発が行なわれ、一
部報告されている(ソーダと塩素、1981年8号P、
427〜449)。
In recent years, the hydrogen overvoltage of the cathode has been reduced to reduce the electrolyzer bath voltage. The so-called active cathode has been developed and some reports have been made (Soda and Chlorine, 1981 No. 8, P.
427-449).

これによると陰極液中に重金属等の溶出イオンが存在し
ていると活性陰極上に電気化学的に析出し、本来の低水
素過電圧特性を失なう結果となる。すなわち単位、電解
槽に活性陰極を取り付け、陰極としての低水素過電圧特
性を長期間維持するためには陰極室本体および該陰極室
本体に付属するノズル等で生ずる腐食を完全に防止する
ことが必要である。
According to this, if eluted ions such as heavy metals are present in the catholyte, they will electrochemically precipitate on the active cathode, resulting in the loss of the original low hydrogen overvoltage characteristics. In other words, in order to install an active cathode in the electrolytic cell unit and maintain the low hydrogen overvoltage characteristics of the cathode for a long period of time, it is necessary to completely prevent corrosion that occurs in the cathode chamber body and the nozzles attached to the cathode chamber body. It is.

イオン交換膜電解に使用されるイオン交換膜についても
同様に陰極液中に金属溶出イオンが存在すると該イオン
交換膜表面に成層あるいは析出し、脱退電圧特性を低下
させることになる。
Similarly, with respect to ion exchange membranes used in ion exchange membrane electrolysis, if metal ions are present in the catholyte, they will form a layer or precipitate on the surface of the ion exchange membrane, reducing the withdrawal voltage characteristics.

従って、このことからも陰極室本体の腐食は完全に防止
する必要性を生じる。
Therefore, this also creates a need to completely prevent corrosion of the cathode chamber body.

以上の点から本発明者は研究を重ねた結果本発明に到達
した。
In light of the above points, the present inventor has completed the present invention as a result of repeated research.

すなわち、本発明は金属製の単位電解槽を初数個電気的
に直列接続して構成され、各単位電解槽本体には電気絶
縁性の陰極室液供給管および陰極室生成液抜出管が設け
られ、該陰極室液供給管および/または該陰極室生成液
抜出管には共通の通路を通じて供給液蛤よび/または抜
出液を集める様にして構成される電解槽プラントにおい
て該陰極室液供給管内、該陰極室生成赦抜出管内、共フ
mの通路内のいずれか少なくさも1箇所に補助電彬を設
け、補助電極にかかる電圧が仲極式電解装置のアノード
端子電圧より0.1v以上高くするこさを特徴とする垣
化アルカIJ i群槽の防食方法を提供するものである
That is, the present invention is constructed by electrically connecting a number of unit electrolytic cells made of metal in series, and each unit electrolytic cell body is provided with an electrically insulating cathode chamber liquid supply pipe and a cathode chamber produced liquid extraction pipe. In an electrolytic cell plant configured such that the cathode chamber liquid supply pipe and/or the cathode chamber product liquid withdrawal pipe are configured to collect the feed liquid clam and/or the withdrawn liquid through a common passage, the cathode chamber An auxiliary electric conductor is provided in at least one of the liquid supply pipe, the cathode chamber generation/extraction pipe, and the common pipe, so that the voltage applied to the auxiliary electrode is 0.0 or less than the anode terminal voltage of the intermediate electrode electrolyzer. The present invention provides a method for preventing corrosion of a hedged Alka IJ i group tank, which is characterized by increasing the stiffness by 1v or more.

本発明における電解槽本体とは槽を構成する部材であり
、例えば極室プール型電解槽であれば箱体;フィルター
プレス型電解槽であれば室枠がこれに相当する。糟を構
成する部材である陽極室および陽極室に付属するノズル
材質としては一般にチタン、チタン合金、タンタル、ジ
ルコニウム、ニオブ等が用いられ1才た陰極室ならびに
陰極室に付属するノズル材質としては。
In the present invention, the electrolytic cell main body is a member that constitutes the cell, and for example, in the case of an electrode pool type electrolytic cell, the box body corresponds to this; in the case of a filter press type electrolytic cell, the chamber frame corresponds to this. Titanium, titanium alloy, tantalum, zirconium, niobium, etc. are generally used as materials for the anode chamber and the nozzle attached to the anode chamber, which are the members constituting the cathode chamber.

鉄、軟鋼%鋳鉄、ステンレス鋼、Ni基合金、N1等が
用いられる。陽陰極室に付属するノズルは溶接等により
接続されている態様が一般的である。液供給および液払
出ノズルとしてはパイプ状のものが多く用いられるが、
その他種々の形状のものが用いられる。
Iron, mild steel% cast iron, stainless steel, Ni-based alloy, N1, etc. are used. The nozzles attached to the anode and cathode chambers are generally connected by welding or the like. Pipe-shaped nozzles are often used for liquid supply and liquid discharge nozzles, but
Other various shapes can also be used.

本発明の陰極室液供給管および陰極室生成液こきが望ま
しい。電気電導性であれば液供給管および生成数抜出管
ならびに共通の通路を通って腐食電流が流れる恐れがあ
るからである、陰極室液供給管および陰極室生成液抜出
管ならびに共通の通路用配管材料は苛性ソータ液、水素
ガス等に対して電解温度下で耐えて電気絶縁性であれば
よい。
The cathode chamber liquid supply pipe and cathode chamber generated liquid pipe of the present invention are desirable. This is because there is a risk of corrosion current flowing through the liquid supply pipe, the produced liquid extraction pipe, and the common passage if they are electrically conductive. The piping material may be used as long as it can withstand caustic sorter liquid, hydrogen gas, etc. at electrolytic temperatures and is electrically insulating.

例えば、テフロン、アスベスト%塩化ビニール、アクリ
ル樹脂、 E、P、D、M、ゴムやその他のゴム等が挙
げられる。
Examples include Teflon, asbestos% vinyl chloride, acrylic resin, E, P, D, M, rubber, and other rubbers.

本発明の補助電極は陽極として作動するので通常用いら
れるI!電極例えば黒鉛ブロック、白金族の金属をチタ
ン又はタンタル上に被葎されたいわゆる被接金属電極、
また純Ni、Zr。
Since the auxiliary electrode of the present invention operates as an anode, the I! Electrodes such as graphite blocks, so-called contact metal electrodes in which platinum group metals are coated on titanium or tantalum,
Also pure Ni, Zr.

Agなどが電極として使用される。Ag or the like is used as the electrode.

補助電極表面では酸素ガス発生反応を伴なう場合が多い
のでi=室内への酸素ガスの混入を避ける場合には補助
電極周辺にガス分Mf膜を設置し、糸外に抜き出す方法
が採用される。
Oxygen gas is often generated on the surface of the auxiliary electrode, so if you want to prevent oxygen gas from entering the room, a method is used to install a gas Mf membrane around the auxiliary electrode and extract it outside the thread. Ru.

本発明における補助電極にかかる電圧は核極式?11解
装置のアノード端子電圧より0.1V以上である。0.
1V未満であれば陰極室本体および陰極室に付属するノ
ズル等の腐食防止効果が小さい。従って0.1V以上が
望ましい。好ましくは2V以上である。
Is the voltage applied to the auxiliary electrode in the present invention a nuclear polar type? It is 0.1 V or more than the anode terminal voltage of the No. 11 solution device. 0.
If it is less than 1V, the effect of preventing corrosion of the cathode chamber main body, the nozzle attached to the cathode chamber, etc. is small. Therefore, 0.1V or more is desirable. Preferably it is 2V or more.

補助電極に電圧をかける方法としては複極弐軍解装置電
解用玉源のアノード唱子にバッテリーあるいは燃料電池
等を電気的に直列接続させて補助電極に連結させるか、
或いはアノード端子と補助電極との回路間に補助整流路
を入れるか等いろんな方法が採用される。補助整流路と
しては例えばシ11コンサイリスター、又はシリコンタ
イオード等の素子が使用される。
The method of applying voltage to the auxiliary electrode is to connect a battery or fuel cell, etc. electrically in series to the anode chanter of the bipolar electrolysis device, or to connect it to the auxiliary electrode.
Alternatively, various methods may be adopted, such as inserting an auxiliary rectifying path between the anode terminal and the auxiliary electrode circuit. As the auxiliary rectifying path, an element such as a silicon thyristor or a silicon diode is used.

本発明の補助″ぼ極設置箇所としては1%に限定されな
いが、操作上の観点から才だ腐食を防止する効率の点か
ら陰極宗教供給管内、陰極室生成欣抜出管内、共通の通
路内のいずれか少なくとも1箇所に設けることが好まし
い。
The locations where the auxiliary electrode of the present invention is installed are not limited to 1%, but are effective from an operational point of view, and from the viewpoint of efficiency in preventing corrosion, inside the cathode religious supply pipe, inside the cathode chamber generation sludge extraction pipe, and inside the common passage. It is preferable to provide at least one of the following.

本発明を用いる場合、特に電解生成液が苛性アルカリで
あるときは供給管および/または抜出管と該管の共通の
通路との接続位置との間に更に液を液滴として液を通じ
て電流漏洩を防止する様な滴断器を設けることが好まし
い。滴断器を設置することにより少ない電流でもって防
食でき、エネルギーロスを少なくでき、効率よく電解槽
の防食が達成される。
When using the present invention, especially when the electrolytically produced liquid is caustic, current leaks through the liquid in the form of droplets between the supply pipe and/or the extraction pipe and the connection position with the common passage of the pipe. It is preferable to provide a drip breaker to prevent this. By installing a drip breaker, corrosion protection can be achieved with a small amount of current, energy loss can be reduced, and corrosion protection of the electrolytic cell can be achieved efficiently.

本発明によれば陰極室液供給管内、陰極室生成欣抜出管
内、共通の通路内のいずれか少なく1箇所に補助電極を
設置し、補助電極にかかる電圧が接極式電解装置のアノ
ード端子電圧より0.1V以上高くすることにより電解
槽本体および電解槽本体に付属する金属製ノズルの腐食
を。
According to the present invention, an auxiliary electrode is installed in at least one of the cathode chamber liquid supply tube, the cathode chamber generated sludge extraction tube, and the common passage, and the voltage applied to the auxiliary electrode is applied to the anode terminal of the polarized electrolyzer. Corrosion of the electrolytic cell body and the metal nozzle attached to the electrolytic cell body can be prevented by increasing the voltage by 0.1 V or more.

完全に防止することができる。このため電解槽の寿命は
著しく長くなり、特に電解槽材料さして高価な金属を用
いる場合は経済的な面でも有利である。更に従来の方法
に比ベメンテナンスが軽減できる。
It can be completely prevented. For this reason, the life of the electrolytic cell is significantly extended, and it is also economically advantageous, especially when expensive metals are used as the material for the electrolytic cell. Furthermore, maintenance can be reduced compared to conventional methods.

本発明の方法を用いると陰極室供給液および該陰極室抜
出液中に溶出金属イオンの量が若無に笠しいから低水素
過電圧特性を有する活性陰極を用いた場合においても活
性陰極上に浴出金属イオンの吸着、析出反応することに
よる劣化を起こ旧−ことなく長期間安定な電解運転を持
続して行なうことができる。
When the method of the present invention is used, the amount of metal ions eluted into the cathode chamber supply liquid and the cathode chamber extraction liquid is quite large, so even when an active cathode with low hydrogen overvoltage characteristics is used, metal ions on the active cathode are Stable electrolytic operation can be maintained for a long period of time without deterioration due to adsorption and precipitation reactions of metal ions released from the bath.

また、浴出金属イオンがないので同時にイオン交換膜に
対する悪影響すなわちイオン交換膜の性能低下を起こす
ことf、K <驚異的な寿命を維持することができる。
In addition, since there are no metal ions released from the bath, an amazing lifespan can be maintained without causing any adverse effects on the ion exchange membrane, that is, deterioration of the performance of the ion exchange membrane.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例1) 陽極はルテニウムオキサイドとチタニウムオギサイドを
コーティングしたチタニウムのエキスバンドメタル、陰
極はNiのエキスバンドメタルからなる仲極式電極を有
し、本体は陽極室がチタニウム、I彰極室がSυ530
4ステンレス鋼よりなる通電面積200 d+ン (幅
2 rn X高すem、)のセルユニットを用いた。
(Example 1) The anode has a middle electrode type electrode made of expanded metal of titanium coated with ruthenium oxide and titanium oxide, and the cathode is made of expanded metal of Ni.The main body has an anode chamber made of titanium and an electrode chamber made of titanium. is Sυ530
A cell unit made of 4 stainless steel and having a current carrying area of 200 d+n (width 2 rn x height em) was used.

上記ノセルユニット25対に陽イオン交換膜Nafio
n 901 (商品名 デュポン社製)を隔膜さしては
さみ込み第1図に示すような像極式電解槽1を作った。
The cation exchange membrane Nafio was added to the 25 pairs of nocell units mentioned above.
An image electrode type electrolytic cell 1 as shown in FIG. 1 was prepared by sandwiching a diaphragm of N 901 (trade name, manufactured by DuPont).

電解槽陰極室本体にはフッ素樹月−製の液供給管22よ
び生成敲扱出管3を設置した。また夫々のセルユニット
に設けられた冴供給管2および抜出管3には夫々1つの
共通の通路4.5を接続し1次に夫々の共通の通路内に
は夫々1枚のNi製補助′ば極6を設け。
A liquid supply pipe 22 and a production pumping outlet pipe 3 made of fluorine Jugetsu were installed in the cathode chamber body of the electrolytic cell. In addition, one common passage 4.5 is connected to each of the cell supply pipe 2 and extraction pipe 3 provided in each cell unit, and one Ni auxiliary plate is connected to each of the common passages. 'A pole 6 is provided.

補助’tlf、 @i、 6は掬極式電解糟電解用電諒
のアノード端子と電気的に接続し、その回路内に夫々シ
リコン整流器7を設置した。また第2図に示すように補
助電極近傍にはテフロン製ガス分離膜8およびガス抜き
管9を設置した。次に食塩の電解を電流密度30A/d
m’、電解温度90℃で行なった。その際、陰極室生成
液抜出ノズル付近に8U19304ステンレス鋼製のテ
ストピースを取り付け、補助電極回路整流器電圧を変化
させ、整流器電圧に対する8US304の腐食速度を測
定した。得られた結果を第1表に示した。
The auxiliary 'tlf, @i, 6 was electrically connected to the anode terminal of the scoop electrode type electrolytic pot electrolyzer, and a silicon rectifier 7 was installed in each of the circuits. Further, as shown in FIG. 2, a Teflon gas separation membrane 8 and a gas vent pipe 9 were installed near the auxiliary electrode. Next, electrolyze the salt at a current density of 30A/d.
m', the electrolysis temperature was 90°C. At that time, a test piece made of 8U19304 stainless steel was attached near the cathode chamber produced liquid extraction nozzle, the auxiliary electrode circuit rectifier voltage was varied, and the corrosion rate of 8US304 with respect to the rectifier voltage was measured. The results obtained are shown in Table 1.

第1表 表より明らかなように補助電極にがかる゛電圧がOvで
はA1セルノズルに取り付けた8 U 5304が激し
く腐食された。不発明の方法により補助電極にかかる電
圧をアノード端子電圧より0.1V以上嶋くすると5U
S304の腐食は著しく軽減され、特に1v以上では完
全に防食が達成された・ (実施例2) 実施例1において補助電極設置箇所を第3図に示すよう
に液供給管内および同様な方法で液抜土管内に付は変え
た。補助箱゛極6としては板状のものが取り付けにくい
こともあり、N”m円筒型のものを用い、補助電極回路
整流器電圧に対する5US304の腐食速度の関係を調
べた。
As is clear from Table 1, when the voltage applied to the auxiliary electrode was Ov, the 8U 5304 attached to the A1 cell nozzle was severely corroded. If the voltage applied to the auxiliary electrode is made 0.1V or more lower than the anode terminal voltage by an uninvented method, it will be 5U.
Corrosion of S304 was significantly reduced, and complete corrosion protection was achieved especially at 1 V or more. The attachment inside the excavated pipe was changed. Since it is difficult to install a plate-shaped auxiliary box electrode 6, a N''m cylindrical one was used to investigate the relationship between the corrosion rate of 5US304 and the auxiliary electrode circuit rectifier voltage.

その結果は第1表の示した値と全く同一であり、本発明
の方法は電解槽の腐食を完全に防止する手段として驚異
的な方法であることが証明された。
The results were exactly the same as the values shown in Table 1, proving that the method of the present invention is an amazing method for completely preventing corrosion of electrolytic cells.

(実施例3) 実施例1において陰極を以下のような電気メツキ処理し
たエキスバンドメタルに取り換え、電解運転を行なった
(Example 3) In Example 1, the cathode was replaced with an electroplated expanded metal as described below, and electrolytic operation was performed.

(電気メツキ条件) 1、 メッキ浴組成 硫酸ニッケル    1. OM Zρチオ尿素   
   0.2 M /立ホウ酸        0.3
 M / I12、 メッキ条件 浴  温           40℃aL流密度  
    0.5A/dm’メッキ時間     1時間 その結果、セル電圧は第2表に示すようにほとんど経時
変化することなく約3.10 Vの一定値を示した。1
年間電解運転後、電解槽を解体し、鵜食状況を調査して
みたが、x *t 441内部での腐食は全く認められ
ず、髪た陰極上への析出物も全く検出されなかった。
(Electroplating conditions) 1. Plating bath composition Nickel sulfate 1. OM Zρthiourea
0.2 M/boric acid 0.3
M/I12, plating condition bath temperature 40℃aL flow density
0.5 A/dm' plating time: 1 hour As a result, as shown in Table 2, the cell voltage showed a constant value of about 3.10 V with almost no change over time. 1
After one year of electrolytic operation, the electrolytic cell was dismantled and the corrosion was investigated, but no corrosion was observed inside the x*t 441, and no deposits were detected on the cathode.

第   2   表 (比較例1) 裏施例3において補助電極を取りはずし、電解運転を行
なった。その結果電解運転初期浴電圧が3.10 Vで
あった。しかしながら数日経過後から浴電圧の上昇がみ
られ、20日経過後には鉄陰極を用いた場合と同じ約3
.50 Vの浴電圧を示すに至った。30日電解運転後
、■群槽を解体してみた所、電解槽の液供給ノズルおよ
び液払出ノズル内部はもちろんのこと、これらノズル付
近の電解槽内部においても激しい腐食か認められ、また
陰極上にもかなりの量のFeの析出が起っていた。
Table 2 (Comparative Example 1) Back In Example 3, the auxiliary electrode was removed and electrolysis operation was performed. As a result, the initial bath voltage during electrolysis operation was 3.10 V. However, after a few days had passed, an increase in bath voltage was observed, and after 20 days, it was about 3
.. A bath voltage of 50 V was achieved. After 30 days of electrolytic operation, ■ When we dismantled the group tank, we found severe corrosion not only inside the electrolytic tank's liquid supply nozzle and liquid discharge nozzle, but also inside the electrolytic cell near these nozzles, and on the cathode. A considerable amount of Fe was also precipitated.

(比較例2) 実施例2において補助電極と蝮極式電解摺電解用電源の
アノード端子間に伺も取り付けずに電気的に接続して、
電解運転を行なった。
(Comparative Example 2) In Example 2, the auxiliary electrode and the anode terminal of the power source for electrolytic sliding electrolysis were electrically connected without any connection between them, and
Electrolytic operation was performed.

その結果比較例1に比べると浴電圧の上昇速度は遅かっ
たが、約60日経過後には約3.40Vの浴電圧を示す
に至りた。
As a result, although the rate of increase in bath voltage was slower than in Comparative Example 1, it reached a bath voltage of about 3.40 V after about 60 days.

このことからも本発明の方法が’m jvI一槽の完全
腐食防止方法さして非常に有効であるばかりでなく、省
エネルギーの観点からもすぐれた電解性能を維持できる
方法であることが明らかとなった。
From this, it is clear that the method of the present invention is not only a very effective method for completely preventing corrosion in a single tank, but also a method that can maintain excellent electrolytic performance from the viewpoint of energy conservation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明における補助電極ならびに補
助整流器回路を付設した塩化アルカリ浴冴の蝮極弐電解
装置の各態様を模式的に示した説明図である。各図にお
いて 】は接極式電解槽、2は陰極室液供給管、3は陰他室生
成敵抜出管、4は陰極室液供給管の共通の通路、5は陽
極室生成液抜出管の共通の通路、6は補助電極、7はシ
リコン整流器、8はガス分離膜、9はガス抜き管 特許出願人 東洋曹達工業株式会社 405 6  δ 第1図 第2図 竣、3図
FIGS. 1 to 3 are explanatory views schematically showing various aspects of an electrolysis device for an alkali chloride bath provided with an auxiliary electrode and an auxiliary rectifier circuit according to the present invention. In each figure, ] is a polarized electrolytic cell, 2 is a cathode chamber liquid supply pipe, 3 is a cathode chamber liquid extraction pipe, 4 is a common passage for the cathode chamber liquid supply pipe, and 5 is an anode chamber liquid extraction pipe. Common passage of the tube, 6 is an auxiliary electrode, 7 is a silicon rectifier, 8 is a gas separation membrane, 9 is a gas venting tube Patent applicant: Toyo Soda Kogyo Co., Ltd. 405 6 δ Figure 1 Figure 2 Completed, Figure 3

Claims (1)

【特許請求の範囲】 1)金属性の単位電解槽を慟数個電気的に直列接続して
構成され、各単位電解槽本体には電気絶縁性の陰極室液
供給管および陰極室生成液抜出管が設けられ、該−極室
液供給管および7才たは該陰極室生成液抜出管には共通
の通路を通じて供給液および7才たは抜出液を集める様
にして構成される電解槽プラントにおいて、該隙極室液
供給管内、該陰極室生成欣抜出管内、共通の通路内のい
ずれか少なくとも1箇所に補助電極を設け、補助電極に
かかる電圧が複極式電解装置のアノード端子電圧より0
.1v以上尚くすることを特徴とする塩化アルカリ電解
槽の防食方法。 2)補助′Lに極と襟極式′屯解装置電解用電源のアノ
ード娼子間に補助整流鮨を設け、それらが電気的に直列
接続されていることを特徴とする特許請求の範囲第1項
記載の方法 3)補助電極と複極式電解装置用電源のアノード端子間
にバッチIノーオたけ燃料電池を設け。 それらが電気的に直列接続されていることを特徴とする
特許請求の範囲第1項記載の方法4)単位電解槽がイオ
ン交換膜を隔膜とした塩化アルカリ電解槽であることを
特徴とする特許請求の範囲第1項から蕗3項のいずれか
の項に記載゛の方法
[Scope of Claims] 1) It is constructed by electrically connecting several metallic unit electrolytic cells in series, and each unit electrolytic cell body is equipped with an electrically insulating cathode chamber liquid supply pipe and a cathode chamber generated liquid drain. An exit pipe is provided, and the electrode chamber liquid supply pipe and the cathode chamber product liquid withdrawal pipe are configured to collect the supply liquid and the liquid discharged through a common passage. In an electrolytic cell plant, an auxiliary electrode is provided in at least one of the gap electrode chamber liquid supply pipe, the cathode chamber generated sludge extraction pipe, and the common passage, so that the voltage applied to the auxiliary electrode is 0 from the anode terminal voltage
.. A method for preventing corrosion of an alkali chloride electrolytic cell, characterized by making the voltage higher than 1V. 2) An auxiliary rectifier is provided between the pole of the auxiliary pole and the anode prong of the power source for electrolysis of the collar-pole type electrolysis device, and these are electrically connected in series. Method according to item 1. 3) A batch I no-tube fuel cell is provided between the auxiliary electrode and the anode terminal of the bipolar electrolyzer power supply. 4) A patent characterized in that the unit electrolytic cell is an alkali chloride electrolytic cell using an ion exchange membrane as a diaphragm. The method described in any one of claims 1 to 3
JP58041550A 1983-03-15 1983-03-15 Method for preventing corrosion of alkali chloride electrolytic cell Granted JPS59170280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041550A JPS59170280A (en) 1983-03-15 1983-03-15 Method for preventing corrosion of alkali chloride electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041550A JPS59170280A (en) 1983-03-15 1983-03-15 Method for preventing corrosion of alkali chloride electrolytic cell

Publications (2)

Publication Number Publication Date
JPS59170280A true JPS59170280A (en) 1984-09-26
JPS6342714B2 JPS6342714B2 (en) 1988-08-25

Family

ID=12611530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041550A Granted JPS59170280A (en) 1983-03-15 1983-03-15 Method for preventing corrosion of alkali chloride electrolytic cell

Country Status (1)

Country Link
JP (1) JPS59170280A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426229A (en) * 1977-07-30 1979-02-27 Sumitomo Metal Ind Mold for continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426229A (en) * 1977-07-30 1979-02-27 Sumitomo Metal Ind Mold for continuous casting

Also Published As

Publication number Publication date
JPS6342714B2 (en) 1988-08-25

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
US10053787B2 (en) Electrolytic cathode structure and electrolyzer using the same
US4169775A (en) Protection of the low hydrogen overvoltage catalytic coatings
JP2014091838A (en) Reverse current prevention method for ion exchange membrane electrolytic cell
KR100947254B1 (en) Cylindrical electrolysis cell reactor
US4139449A (en) Electrolytic cell for producing alkali metal hypochlorites
KR101147491B1 (en) Electrolysis apparatus
CN1054803A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
US4075077A (en) Electrolytic cell
EP0076386B1 (en) Monopolar membrane electrolytic cell
US4256562A (en) Unitary filter press cell circuit
JPS59170280A (en) Method for preventing corrosion of alkali chloride electrolytic cell
CN113445065A (en) Sodium hypochlorite generator
EP0187001B1 (en) Current leakage in electrolytic cell
CN210736910U (en) Ion membrane electrolytic tank
CN208379026U (en) Nickel sulfate electrolysis unit
JPS6240438B2 (en)
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JPS6327432B2 (en)
JPS622036B2 (en)
JPS5929114B2 (en) Corrosion prevention method for nozzles
CN213866437U (en) Electrolysis cell with corrosion-resistant outlet conduit
JPS6067685A (en) Electrolytic cell for aqueous solution of alkali chloride
JPH059520B2 (en)