JPS59169959A - Dispersant for hydraulic cement - Google Patents

Dispersant for hydraulic cement

Info

Publication number
JPS59169959A
JPS59169959A JP4379083A JP4379083A JPS59169959A JP S59169959 A JPS59169959 A JP S59169959A JP 4379083 A JP4379083 A JP 4379083A JP 4379083 A JP4379083 A JP 4379083A JP S59169959 A JPS59169959 A JP S59169959A
Authority
JP
Japan
Prior art keywords
dispersant
n5fc
peg
test
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4379083A
Other languages
Japanese (ja)
Inventor
小川 盈弥
山本 常夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP4379083A priority Critical patent/JPS59169959A/en
Publication of JPS59169959A publication Critical patent/JPS59169959A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水硬セメント用分散剤、更に詳しくは、平均分
子量が6000〜30000のポリエチレングリコール
(以下、PEGと略記する)とナフタリンスルホン酸ホ
ルマリン高縮合物の塩(以下、N5FCと略記する)と
を所定割合で均一共存させた粉粒状物から成るセメント
用分散剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dispersant for hydraulic cement, more specifically, a salt of a high condensate of polyethylene glycol (hereinafter abbreviated as PEG) and naphthalene sulfonic acid formalin having an average molecular weight of 6,000 to 30,000 (hereinafter abbreviated as PEG). , abbreviated as N5FC) in uniform coexistence at a predetermined ratio.

近年、コンクIJ −ト構造物や左官モルタルその他の
水硬セメン、ト関連産業の隆盛に伴い、まだ固まらない
コンクリートやセメントモルタル又は硬化後のそれらの
物性を改善する混和剤としてN5FCが使用され、これ
が必要な単位水量の大幅な減少を可能にすることでそれ
らの諸物性の改善に寄与している。ところが、通常行わ
れているように、N5FCを微粉末又は水溶液の形態で
使用すると、混線直後の生コンクリ−1・等の可塑性は
太きめにもかかわらず、これを打設する迄の時間(通常
は最大1時間程度ン中に経時的にその可塑性が大きく低
下して取扱いが難しくな9、まだこのような可塑性の低
下によって豆板状コンクリート等の発生することが問題
となっている。
In recent years, with the rise of concrete IJ-type structures, plastering mortars, and other hydraulic cement-related industries, N5FC has been used as an admixture to improve the physical properties of concrete and cement mortar that have not yet hardened or have hardened. This makes it possible to significantly reduce the amount of water required, contributing to improvements in their physical properties. However, when N5FC is used in the form of a fine powder or aqueous solution, as is usually done, although the plasticity of the ready-mixed concrete 1 is relatively thick, the time required to cast it ( Normally, the plasticity of the concrete decreases significantly over time during a maximum of about one hour, making it difficult to handle.9 However, this decrease in plasticity still causes problems such as the formation of slab-shaped concrete.

従来、N5FCのかかる問題を解消するべく、種々の提
案がなされている。例えば、生コンプラントで一度練っ
た生コンクリートへ打設直前にN5FCを再添加する方
法がある(特開昭52−50319号等)。しかし、こ
の方法ではN5FCを再添加するだめの人的及び設備的
負担が大きい。
Conventionally, various proposals have been made to solve this problem with N5FC. For example, there is a method of re-adding N5FC to ready-mixed concrete that has been mixed in a ready-mixed concrete plant immediately before pouring (Japanese Patent Laid-Open No. 52-50319, etc.). However, this method imposes a large burden on personnel and equipment due to re-adding N5FC.

また、場合によシ被覆を備えるN S F、 C等の微
粒子からなる粒度0.1〜10gの凝集体を使用するも
のもちる(特開昭54−139’927号ン。しかし、
この場合は、得られる凝集体が自己崩壊で崩れ易いため
に可塑効果の経時的低下防止能が不充分となったり、夏
期貯蔵に際して凝集体相互の粘着による団粒化が起り易
く、被覆物が溶解した後でN5FCが一時的にその効果
を発現するおそれがあって取扱いに困難を生じ、一旦ペ
レット化した後に破砕する製法であるためその製造工数
か多く、そのだめの装置をも必要とする。更に、N5F
Cを水不溶性の担体と共に粉粒状に成形した分散剤を使
用するものもある(特公昭57−54460号)。しか
し、この場合には、例えば中和手段に無理があって、N
5FCを均一に含有する粉粒状物を得ることが困難であ
る。
There is also a method using aggregates of fine particles of NSF, C, etc. with a particle size of 0.1 to 10 g, optionally provided with a coating (JP-A-54-139'927).However,
In this case, the resulting aggregates tend to collapse by self-disintegration, resulting in insufficient ability to prevent the deterioration of the plasticizing effect over time, and during summer storage, aggregates tend to stick to each other and form agglomerates, causing the coating to deteriorate. There is a risk that N5FC may temporarily exhibit its effects after being dissolved, making it difficult to handle, and since the manufacturing method involves pelletizing and then crushing, the number of manufacturing steps is large, and additional equipment is required. . Furthermore, N5F
There is also a method using a dispersant prepared by molding C into powder together with a water-insoluble carrier (Japanese Patent Publication No. 54460/1983). However, in this case, for example, the neutralization method is unreasonable, and N
It is difficult to obtain powder particles containing 5FC uniformly.

一方、水硬セメント業界の作業現場においては、N S
 Ii’ Cも含めて、使用材料が比較的粗暴に取扱わ
れ、また具体的な作業時間も著るしく不規則になりがち
である。したがって、かかる実情の下では、本発明に係
る分散剤に対しても、それが充分に強固であって、また
貯蔵性も良く、加えて1時間程度は可塑効果の経時的低
下防止能が大きく変化することなく持続するということ
が要請されるのである。
On the other hand, at work sites in the hydraulic cement industry, N.S.
Including Ii'C, the materials used tend to be handled relatively roughly, and the specific working hours tend to be highly irregular. Therefore, under these circumstances, the dispersant according to the present invention is sufficiently strong, has good storage stability, and has a large ability to prevent the plasticizing effect from decreasing over time for about 1 hour. What is required is that it continues without change.

ここにおいて本発明者らは、従来欠点を解消し、叙上の
如き要請に応える改良されだ水硬セメント用分散剤を提
供するべく、N5FCの高温安定性゛(70〜b 分子量6000以上のPEGの高温安定性(70〜b PEGとN5FCとの物理的或いは化学的親和性が大き
いこと、該PEGの水への溶解速度は分子量が大きい程
減少すること、更には該PEGの化学構造に起因する柔
軟性や常温における固結性及び50℃以上における融解
性等に着目し、該PEGとN5FCとの併用を鋭意研究
した結果、平均分子量が6000〜30000のPEG
とN5FCとの適量割合の均一混合水溶液を加熱脱水乾
燥後、得られる固形物を破砕した粉粒状物が所期の目的
を達成し得ることを見出し、本発明を完成するに至った
In order to eliminate the conventional drawbacks and provide an improved dispersant for hydraulic cement that meets the above-mentioned demands, the present inventors have investigated the high temperature stability of N5FC (70-b PEG with a molecular weight of 6,000 or more). The high temperature stability (70-b) is due to the large physical or chemical affinity between PEG and N5FC, the fact that the dissolution rate of the PEG in water decreases as the molecular weight increases, and the chemical structure of the PEG. Focusing on its flexibility, solidification properties at room temperature, and melting properties at temperatures above 50°C, we conducted extensive research into the combination of PEG and N5FC, and found that PEG with an average molecular weight of 6,000 to 30,000
The present inventors have discovered that the intended purpose can be achieved by pulverizing the solid matter obtained by heating, dehydrating, and drying a homogeneous mixed aqueous solution of a suitable amount of N5FC and N5FC, and have completed the present invention.

すなわち本発明は、平均分子量が6000〜30000
のPEG20〜70重量部とN5F080〜30重量部
との均一混合水溶液を脱水乾燥して得られる固形物を破
砕した粉粒状物から成る水硬セメント用分散剤に係る。
That is, in the present invention, the average molecular weight is 6,000 to 30,000.
The present invention relates to a dispersant for hydraulic cement, which is made of a pulverized solid material obtained by dehydrating and drying a homogeneous mixed aqueous solution of 20 to 70 parts by weight of PEG and 80 to 30 parts by weight of N5F.

本発明において、PEGの分子量が6000より小さい
場合、水への即溶性が著るしくなってコンクリートへ添
加した際の可塑性の持続効果が低下し、まだコンクリー
ト中に不安定な気泡を発生させるため、好ましくない。
In the present invention, if the molecular weight of PEG is smaller than 6000, its immediate solubility in water becomes significant, and the lasting effect of plasticity when added to concrete decreases, and unstable air bubbles are still generated in concrete. , undesirable.

逆に、PEGの分子量が30000より大きい場合、水
への溶解速度が小さく、また工業上その製造が困難とな
る。平均分子量が6000〜30000のPEGが好適
であり、これらはアルカリ触媒で常法により製造される
。またN5FCは、ナフタリンスルホン酸ホルマリン高
縮合物のNa、、に、 Ca、アンモニウム等の塩であ
り、現在高度減水剤として市販されているNS FCの
全てが使用できる。そして、以上説明したPEGとN5
FCとの配合比率はPEG/N5FC=20/70〜8
0/20(重量部)である。N5FCがこれより多いと
、得られる粉粒状物が崩れ易く、所望の大きさのものを
安定製造することが困難であり、性能も低下する。逆に
、N5FCがこれより少ないと、その本来の性能か低下
し、経済性の点でも好ましくない。
Conversely, if the molecular weight of PEG is greater than 30,000, the rate of dissolution in water is low, and furthermore, it is difficult to produce it industrially. PEGs having an average molecular weight of 6,000 to 30,000 are preferred and are produced by conventional methods using alkaline catalysts. Further, N5FC is a salt of Na, Ca, ammonium, etc. of a high condensate of naphthalene sulfonic acid formalin, and all of the NSFCs currently commercially available as highly water reducing agents can be used. And PEG and N5 explained above
The blending ratio with FC is PEG/N5FC=20/70~8
It is 0/20 (parts by weight). If the amount of N5FC is more than this, the obtained powder or granules are likely to crumble, making it difficult to stably produce products of a desired size, and the performance will also deteriorate. On the other hand, if the N5FC content is less than this, the original performance will be degraded, which is not preferable from the economic point of view.

N’SFCの大きくは変動しない効果を持続して発現さ
せるために、粉粒状物が強く且つ相対表面積の比較的太
きいものであって(粒径が比較的小さいもの)、これが
徐々に溶解するものかよいか、この意味で本発明に係る
分散剤は粒径が03〜6nnnの範囲とするのがよく、
特に好ましく +41〜3ynmの範囲である。そして
、かかる粉粒状物から成る本発明の分散剤の使用量は、
特に限定されるものではないが、セメントに対し通常0
1〜30係である。
In order to maintain the effect of N'SFC that does not vary greatly, the powder and granules must be strong and have a relatively large relative surface area (relatively small particle size), which will gradually dissolve. In this sense, the particle size of the dispersant according to the present invention is preferably in the range of 03 to 6nnn,
Particularly preferred is a range of +41 to 3 ynm. The amount of the dispersant of the present invention made of such powdery material is as follows:
Although not particularly limited, it is usually 0 for cement.
They are in sections 1-30.

次に、本発明に係る分散剤の製造方法の一例を挙げる。Next, an example of a method for producing a dispersant according to the present invention will be described.

先ず、N5FCの10〜60%水溶液を調整する。そし
て、これに溶解した又は溶解しないPEGを常温或いは
40〜50℃加温下に攪拌しつつ均一溶解する。次に、
該水溶液をバットに入れ、常圧或いは減圧下に、70〜
140℃に加熱して水分を蒸発せしめた後、冷却すると
、強固なケーキ状固形物が生成する。最後に、該固形物
をフェザ−ミル等で例えば粒径0.3〜6 mmの範囲
に粗砕或いは微砕して粉粒状物を得る。
First, a 10-60% aqueous solution of N5FC is prepared. Then, the dissolved or undissolved PEG is uniformly dissolved in this while stirring at room temperature or heating at 40 to 50°C. next,
Pour the aqueous solution into a vat and heat it under normal pressure or reduced pressure for 70~
After heating to 140° C. to evaporate water and cooling, a firm cake-like solid is formed. Finally, the solid material is coarsely or finely ground to a particle size in the range of 0.3 to 6 mm using a feather mill or the like to obtain powder.

本発明に係る分散剤は、所定のPEGとN5FCとの一
定範囲割合の均一混合水溶液を脱水乾燥して出来た固形
物を破砕することによって得られ、これによって所期の
効果を奏するものであり、PEG、!:N5FCとの粉
粒状物を単に混練りして得た固形物を破砕したものでは
、それが例えばPEGとN S l” Cとが均一共存
状態となっていないため、所期の効果は得られない。
The dispersant according to the present invention is obtained by dehydrating and drying a homogeneous mixed aqueous solution of a predetermined PEG and N5FC in a certain range of proportions and crushing the resulting solid, thereby achieving the desired effect. , PEG,! : If a solid material obtained by simply kneading a powder or granular material with N5FC is crushed, the desired effect cannot be obtained because, for example, PEG and N S l'C do not coexist uniformly. I can't do it.

以上説明した本発明に係る分散剤には次のような効果が
ある。
The dispersant according to the present invention described above has the following effects.

(1)強靭である。したがって、フェザ−ミル等による
破砕工程での微粉砕物の生成が極めて少なく、一定紋径
の製品が得易い。また、製造直後から始まる自己崩壊も
殆んど無い。更に、作業現場における粗暴な取扱いに充
分耐え、コンクリートに添加した場合においてコンクリ
ート或いはセメントモルタル等の混練中に機械的な力又
は細粗骨材等の摩擦力による微粉化作用を受けることが
少ない。そして、これらに加え、長時間に亘って表面か
ら徐々に水へ溶解するため、結局、可塑性の経時的な低
減を長時間に亘って所望通り安定防止することかできる
(1) Strong. Therefore, the production of finely pulverized materials during the crushing process using a feather mill or the like is extremely small, and it is easy to obtain a product with a constant diameter. Furthermore, there is almost no self-destruction that starts immediately after manufacturing. Furthermore, it can sufficiently withstand rough handling at work sites, and when added to concrete, it is unlikely to be pulverized by mechanical force or frictional force of fine aggregate during mixing of concrete or cement mortar. In addition to these, since it gradually dissolves into water from the surface over a long period of time, it is possible to stably prevent a decrease in plasticity over time as desired over a long period of time.

(2)耐候性、特に夏期における貯蔵安定性に優れてい
る。直射日光の当たる、通風の悪い倉庫では、゛室温が
50〜70℃に上昇すること1はまれでないか、本発明
に係る分散剤はこのような温度下でもPEGやN5FC
の表面溶解を起こさず、粉粒子相互の団粒化を生じない
(2) Excellent weather resistance, especially storage stability in summer. In warehouses exposed to direct sunlight and poor ventilation, it is not uncommon for the room temperature to rise to 50 to 70°C.
No surface dissolution occurs, and no agglomeration of powder particles occurs.

(3)前述の如く、その製造が簡便である。(3) As mentioned above, its manufacture is simple.

以下、四つの試験例を挙げて、本発明を更に具体的に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to four test examples.

・強度試験(試験−1) PE(、とN、SFCとを第1表に記載した比率(固形
分換算)となる様に、PEGを40〜50℃のN5FC
水溶液中に攪拌しながら均一溶解させた。この均一混合
水溶液をバノ1の中に入れ、110〜120℃の通風乾
燥機中で72時間、水分を蒸発させ、この後冷却して固
形物を得た。固形物を金槌で叩いてケーキとしだ後、3
Mふるいを装着したフェザ−ミル(細用鉄工社製、FM
−1型)で粗砕した。そして、との粗砕物を1.2 m
mふるいでふるった。1.2 gふるい上の残留量(重
量%)を第1表に示した。尚、残留量が大きい程、粗砕
時に生成する微細粒子量が少なく、一定範囲粒径の粒子
量が多いことを意味し、これは粒子の強度に起因する。
・Strength test (Test-1) PEG was added to N5FC at 40 to 50°C so that the ratio of PE (, N, and SFC) was as shown in Table 1 (in terms of solid content).
It was uniformly dissolved in the aqueous solution while stirring. This homogeneous mixed aqueous solution was placed in Bano 1, water was evaporated in a ventilation dryer at 110 to 120°C for 72 hours, and then cooled to obtain a solid. After pounding the solids with a hammer to form a cake, 3
Feather mill equipped with M sieve (manufactured by Seiyou Tekko Co., Ltd., FM
-1 type). Then, 1.2 m of coarsely crushed material was
I sifted it with a m sieve. The residual amount (% by weight) on the 1.2 g sieve is shown in Table 1. Incidentally, the larger the residual amount, the smaller the amount of fine particles generated during crushing and the larger the amount of particles with a certain range of particle diameters, and this is due to the strength of the particles.

第1表 〔米1:EGはエチレングリコール(以下同じ)。Table 1 [Rice 1: EG is ethylene glycol (the same applies below).

米2:比較例8は、0.2朋以下の微粉末N5FCと微
粉末PEG6000とをベレット製造パンで混合した混
合品にEGをスプレーし、よく練って緻密化した後、回
転蒸発器で50℃×50分間熱処理したものを固形物と
した。
Rice 2: Comparative Example 8 is a mixture of finely powdered N5FC of 0.2 mm or less and finely powdered PEG6000 mixed in a pellet manufacturing pan, sprayed with EG, kneaded well to make it dense, and heated to 50% in a rotary evaporator. The solid material was heat-treated at ℃ for 50 minutes.

米3、米4:比較例9と10は、0〜03πmのN5F
C粉末に水をスプレーし、化ベレットを成形して乾燥し
たものを固形物とした。但し、比較例10は8闘ふるい
を装着したフェザ−ミルで粗砕した。米5:ケーキが粘
着性で、フェザ−ミル等による粗砕が極めて困誰であり
、3朋の粗砕物を製造できなかった。〕第1表の結果か
らも、本発明において、PEGの分子量が大きい程、ま
たPEGの配合比率が20〜80%で、粒子の強度が大
きくなることが明らかである。更に、比較例9では残留
量が各実施例に比べて著るしく少ないことも明らかであ
る、。
Rice 3, Rice 4: Comparative Examples 9 and 10 are N5F of 0 to 03πm
C powder was sprayed with water, molded into pellets, and dried to obtain a solid material. However, in Comparative Example 10, the powder was coarsely crushed using a feather mill equipped with an 8-sieve. Rice 5: The cake was so sticky that it was extremely difficult to coarsely crush it using a feather mill or the like, and it was not possible to produce three types of coarsely crushed cake. ] From the results in Table 1, it is clear that in the present invention, the greater the molecular weight of PEG, and the greater the blending ratio of PEG is from 20 to 80%, the greater the strength of the particles. Furthermore, it is clear that the residual amount in Comparative Example 9 is significantly smaller than in each of the Examples.

・セメントモルタル可塑性試M(試S−2)JIS−R
−5201rセメントの物理試験法」における強さ試験
の方法により、第2表に記載した配合比率で、前述の試
験−1と同様の方法で調整した固形物を使用し、3 m
mふるい装着のフエ。
・Cement Mortar Plasticity Test M (Test S-2) JIS-R
According to the strength test method in ``Physical Test Methods for 5201r Cement'', solids prepared in the same manner as Test-1 above were used at the mixing ratios listed in Table 2, and 3 m
Hue with M sieve installed.

ザーミル通過物を次の配合及び混練り方法等でセメント
モルタル分散剤に用いた場合の可塑性試験を行なった。
A plasticity test was conducted when the material that passed through the Zamil was used as a cement mortar dispersant using the following blending and kneading methods.

配合 セメント二宇部普通ポルトランドセメント=52
0g、 細骨材:豊浦標準砂−104(1、 水 二重水−281g、 分散剤: N S F C量でセメント量の024係、 混練り方法及び試験方法・練シ鉢に砂、セメント、市水
、次いで分散剤の順に投入した。30秒間低速で攪拌し
た後、60秒間高速で攪拌し、更に30秒間を要して練
り鉢の縁についだモルタルをヘラでかき落として、60
秒間高速で攪拌した。これを試料として、混練直後のフ
ロー及び空気量(単位重量法)をJIS−R−5201
の方法で測定した。そして、該試料を練り鉢に戻し、3
0分後と60分後に同様の方法でフローを測定した。
Mixture: Cement Niube Ordinary Portland Cement = 52
0g, fine aggregate: Toyoura standard sand - 104 (1, water double water - 281g, dispersant: N SFC amount, 024 ratio of cement amount, kneading method and test method - Sand, cement, in a kneading pot City water was added, followed by the dispersant.After stirring at low speed for 30 seconds, stirring at high speed for 60 seconds, and then scraping off the mortar on the edge of the kneading bowl with a spatula for another 30 seconds.
Stir at high speed for 2 seconds. Using this as a sample, the flow and air amount (unit weight method) immediately after kneading were determined according to JIS-R-5200.
It was measured using the method. Then, return the sample to the kneading bowl and
Flow was measured in the same manner after 0 and 60 minutes.

結果を第2表に示した。The results are shown in Table 2.

第2表 〔米6:実施例61a、 6 pnmふるいを装着した
フェザ−ミルを使用した。米7:比較例11は試験−1
の比較例8と同様に調整しだが、8ツノmふるいを装着
したフェザ−ミルを使用した。注:比較例9.10は試
験−1と同様に調整した。〕 第2表の結果からも、本発明に係る分散剤によれば、比
較例に比べ、混練30〜60分後におけるセメントモル
タルの可塑性低下防止効果が安定発揮されていること″
が明らかである。
Table 2 [Rice 6: Example 61a, 6 A feather mill equipped with a pnm sieve was used. Rice 7: Comparative Example 11 is Test-1
The preparations were made in the same manner as in Comparative Example 8, except that a feather mill equipped with an 8-m sieve was used. Note: Comparative Examples 9 and 10 were prepared in the same manner as Test-1. ] From the results in Table 2, it can be seen that the dispersant according to the present invention stably exhibits the effect of preventing a decrease in plasticity of cement mortar after 30 to 60 minutes of kneading, compared to the comparative example.
is clear.

・コンクリート可塑性試験(試験−3)第3表記載の配
合比率で、試験2と同様にして3間ふるいを装着したフ
ェザ−ミル通過物を、次の使用材料、配合及び混練り方
法等により硬練りコンクリートの分散剤に使用した場合
の可塑性試験を行なった。
・Concrete plasticity test (Test-3) At the mixing ratio shown in Table 3, the material passed through the feather mill with a sieve attached for 3 hours in the same manner as in Test 2 was hardened using the following materials, mixtures, and kneading methods. A plasticity test was conducted when it was used as a dispersant for mixed concrete.

使用材料・・セメントニ小野田普通ポルトランドセメン
ト/住友普通ポル トランドセメント=1/□ 細骨材:大井用川砂、比重−26 2、FM=2.80 粗骨材:鉢地山産砕石25m以下、 比重=2.66、FM=6 7 AE 剤:硬練りコンクリート用混 和剤、チューポールfX (竹本油脂社製) 水 :市水 配合−・ 混練探方法及び試験方法・・・601傾胴ミキサーに前
記使用材料を前−記配合で投入した後、N5vC換算で
セメント量の0.25%量の分散剤を投入し、30分間
混練した。混線直後、30分後、60分後のスランプ、
及び混線直後の空気量を測定し、60分後にサンプリン
グした試料について28日後の圧縮強度を測定した。試
験方法は、スランプがJIS−A−1101、空気量が
JIS−A−1−j18圧縮強度がJIS−A−110
8によった。
Materials used: Cement 2 Onoda Ordinary Portland Cement / Sumitomo Ordinary Portland Cement = 1/□ Fine aggregate: Oi river sand, specific gravity -26 2, FM = 2.80 Coarse aggregate: Crushed stone from Mt. Hachichi, 25m or less, specific gravity = 2.66, FM=6 7 AE agent: Admixture for hard mixing concrete, Chewpol fX (manufactured by Takemoto Yushi Co., Ltd.) Water: City water blend - Kneading detection method and test method...Used as described above for 601 tilting mixer After adding the materials in the above-mentioned formulation, a dispersant in an amount of 0.25% of the amount of cement in terms of N5vC was added and kneaded for 30 minutes. Slump immediately after crosstalk, 30 minutes later, 60 minutes later,
The amount of air immediately after the crosstalk was measured, and the compressive strength of the samples sampled 60 minutes later was measured after 28 days. The test method is JIS-A-1101 for slump, JIS-A-1-j18 for air volume, and JIS-A-110 for compressive strength.
According to 8.

結果を第3表に示した。The results are shown in Table 3.

第3表 〔社:実施例6、比較例9〜11は試験−2(″第2表
)の場合と同様に調整乃至粗砕したもの。〕 第3表の結果からも、本発明に係る分散剤によれば、比
較例に比べ、混練30〜60分後における生コンクリー
トの可塑性低下防止効果か安定発揮されていることが明
らかである。
Table 3 [Company: Example 6 and Comparative Examples 9 to 11 were prepared or coarsely ground in the same manner as in Test-2 (Table 2)] From the results in Table 3, it is clear that the It is clear that the dispersant stably exhibits the effect of preventing the plasticity of fresh concrete from decreasing after 30 to 60 minutes of mixing compared to the comparative example.

・団粒化試験(試験−4) 試験−1及び試験−2における実施例1〜5の分散剤と
、次のような分散剤(比較例12)を用意し、各200
gを500 mlビーカーVC入れ、60℃にて一夜保
管した。翌日、試料を3ノ川ふるいでふるって、該ふる
い上の残留量から団粒化の有無を測定した。
- Agglomeration test (Test-4) The dispersants of Examples 1 to 5 in Test-1 and Test-2 and the following dispersant (Comparative Example 12) were prepared, and 200% of each was prepared.
g was placed in a 500 ml beaker VC and stored at 60°C overnight. The next day, the sample was sieved through a Sannokawa sieve, and the presence or absence of agglomeration was determined from the amount remaining on the sieve.

比較例12・・0.2 wn以下の微粉末N5FC/微
粉末PEG 6000 =9515の重量比率でペレッ
ト製造パンにより混合した混合品100重量部に40重
量部のE’Gをスプレーし、よく練って緻密化した後、
回転蒸発器で50℃X50分間熱処理し、これを3wn
のふるいにかけて通過した粉粒状物。
Comparative Example 12... 40 parts by weight of E'G was sprayed on 100 parts by weight of a mixture of 0.2 wn or less fine powder N5FC/fine powder PEG mixed in a pelletizing pan at a weight ratio of 6000 = 9515, and kneaded well. After densification,
Heat treated in a rotary evaporator at 50°C for 50 minutes, and then
Powder and granules passed through a sieve.

結果 各実施例の分散剤は3 mynのふるいを全量通
過し、固結現象は起きていなかった。対して比較例12
 (4,3tnynふるい上に29%が残留し、固結現
象を呈していた○ 特許出願人   竹本油脂株式会社 代理人 弁理士 入 山 宏 正
Results The entire amount of the dispersant of each example passed through a 3 myn sieve, and no caking phenomenon occurred. Comparative example 12
(29% remained on the 4.3 tnyn sieve, exhibiting a caking phenomenon.Patent applicant: Takemoto Yushi Co., Ltd. Patent attorney: Hiromasa Iriyama

Claims (1)

【特許請求の範囲】[Claims] 1 平均分子量が6000〜30000のポリエチレン
グリコール20〜70重量部とナフタリンスルホン酸ホ
ルマリン高縮合物の塩80〜30重量部との均一混合水
溶液を脱水乾燥して得た固形物を破砕した粉粒状物から
成る水硬セメント用分散剤。
1 Powder-like material obtained by crushing a solid obtained by dehydrating and drying a homogeneous mixed aqueous solution of 20 to 70 parts by weight of polyethylene glycol having an average molecular weight of 6,000 to 30,000 and 80 to 30 parts by weight of a salt of naphthalene sulfonic acid formalin high condensate. A dispersant for hydraulic cement consisting of:
JP4379083A 1983-03-15 1983-03-15 Dispersant for hydraulic cement Pending JPS59169959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4379083A JPS59169959A (en) 1983-03-15 1983-03-15 Dispersant for hydraulic cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4379083A JPS59169959A (en) 1983-03-15 1983-03-15 Dispersant for hydraulic cement

Publications (1)

Publication Number Publication Date
JPS59169959A true JPS59169959A (en) 1984-09-26

Family

ID=12673534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4379083A Pending JPS59169959A (en) 1983-03-15 1983-03-15 Dispersant for hydraulic cement

Country Status (1)

Country Link
JP (1) JPS59169959A (en)

Similar Documents

Publication Publication Date Title
EP1423344B1 (en) Process for making MICRO-GRANULOSE PARTICULATES and composition comprising said MICRO-GRANULOSE PARTICULATES
AU2002336384A1 (en) Micro-granulose particulates
IE48190B1 (en) Solid additives for binding agents hardening with water
US6503319B1 (en) Method for preparing a mortar
JP3766891B2 (en) Powder admixture for cement and concrete
US4308069A (en) Prevention of slump loss in fresh concrete
JPS59169959A (en) Dispersant for hydraulic cement
JPS5992961A (en) Cement fixation retardant composition
JP2563035B2 (en) Composite cement admixture
JP4420517B2 (en) Additives for concrete
JP2905249B2 (en) Manufacturing method of cement admixture
JPH0853669A (en) Dustless hardener for ground improvement
JPS6144744A (en) Admixing agent for hydraulic cement
JP2879642B2 (en) Manufacturing method of high fluidity concrete
JPS60226445A (en) Granular concrete water-reducing agent and slump reduction prevention of ready mixed concrete therewith
JP2002220588A (en) Grouting material and method of manufacturing the same
JPS6183659A (en) Cement additive
JP2686458B2 (en) Cement powder composition
JPH07138058A (en) Complex cement admixture composition
JPH0510159B2 (en)
JPS5849650A (en) Preparation of concrete-in-water
JP2000034153A (en) Cement-based self-leveling composition
JPH03181325A (en) Granular composition for hydraulic composite material and its production
JPH0513890B2 (en)
JP2002255618A (en) Cement-based grout