JPS59169506A - Rotary disk extracting tower - Google Patents

Rotary disk extracting tower

Info

Publication number
JPS59169506A
JPS59169506A JP4143083A JP4143083A JPS59169506A JP S59169506 A JPS59169506 A JP S59169506A JP 4143083 A JP4143083 A JP 4143083A JP 4143083 A JP4143083 A JP 4143083A JP S59169506 A JPS59169506 A JP S59169506A
Authority
JP
Japan
Prior art keywords
tower
pressure
liquid
differential pressure
hold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4143083A
Other languages
Japanese (ja)
Inventor
Shigeo Fukaya
深谷 成男
Akifumi Yuki
結城 明文
Hiromi Kuzumaki
葛巻 博巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4143083A priority Critical patent/JPS59169506A/en
Publication of JPS59169506A publication Critical patent/JPS59169506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To perform efficient and stable operation of an extracting tower, in a rotary disk type extracting tower with a stirrer, by measuring the differential pressure of the pressure at a tower bottom part and reference head pressure while performing the adjustment of the rotation number of a rotary disk corresponding to the variation of the differential pressure. CONSTITUTION:A light liquid and a heavy liquid are respectively introduced into a rotary disk type extracting tower 21 with a stirrer from pipes 22, 23 and liquid column corresponding to a total liquid height 27 is formed in a reference head pressure arranged pipe 30 by opening a valve 35 to set reference head pressure while the upper end of said pipe 30 is connected to the gas phase part of the tower 21 and the pressure thereof is made equal to that of the gas phase part to open said upper end to the atmosphere. In the next step, the valve 35 is closed to perform the operation of the extracting tower 21 and the differential pressure of the liquid side pressure of the tower 21 and the reference head pressure of the pipe 30 generated in a pneumatic differential pressure transmitter 31 is read while the change with the elapse of time of a hold-up ratio is determined by the above mentioned differential pressure corresponding to the change of the specific gravity of the heavy liquid in the tower to control the rotation number of the rotary shaft of the tower 21. By this method, the efficient and stable operation of the extracting tower 21 is enabled.

Description

【発明の詳細な説明】 この発明は回転円板抽出塔に係わるものであって、回転
円板抽出塔において、効率的な抽出を遂行する条件で、
かつ定常的な運転を確保するため、ホールドアツプを経
時的に把握して抽出を適正に保持し得る回転円板抽出塔
を提供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating disk extraction column, and in the rotating disk extraction column, under conditions for efficient extraction,
Another object of the present invention is to provide a rotating disk extraction tower that can grasp the holdup over time and maintain extraction appropriately in order to ensure steady operation.

回転円板抽出塔(RDC抽出塔ともいわれ、以下RDO
塔と略称する)は攪拌器付きの液々抽出装置の代表的な
ものであり、その概要は第7図に示すような構造からな
る。即ち直立する円筒形の塔本体l内部、多数枚の水平
状に実質的等間隔でもって固定された環状の固定板コが
設けられ、塔内を複数の隔室に分けている。塔本体lの
中心軸位置には回転軸3が設けられ、この回転軸3には
攪拌を行な5円板状の回転板μが上記固定板コで仕切ら
れた隔室ごとに対応して多数枚設けられている。
Rotating disk extraction column (also called RDC extraction column, hereinafter referred to as RDO)
A column (abbreviated as "column" for short) is a typical liquid-liquid extraction device equipped with a stirrer, and its structure is schematically shown in FIG. That is, inside the upright cylindrical tower body l, a large number of annular fixing plates fixed horizontally at substantially equal intervals are provided, dividing the inside of the tower into a plurality of compartments. A rotating shaft 3 is provided at the central axis position of the tower body l, and this rotating shaft 3 has five disc-shaped rotating plates μ for stirring, one for each compartment partitioned by the fixed plate. Many sheets are provided.

液々抽出を行なう一液相のうち、密度の小さい液(軽液
)は塔下部の導入管!かう導入され、一方密度の大きい
液(重液うは塔上部の導入管乙から導入され、両液は塔
内で向流接触し、抽出が行なわれる。この際、塔内を上
昇する軽液又は下降する重液のいずれかは回転板<46
回転によって微小な分散液滴となり、環状で上っていく
際、良好な接触効果が達成される。
Among the liquid phases used in liquid-liquid extraction, the liquid with low density (light liquid) is placed in the inlet pipe at the bottom of the column! The liquid with higher density (heavy liquid) is introduced from the introduction pipe A at the top of the tower, and the two liquids come into contact with each other in countercurrent flow inside the tower to perform extraction. At this time, the light liquid rising in the tower or the descending heavy liquid is rotated by rotating plate <46
The rotation results in fine dispersed droplets, which as they ascend in an annular manner achieve a good contact effect.

lit図中、八で示される抽出部で接触した重液、軽液
はそれぞれ、図中Bで示す重液清澄部およびCで示す軽
液清澄部を経た後、重液相導出管7および軽液相導出管
とから系外に取出さソ れ′る。図中、りおよびIOはグリクド、//は液面、
/2は界面である。
The heavy liquid and light liquid that have come into contact with each other at the extraction section indicated by 8 in the lit diagram pass through the heavy liquid clarification section indicated by B and the light liquid clarification section indicated by C in the figure, respectively, and then pass through the heavy liquid phase outlet pipe 7 and the light It is taken out of the system through the liquid phase outlet pipe. In the figure, RI and IO are grid, // is liquid level,
/2 is the interface.

なお、兜、@液Q)厳密な分離が必要な場合、又は分離
が比較的難しい場合には、別にアフターセトラーが設置
されることもある。
Note that if strict separation is required or if separation is relatively difficult, a separate aftersettler may be installed.

この液々抽出では軽7秋側な分散相としで操作すること
が多く、この場合1.2液の界面は塔上部の清澄部に生
ずる。そして抽出装置の定常的な運転は、この界面の位
置を一定にするように、重液の−抜き出し責を自動的又
は手動的に制御することによつ′C達成される。
This liquid-liquid extraction is often operated with a light dispersed phase, and in this case the interface between the 1 and 2 liquids occurs in the clarification section at the top of the column. Steady operation of the extractor is achieved by automatically or manually controlling the extraction of the heavy liquid so as to keep the position of this interface constant.

抽出の効率(接触長さ当りの物質移動の程度〕は分散液
滴の接触界面積を増大てることによって増加される。即
ち分散液の滴径が小さいほど抽出効率は向上する。しか
し無制限な液滴径の微小化は、塔内各隔室での液滴の滞
留時間の増大をもたらし、ついにはλ液のエマルジョン
化をまねき、塔の上、下部での清澄化が妨げられ、重液
中に軽液が、又は軽液中に重液が混入して抜出され、正
常な物質移動操作が不可能になる。
The efficiency of extraction (degree of mass transfer per contact length) is increased by increasing the contact interfacial area of the dispersion droplets, i.e. the smaller the droplet size of the dispersion, the better the extraction efficiency.However, if the unrestricted liquid The miniaturization of the droplet size leads to an increase in the residence time of the droplets in each compartment in the column, which eventually leads to the emulsion of the λ liquid, which impedes clarification at the top and bottom of the column, and increases the retention time of the droplets in each compartment in the column. Light liquid or heavy liquid may be mixed into the light liquid and withdrawn, making normal mass transfer operations impossible.

即ちフラッディングが生することになる。In other words, flooding will occur.

また分散相の増加は、ある程度以上になると効巡り向上
に結びつかず、いわゆるノくツクミキシング現象をもた
らすことがあるから、無制限に許容されるべきでない。
Furthermore, an increase in the dispersed phase beyond a certain level does not lead to improvement in effectiveness and may result in the so-called "kokuku mixing" phenomenon, and therefore should not be tolerated indefinitely.

上述のような分散液滴の大きさによって定まる塔内分散
相の滞留量は一般にホールドアツプと称せられ、このホ
ールドアツプを支配する要因は回転板の径、隔室を形成
する環状の固定板の内径、隔室の長さく環状固定板同土
間の距離)など、塔の幾何学的形状のほか、仕込み流量
、仕込み液の量比等の操作因子が絡んだものとされる。
The retention amount of the dispersed phase in the tower, which is determined by the size of the dispersed droplets as described above, is generally called the hold up.The factors that control this hold up are the diameter of the rotating plate and the annular fixed plate forming the compartment. In addition to the geometrical shape of the tower, such as the inner diameter, the length of the compartments, and the distance between the annular fixed plate and the earth, it is believed that operational factors such as the feed flow rate and the volume ratio of the feed liquid are involved.

しかしながら、RDC塔のような回転体により接触動部
を変化させる抽出装置では、各種因子の中でも、回転体
の単位時間当りの回転数が分散相ホールドアツプを支配
する大きな要因となる。回転体の回転数とホールドアツ
プの間には一般に第2図に示すような関係が知られてい
る。即ち第2図において、横軸は単位時間当りの回転数
、縦軸は分散相のホールドアツプを示すものであって、
回転数に対するホールドアツプの関係を足性的に示すも
のである。この図に示されるように、ホールドアツプは
始め回転数の増力口に伴なって減少しくIで示す区域う
、ついであまり変らない区域(■で示す区域)、その後
に回転数の増力0とともにホールドアツプが太き(なる
区域(■で示す区域)に分けられる。
However, in an extraction device such as an RDC tower in which the contact moving part is changed by a rotating body, among various factors, the number of rotations per unit time of the rotating body is a major factor governing dispersed phase hold-up. The relationship shown in FIG. 2 is generally known between the rotational speed of the rotating body and the holdup. That is, in FIG. 2, the horizontal axis shows the number of rotations per unit time, and the vertical axis shows the hold-up of the dispersed phase.
This graphically shows the relationship between hold-up and rotational speed. As shown in this figure, the hold up initially decreases as the rotational speed increases, in the area marked I, then in the area where it does not change much (the area marked ■), and then holds as the rotational speed increases to 0. It is divided into areas with thick edges (areas marked with ■).

川の区域は、更にホールドアツプの増え方の比較的小さ
いAの区域と、急激なりの区域に分けられる。RDq塔
の操作は抽出効率と操作性の面かセ、通常■区域が選ば
れる。
The river area can be further divided into area A, where the increase in hold up is relatively small, and area A, where the increase is rapid. Regarding the operation of the RDq tower, the ■ area is usually selected in terms of extraction efficiency and operability.

回転数が更に太き(なると、遂にはフラッディング域(
■で示す区域)に達し、運転は不可能になる。
As the rotation speed increases further, it will finally reach the flooding region (
The area marked with ■) is reached, and driving becomes impossible.

以上のようにホールドアツプの制御を塔の回転体の回転
数で行水5ことが基本的に重要なことはよく知られてい
る。ただし、この回転数とホールドアツプとの間の関係
は、他にホールドアツプに影響を与える回転体円板の径
、隔室長さ、環状板の開猿径、塔径などの装置の条件が
一定であり、仕込み流量および軽、重液の仕込流量比が
一定であることが前提である。従って既存のこの種の装
置の効率的、かつ安定的な操作をはかるには、仕込みg
量(処理能力)および液比〔抽出効率に関係する〕を変
えた条件で回転体の回転数が塔内ホールドアツプに、ど
のように影響するかを都度把握することが極めて重要に
なって(る。例えば処理蓋を上げるため仕込み流量を上
げる場合、流入エネルギーの増力口によってホールドア
ツプは通常増える傾向な示す。この増加がフラッディン
グ近傍であるとみなされる場合には回転体・の回転数を
適正に下げることによってフラッディングを防止するこ
とができる。しかも、この回転数低下の8度が下げすぎ
でなげれば効率の低下は最少限に抑えられる。また処理
液の組成が変化したとき、特に乳化剤が使用されるよう
なときは、その濃度によって液滴り分散性が太き(影響
される場合が生じる。このような場合、運転の定常性を
確保する目安としてホールドアツプが把握されでいるこ
とか望ましい。
As mentioned above, it is well known that it is fundamentally important to control the hold-up by the rotational speed of the rotating body of the tower. However, the relationship between this rotation speed and the hold up is determined by other equipment conditions that affect the hold up, such as the diameter of the rotor disk, the length of the compartment, the open diameter of the annular plate, and the diameter of the column. It is assumed that the charging flow rate and the charging flow rate ratio of light and heavy liquids are constant. Therefore, in order to operate the existing equipment of this type efficiently and stably, it is necessary to
It has become extremely important to understand how the rotational speed of the rotating body affects the holdup in the column under conditions of changing the amount (processing capacity) and liquid ratio (related to extraction efficiency). For example, when increasing the charging flow rate to raise the processing lid, the hold-up usually tends to increase due to the inflow energy amplification port.If this increase is considered to be near flooding, the rotation speed of the rotating body should be adjusted appropriately. Flooding can be prevented by lowering the rotation speed to 8 degrees.Furthermore, if this 8 degree reduction in rotation speed is not too low, the drop in efficiency can be kept to a minimum.Also, when the composition of the processing solution changes, especially when the emulsifier is used, the droplet dispersion may be influenced by its concentration. In such cases, it is important to understand the hold up as a guideline to ensure stability of operation. desirable.

以上述べてきたようVCホールドアツプを知ることはR
DO塔の動部的使用に極めて有効であるが、工業的実施
規模で、ホールドアツプの有効な把握方法は、いまだ知
られていない。
As mentioned above, knowing about VC hold up is R.
Although this method is extremely effective for dynamic use of DO towers, there is still no known method for effectively determining hold-up on an industrial scale.

よって本発明者等は、工業的実施規模のRDO塔の運転
操作を進める中で、種々検討を重ねた結果、運転中のホ
ールドアツプを経時的に把握才ろ手段として、分散相と
連続相の密度差を利用し、これをホールドアツプの代表
値とすることが実用的であることを見出し、本発明を完
成するに到った。
Therefore, as a result of various studies while proceeding with the operation of an RDO tower on an industrial scale, the inventors of the present invention have determined that, as a means of grasping the hold-up during operation over time, they have developed a method for controlling the dispersion phase and continuous phase. We have found that it is practical to utilize the density difference and use it as a representative value for hold-up, and have completed the present invention.

本発明の作用を原理的に説明すると、分散相の存在量の
割合が増加することにともない、塔内の全液密度が、分
散相と連続相との容量比率に応じて変化するので、この
微細な変化をホールドアツプの変化として捕えようとす
るものである。この変化量は塔の高さおよび抽出重液の
密度差によって異なるが、一般にRDC塔全体の液圧に
比較し微小なものであるため、RDO塔底圧力の検知に
よるのみでは一般に圧力計の8度上、実用的でない。ま
たRDO塔で常に同じね類の抽出(同じ軽、重液で同じ
被抽出物を抽出する場合〕を行つ℃いるときは特に問題
ないが、別種の抽出に切替えて作業するとき実用上の困
難さは一層増大する。
To explain the operation of the present invention in principle, as the proportion of the amount of the dispersed phase increases, the total liquid density in the column changes depending on the volume ratio of the dispersed phase to the continuous phase. It attempts to capture minute changes as changes in hold up. This amount of change varies depending on the height of the column and the density difference of the extracted heavy liquid, but it is generally minute compared to the liquid pressure of the entire RDC column, so it is generally not possible to detect the pressure at the bottom of the RDO column. Extremely impractical. In addition, there is no particular problem when the same type of extraction is always performed in the RDO tower (extracting the same extractable material with the same light or heavy liquid), but when switching to a different type of extraction, practical problems arise. The difficulty increases further.

このような困難性を解消するため、本発明では微細な密
度由来の液圧を把握するため、差圧一式の圧力計を用い
たのである。そして差圧計の一方はRDO塔全体の液圧
と結び(必ずしも塔の最低位置につなぐ必要はな(、塔
下部の一定位置に結びつけておけばよいン、他方は基準
′圧、即ち変化しない圧で、RDO塔の運転状態におけ
る塔液圧と大きな差のない圧力を呈するものと結びつげ
る。そうすることによってRDC塔運転中の塔底圧力の
変化は基準圧との差として充分検知し得るのである。
In order to solve this difficulty, the present invention uses a set of differential pressure gauges in order to grasp the liquid pressure derived from fine density. One of the differential pressure gauges is connected to the liquid pressure of the entire RDO tower (it does not necessarily need to be connected to the lowest position of the tower (it can be connected to a fixed position at the bottom of the tower), and the other is the reference pressure, that is, the pressure that does not change. Therefore, it is possible to connect the pressure to one that exhibits a pressure that is not significantly different from the tower liquid pressure in the operating state of the RDO tower.By doing so, changes in the bottom pressure during RDC tower operation can be sufficiently detected as a difference from the standard pressure. be.

基準圧の設定方法としては、RDO塔の連続相目体の冶
圧頭を利用する方法、或いはその他一定の液体(こ)t
はどのような液でもよく、例えば水腿でもよい′)の液
圧頭と結ぶ、もしくは一定の気体(例えば空気)圧頭と
結んでもよい。
The standard pressure can be set by using the hydrostatic pressure head of the continuous phase body of the RDO tower, or by using a certain liquid (t)t.
may be connected to a hydraulic head of any liquid (for example, a water leg) or may be connected to a certain gas (e.g., air) pressure head.

このようにRDO塔全体の液圧の経時的変化を基準圧と
の差によって知ることができ、これは経時記録計に記録
することもでき、また表示計のみで知ることもできる。
In this way, the change over time in the liquid pressure of the entire RDO tower can be known by the difference from the reference pressure, and this can be recorded on the time recorder, or can be known only on the display meter.

史にこの経時的変化をRDO塔の回転体の回転数にフィ
ードバック制御し、運転のな変化をはかることもできる
It is also possible to feedback-control this change over time to the rotational speed of the rotating body of the RDO tower to measure changes in operation.

以上のように、本発明によればホールドアツプを迅速か
つ適確に4巴視することができる。同じ物質移動操作を
荷う蒸留塔に比較し、計装装備の適用が難しい、RD 
Oi5にあっては従来ホールドアツプの異常から1フラ
ツデイングに到る過程の判断は困難であり、全体の流量
変化を検知し、抜き出し液中の分散液の混入なV(知し
、対応をとることができたに−tぎなかった。しかるに
本発明により、ホールドアツプという、蔽々連続抽出設
備において基本的に重要な要因を把握することができ、
フラッディングや運転負荷の四下に起因する抽出効率の
低下が防止されるようになった。
As described above, according to the present invention, a hold-up can be quickly and accurately viewed in four directions. Compared to a distillation column that performs the same mass transfer operation, it is difficult to apply instrumentation equipment to RD.
Conventionally, with Oi5, it is difficult to judge the process from a hold-up abnormality to a flattening. However, with the present invention, it has become possible to understand the hold-up, which is a fundamentally important factor in continuous extraction equipment.
Decrease in extraction efficiency due to flooding or lower operating load is now prevented.

次ンこあ面の説明と併せ、本発明の実施態様を説明する
Embodiments of the present invention will be described in conjunction with a description of the next aspect.

第3図は不発明にかかわる装置全体の概略図であり、図
中、〜27は塔本体、2.2は軽液導入管、コ3は重液
導入管1.24’はNtL相導出管1.21は軽液相導
出管1.2乙は界面、λ7は液面、2gおよびλりはグ
リッド、30は基準ヘッド圧配管、31は空気圧式差圧
伝送器、3−は塔全体の圧カケ差圧伝送器31につなぐ
配管、33は基準ヘッド王妃′Uの基準圧を差圧伝送器
31につなぐ配管、3≠はバイパス管、3jは弁、36
は配管である。なR1この図ではRDC塔における回転
軸、回転板、固定板は図示を省略しであるが、これらは
第7図に示す装置の構造に準じて設置されるものである
Figure 3 is a schematic diagram of the entire apparatus related to the invention, in which 27 is the column main body, 2.2 is the light liquid introduction pipe, 3 is the heavy liquid introduction pipe 1.24' is the NtL phase outlet pipe 1.21 is the light liquid phase outlet pipe 1.2 is the interface, λ7 is the liquid level, 2g and λ are the grids, 30 is the reference head pressure piping, 31 is the pneumatic differential pressure transmitter, 3- is the entire tower Piping connected to the differential pressure transmitter 31, 33 is a pipe connecting the reference pressure of the reference head queen 'U to the differential pressure transmitter 31, 3≠ is a bypass pipe, 3j is a valve, 36
is piping. Although the rotating shaft, rotating plate, and fixed plate in the RDC tower are not shown in this figure, they are installed according to the structure of the apparatus shown in FIG. 7.

先ず執3図に示されるように、界面、重液、軽液のトー
タル数面をつくり、バイパス管3りの弁−?jを;ノb
(と基準ヘッド圧配管30VchDO塔トータル液高(
t’C見合う液かできる。基準ヘッド圧配管30の他端
はI(D C!塔本体の気相部と同一圧力になるよう、
配管3乙で結び、七〇まt又はベントコンデンサーを通
じ、大気に開放される。塔本体l内における配管3コの
位置(1(D I−3塔最[底より≠θθ朋の位置)と
界面、2乙との距離を/l♂tOJ繻、界面−6と液間
、27との距離なjj O囮とすると、このRDO塔の
トータル液に見合う液柱が基準ヘッド圧配管3Qにでき
る。基準ヘッド圧配管3oに液柱ができれは弁3jはl
」じる。そして空気圧式差圧伝送器3ノ(横河電機製作
朽製のY// 、tA −LS、2/GAS−FM使用
)のRDC塔液圧液圧側力をPL、同じく基準ヘッド圧
配管側の圧力tPHとてると、PL=PHであり、伝送
器3/に生ずる差圧は0である。
First, as shown in Figure 3, we created a total of several interfaces, heavy liquid, and light liquid, and installed three bypass pipe valves. j; no b
(and reference head pressure piping 30VchDO tower total liquid height (
A liquid that meets t'C can be produced. The other end of the reference head pressure pipe 30 is connected to I (DC!) so that the pressure is the same as that of the gas phase of the column main body.
Connect with pipe 3 and open to the atmosphere through 70 meters or vent condenser. The distance between the position of the 3 pipes in the tower body 1 (1 (the position of DI-3 tower ≠ θθ from the bottom) and the interface, 2 OJ is /l♂tOJ, the interface -6 and the liquid space, 27, a liquid column corresponding to the total liquid of this RDO tower is created in the standard head pressure piping 3Q.If a liquid column is created in the standard head pressure piping 3o, the valve 3j is
"Jill." Then, the RDC tower hydraulic pressure side force of the three pneumatic differential pressure transmitters (Y//, tA-LS, 2/GAS-FM manufactured by Yokogawa Electric) is PL, and the same is the standard head pressure on the piping side. When the pressure tPH is determined, PL=PH, and the differential pressure generated at the transmitter 3/ is 0.

重液の比重をOlり7、軽液の比重な0.r7とすると PL=/61tO×0.970+4tjO¥、0.17
0’: t A 7413.7MmH2Oであり、P 
Hも/ 47 g 載7g@ R20で、PHO液柱高
さは/ A 7 F !、710.り70=17J乙3
.lr@@となる。
The specific gravity of the heavy liquid is 7, and the specific gravity of the light liquid is 0. If r7, PL=/61tO×0.970+4tjO¥, 0.17
0': tA 7413.7MmH2O, P
H is also / 47 g and 7 g @ R20, and the PHO liquid column height is / A 7 F! , 710. ri70=17J Otsu3
.. It becomes lr@@.

以上のようにして基準ヘッド圧を設定し、RDC塔の運
転を行なう。ホールドアツプ率かO%→/1%へ変化す
るのに対する測定器の追従は塔内重液比重に対応し、即
ちPLの値は上記の式中、重液の比重の変化に対応する
値になる。しかしPHの値は経時変化な(、/47&j
、7MmH2Oの一定値を保持する。そして経時的に変
化する差圧は空気圧信号に置換え記録計に表示させるこ
とができる。
The reference head pressure is set as described above, and the RDC tower is operated. The tracking of the measuring device as the hold-up rate changes from O% to /1% corresponds to the specific gravity of the heavy liquid in the column, that is, the value of PL is the value corresponding to the change in the specific gravity of the heavy liquid in the above formula. Become. However, the PH value changes over time (, /47&j
, 7MmH2O. The differential pressure that changes over time can be replaced by an air pressure signal and displayed on the recorder.

笑施の一例として最大差圧−” 63MmH2O(ボー
ルドアップ/j%)に調整した差圧伝送器を投信イる。
As an example of this, a differential pressure transmitter adjusted to a maximum differential pressure of 63 MmH2O (bold up/j%) is used.

この」6合、ホールドアツプ/、f%のとき記録計指示
は100%となる。この態様で運転するとき、ホールド
アツプ、塔内重液比重、差圧の関係および記録計の指示
などは次・のよ5になる。
At this 6th turn, the recorder indicates 100% when the hold is up/f%. When operating in this manner, the relationship among hold up, specific gravity of heavy liquid in the column, differential pressure, and recorder indications are as follows.

上記のようにして記録計によりホールドアツプの経時変
化が示されるので、これにより、RDO塔の回転軸の回
転数を調整する。この態様を第グ図のフローシルトで示
す。第グ図において、aOは空気圧式差圧伝送器であり
、l/は差圧検知用のダイヤスラムカプセルである。
As described above, since the recorder shows the change in hold-up over time, the rotation speed of the rotating shaft of the RDO tower is adjusted based on this. This aspect is illustrated by flow silt in FIG. In the figure, aO is a pneumatic differential pressure transmitter, and l/ is a diaphragm capsule for differential pressure detection.

12からRDO塔の液圧が伝えられ、μ3から基準ヘッ
ド圧配管の液圧が伝えられ、μtから空気が供給され、
これはl!にょって空気信号として空気圧式記録計4を
乙(ホールドアツプが記録される)(横筒1機製作所裳
、NRP使用)に伝えられる。この記録計QAを見なが
ら、手動にて回転軸回転数調節ボリューム1iL7を調
整し、これは回転数調節計<zlrに送られ、RDO塔
の回転軸lりを回転する可変速モータjoの回転数を調
節する。ziは回転軸tりの回転数の表示器である。
The hydraulic pressure of the RDO tower is transmitted from 12, the hydraulic pressure of the reference head pressure piping is transmitted from μ3, air is supplied from μt,
This is l! Then, as an air signal, the pneumatic recorder 4 is transmitted to O (hold up is recorded) (1 horizontal tube manufactured by the factory, NRP used). While watching this recorder QA, manually adjust the rotating shaft rotation speed adjustment volume 1iL7, and this is sent to the rotation speed controller Adjust the number. zi is an indicator of the number of revolutions about the rotation axis t.

なお、第μ図では回転軸回転数調節ポリラムダ7を手動
にて操作する場合を示したが、空気式差圧伝送器4tQ
からの信号をボールドアップ調節計を通じ、回転数調節
計に結ぶことによって自動化することもできる。
In addition, although Fig. μ shows the case where the rotating shaft rotation speed adjustment polylambda 7 is operated manually, the pneumatic differential pressure transmitter 4tQ
It can also be automated by connecting the signal from the rotor to the rotation speed controller through a bold-up controller.

また第3図では図示していないが、RDC塔の運転時温
度が、それぞれの抽出に適てる温度に上げられ、基準ヘ
ッド圧配管に導入された液するため、熱IJI体によっ
て基準ヘッド圧配管を保温てるのがよい3、更にこれら
配管をアスベストリボンテープのような断熱材で被覆す
るのかよい。また基準ヘッド圧配管には、抽出処理物の
銘梱を変える場合、配管内の液を排出するための排出口
を設けるのがよい。
Although not shown in Fig. 3, the operating temperature of the RDC tower is raised to a temperature suitable for each extraction, and the liquid introduced into the standard head pressure piping is heated by the thermal IJI body to the standard head pressure piping. It is a good idea to keep the pipes warm 3. It is also a good idea to cover these pipes with a heat insulating material such as asbestos ribbon tape. Further, the reference head pressure piping is preferably provided with an outlet for discharging the liquid in the piping when changing the name of the extraction product.

以上説明し、1gI面に示したところは本発明の理解を
助けるための代表的例示に係わるものであり、本発明は
これら例示に制限されることな(、発明の要旨内でその
他の変更、変形例をとることができるものである。
What has been explained above and shown on page 1gI is related to typical examples to help the understanding of the present invention, and the present invention is not limited to these examples (other modifications and changes may be made within the gist of the invention). Modifications can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回転円板抽出塔の構造の概要図、第2図は回転
日板抽出塔における、回転体の回転数とホールドアツプ
の蘭係を示す図表、第3図は本発明回転円板抽出塔の概
要図、ig図は、本発明抽出塔を用いて、ホールドアツ
プの変化に対応して回転体の回転数を調節する機構を説
明する説明図である。 図中、2/は回転円板抽出塔の塔本体、ノコは軽液導入
管、λ3は重液導入管、211は重液相導出管1.2j
は軽液相導出管1.2乙は界面、30は基準ヘッド圧配
管、3)は空気圧式差圧伝送器である。 葛 1 区 葛2図   ′ 回 車ム軟 男4 図
Fig. 1 is a schematic diagram of the structure of a rotating disc extraction tower, Fig. 2 is a chart showing the relationship between the rotation speed of the rotor and the hold-up in the rotating disc extraction tower, and Fig. 3 is a diagram of the rotary disc extraction tower of the present invention. The schematic diagram and ig diagram of the extraction tower are explanatory diagrams illustrating a mechanism for adjusting the rotational speed of the rotating body in response to changes in the holdup using the extraction tower of the present invention. In the figure, 2/ is the main body of the rotating disk extraction column, Noko is the light liquid introduction pipe, λ3 is the heavy liquid introduction pipe, and 211 is the heavy liquid phase outlet pipe 1.2j.
1. 2) is the light liquid phase lead-out pipe, 2) is the interface, 30 is the reference head pressure piping, and 3) is the pneumatic differential pressure transmitter. Kuzu 1 Ku Kuzu 2 Diagram ' times Kurumu Soft Man 4 Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)内部に複数の回転円板を有し、下部から軽液を、
上部から重液を導入し、上部から軽液相を、下部から重
液相を導出する抽出塔において、この抽出塔の塔底部の
圧力と、基準ヘッド圧との差圧を測定−「る差圧計を設
けてなる回転円板抽出塔
(1) It has multiple rotating discs inside, and light liquid is supplied from the bottom.
In an extraction tower where a heavy liquid is introduced from the top, a light liquid phase is taken out from the top, and a heavy liquid phase is taken out from the bottom, the pressure difference between the pressure at the bottom of the extraction tower and the standard head pressure is measured. Rotating disk extraction tower equipped with a pressure gauge
(2)  内部に複数の回転円板を有し、下部から軽液
を、上部から重液を導入し、上部から軽液相を、下部か
ら重液相を導出する抽出塔において、この抽出塔の塔底
部の圧力と、基準ヘッド圧との差圧を測定でる差圧計を
設け、この差圧計の差圧変動に応じて回転円板の回転数
ケ調節する機構を備えてなる回転円板抽出塔
(2) In an extraction tower that has a plurality of rotating disks inside, introduces light liquid from the lower part and heavy liquid from the upper part, and extracts the light liquid phase from the upper part and the heavy liquid phase from the lower part, this extraction tower A rotating disk extractor equipped with a differential pressure gauge that can measure the differential pressure between the pressure at the bottom of the column and the reference head pressure, and a mechanism that adjusts the rotation speed of the rotating disk according to fluctuations in the differential pressure of the differential pressure gauge. tower
JP4143083A 1983-03-15 1983-03-15 Rotary disk extracting tower Pending JPS59169506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143083A JPS59169506A (en) 1983-03-15 1983-03-15 Rotary disk extracting tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143083A JPS59169506A (en) 1983-03-15 1983-03-15 Rotary disk extracting tower

Publications (1)

Publication Number Publication Date
JPS59169506A true JPS59169506A (en) 1984-09-25

Family

ID=12608147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143083A Pending JPS59169506A (en) 1983-03-15 1983-03-15 Rotary disk extracting tower

Country Status (1)

Country Link
JP (1) JPS59169506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101710906B1 (en) * 2016-07-25 2017-03-03 한전원자력연료 주식회사 The interface control device for liquid-liquid extraction by pressure equilibrium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101710906B1 (en) * 2016-07-25 2017-03-03 한전원자력연료 주식회사 The interface control device for liquid-liquid extraction by pressure equilibrium
WO2018021622A1 (en) * 2016-07-25 2018-02-01 한전원자력연료 주식회사 Device for controlling interface of liquid-liquid extraction column using pressure equilibrium
JP2019521851A (en) * 2016-07-25 2019-08-08 ケプコ ニュークリア フューエル カンパニー リミテッド Interface controller for liquid-liquid extraction tower using pressure equilibrium
US10729989B2 (en) 2016-07-25 2020-08-04 Kepco Nuclear Fuel Co., Ltd. Device for controlling interface of liquid-liquid extraction column using pressure equilibrium

Similar Documents

Publication Publication Date Title
EP3085449B1 (en) Centrifugal separator and thereto related methods
US3074786A (en) Fluid mixer with rotating baffles and method of operating same
CN104245146A (en) Centrifugal separator and method of controlling intermittent discharge
US20160339452A1 (en) Separator optimization apparatus and method
US8728404B1 (en) Vessel for regeneration of a catalyst including monitoring and monitoring and control of combustion completion
US4973430A (en) Continuous hydrogenation of unsaturated oils
US4061848A (en) Process for cooling a polymerization reactor
Wammes et al. The influence of the reactor pressure on the hydrodynamics in a cocurrent gas-liquid trickle-bed reactor
JPS59169506A (en) Rotary disk extracting tower
US2904518A (en) Method for controlling the level of a gravitating compact bed of solids
US20090076284A1 (en) Process for continuously removing a target product x in the form of fine crystals
JP5823415B2 (en) Apparatus and method for controlling fill level
Van Hasselt et al. The three-levels-of-porosity reactor. A novel reactor for countercurrent trickle-flow processes
US3414522A (en) Throttling liquid streams containing particle-form solids
JP2010119905A (en) Method of detecting defective liquid separation in extraction column, and method of operating extraction column
US4871485A (en) Continuous hydrogenation of unsaturated oils
Lim et al. Residence time distribution of gas in spouted beds
US2705699A (en) Packed column and control system therefor
CN102162550A (en) Valve, separation system, and method for minimizing wear
US2900308A (en) Solvent extraction apparatus
JP5049015B2 (en) Method and apparatus for controlling recovery of solid polyolefin from continuous reaction zone
WO2021191153A1 (en) A separation assembly for a treatment of a multiphase fluid for accurate flow measurement of a gas and a liquid phase in a multiphase fluid mixture and a separation method provided by said assembly
US2783096A (en) Solids level indication and control system
US2191403A (en) Method for filtering
US2217640A (en) Control system