JPS59169388A - Driving method of grinding machine by 3-phase induction motor - Google Patents

Driving method of grinding machine by 3-phase induction motor

Info

Publication number
JPS59169388A
JPS59169388A JP58043411A JP4341183A JPS59169388A JP S59169388 A JPS59169388 A JP S59169388A JP 58043411 A JP58043411 A JP 58043411A JP 4341183 A JP4341183 A JP 4341183A JP S59169388 A JPS59169388 A JP S59169388A
Authority
JP
Japan
Prior art keywords
motor
grinding
connection
star connection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58043411A
Other languages
Japanese (ja)
Inventor
Katsuaki Tamura
田村 勝明
Takao Shibata
隆夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58043411A priority Critical patent/JPS59169388A/en
Publication of JPS59169388A publication Critical patent/JPS59169388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PURPOSE:To reduce the adverse influence due to electromagnetic vibration of a motor by driving a spindle shaft by coupling the motor in a delta connection at the grinding time of high load with much machining amount and in a star connection at the low load time with less machining amount. CONSTITUTION:A spindle shaft of a grinding machine is driven by a 3-phase induction motor which s switched in 3-phase windings between a delta connection and a star connection. When the machining amount increases at grinding time of high load, the terminals of windings X and V, Y and W, U and Z are coupled in a delta connection for large torque, and when the machining amount decreases at grinding time of low load, the terminals of X, Y, Z are coupled in a star connection for small torque, and the motor is operated. Accordingly, at low load time, the magnetic vibration of the motor can be set to 1/3<1/2> of that at the delta connection time to reduce the electromagnetic vibration, the influence to the ''fringe pattern'' of the grinding surface, thereby improving the accuracy of the finished surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、三相誘導電動様(にJ下、単に電動機とい
う)によって主軸が駆動される研削盤の駆動方法の改良
に関するイ、ので、上記電動機の電磁振動による研削盤
・\の悪影響を小さくすることを目的とlでいるー 研削盤は最近法すまず研削面の加工精度の精密さが要求
さね、研削時に研削11[+を油砥石で研削し・1こと
きに現われる「
This invention relates to an improvement in the driving method of a grinding machine in which the main shaft is driven by a three-phase induction electric motor (hereinafter simply referred to as an electric motor), thereby reducing the negative effects of the electromagnetic vibration of the electric motor on the grinding machine. The purpose of the grinding machine is to use a grinding machine.

【7ま自模様」が、研削面に残らないよ
う強く要請さねている、 ところで、研削面に上記U1.ま自模様」が発生する要
因はまず研削盤にあっては機械系lこ関連する剛性、バ
ランス、精度などの不充分さによるものと、研削盤の主
軸を駆動する電動機0)運転時ζζ発注する振動にまる
要因とがある。さらにこの電動機に発生する振動は、電
動機を構成1−る各部品の製作精度1組立精度などによ
る機械的な振動と、磁気の発生に必要なコアーや巻線な
ど電気的特性に起因する電磁振動とに分類される。 電動機C?−よる振動のうち、機械的振動1.20−夕
などの機械的パランスケとることにまりで振動幅7i−
3〜5μmまでの高精度(こするこ♂が現状においても
でλるまうになっている、−万、電気的振動に対する配
慮は十分になさねているとlスいえず、こt″Iが研削
面の「(・ま自模様」に与える影響は無視できないもの
がある、 この発明は、こね等の上記要請に鑑みてlrさねtこも
ので、研削盤の主軸を駆動する電動機のψ気的振動を減
少させることCζまり研削面の[1ま目模様」に与える
影響を小さくすることを目的と〔・でいる、 ところで研削加工時において通常の研削すなわち加工量
の多い研削時には高負荷となるので大きなトルクが必要
となるが、仕上げ研削Tなわら加工Jiの少ない研削時
には低負荷となるので小さなトルクラ与えるたけでよい
。 ま1こ電動機については、三相巻線をデルタ結線とスタ
ー結線とが切換えらねるように構成1この結線をデルタ
結線とスター結線とに切換えて運転することにまり、デ
ルタ結線のときは大きなトルクが得らねスター結線のと
きは小さなトルクが得らねる、このJうに研削盤の加工
方法と電動機のトルクの関係に着目〔・、研削盤の加工
量の多いとき【ジ電動機のトルクの大きいデルタ結線と
(7、加工量の少ないときは電動機のトルクの小さいス
ター結線に切換えて運転でることにより電動機の磁気装
荷、すなわち磁束密度をデルタ結線時の’/4にしてや
ることにより電磁振動の極めて少ない電動機とすること
ができ研削盤を駆動するときの電磁振動の影響を小さく
することができる8以下、この発明の好適な一実施例を
第1図〜第4図により説明する。 第1図はこの発明に用いられでいる電動機の三相巻線を
示し7、図において(1)は運転時に電源R相に接続さ
れるU−相巻線で、電源側端子をU、中性点側端子をX
としているー(2)は運転時に電源S相に接続されるV
相巻線で、電源側端子>V、中性点側端子をYとI、て
いる。(3)は運転時に電源T相に接続さねるW相巻線
で 電源側端子る>W、中性点側端子を2と(・ている
、 第2図、第3図は端子台の端子且、S、Tに接続される
巻線の配列を示し、第2図に示さねるとオリ、R−U−
Z、  S −V −X、 T −W−Yにl)J:う
に接続することにより電動機はデルタ結線となり、第8
図に示さねるとおり、■−U、8−V。 T−WOIように接続するとともにZ−X−Yを短絡さ
せることζζよりスター結線となる、以上のように構成
され1こ電動機を研削盤の加工量の多い研削時にはデル
タ結線で運転(7、加工量の少ない研削時にはスター結
線に切換えて運転することにより電動機のU、V、W各
相巻線に印加さねる電圧は1/V/1となる、こ0)こ
とにより三相巻線では、同一周波数、同一巻線すなわち
コア。 線径9巻数など磁気発生の条件が全く同一な電気装荷に
おいて、l接当りの磁束(磁気装荷)は、周波数をチ、
固定子巻線係数をに+、固定子l相分の直列導体数をN
+、l接当りの磁束(マクスウェル)をΦとし1ことき
、印加電圧E1  がE+=2.22・f−に+・N1
・Φ×lO(ホノ叶)・・・ (1)で表わされる。【
、1コがってl接当りの磁束(磁気装荷)は印加電圧に
比例するO)で印加さねる電圧も’ /v”iとなる、
すなわちスター結線においては、U相巻線、■相巻線、
W相巻線の各巻線に加わる電圧は’/JEとなり、この
スター結線で発生さ第4図において、(4)はデルタ結
線時のトルク曲線、(5)はスター結線時のトルク曲線
である。ま1こ、(6)は加工量の少ない仕上研削時の
負荷トルクを示す。スター結線時のトルク曲線(5)は
上記(1)式によりデルタ結線時のトルク曲線(4)に
対[、で]/8の大きさのトルクである8;71こかつ
て仕上研削時においては負荷トルク(6)が、極めて軽
負荷であるのでスター結線と【・そのトルクがl/31
こ減少L7ても何ら支障はない、 このまうにスター結線によって運転すねは第1図の各相
巻線、U相巻線(1)、■相巻線(2)、W相巻線(3
)に印加さねる電圧はl/馴に減少し7各極の磁気装荷
も】へ趨に減少するので、三相誘導電動機の場合、土に
溝数組合せにまり左右される高調波磁束に基づく電磁振
動おまび機械構造系との共振を除けば基本波磁束にぼる
電磁振動はほぼ磁気装荷に比例(/で下ると考えてよい
−(71こかつて電磁振動が大幅に減少さ〕1、研削盤
−\の電磁振動の影響を少さくすることができる。 なお、上記実施例では電動機を商用電源で駆動する場合
について述べ1こが、こ第1をインバータ電源を介[・
で運転する歪波電源にぼって駆動する場合も同様な効果
を奏する− 才1こ、従来のように軽負荷である仕上げ研削時に電動
機の巻線をデルタ結線で運転することに対(・、この発
明のときく電動機の巻線をスター結線にすわば運転効率
は「電動機効率と力率の積」となることによって「効率
と力率の積」はスター結線の方が大きくなり仕上げ研削
時の運転効率が向上【1、省エネルギーきなる副次的効
果もある、以上のまうに、この発明にeKtlば加工量
の多い研削時ζこは三相巻線ケデルタ結線にし・て運転
し、加工量の少ない仕上げ研削時にはスター結線に切換
えらねるように1,1こので仕上は研削時における電磁
振動を大幅に下げることかでき、研削面に電磁振動が与
える影4!を極めて少なくすることができる効果がある
It is strongly requested that the [7 maji pattern] not be left on the grinding surface.By the way, if the above U1. The reasons for the occurrence of "self-patterning" are firstly due to insufficient rigidity, balance, precision, etc. related to the mechanical system of the grinding machine, and the electric motor that drives the main shaft of the grinding machine during operation. There are factors that cause the vibration to occur. Furthermore, the vibrations generated in this motor include mechanical vibrations caused by the manufacturing precision and assembly precision of each component that makes up the motor, and electromagnetic vibrations caused by the electrical characteristics of the core and windings required to generate magnetism. It is classified as Electric motor C? - Of the vibrations caused by mechanical vibrations, mechanical vibrations such as 1.20 - vibration amplitude 7i -
High precision up to 3 to 5 μm (even in the current situation, the rubbing force is about λ). In view of the above-mentioned demands of the grinding machine, this invention has been developed to improve the ψ of the electric motor that drives the main shaft of the grinding machine. The purpose is to reduce the influence of Cζ on the [first stitch pattern] of the grinding surface.By the way, during the grinding process, during normal grinding, that is, grinding with a large amount of processing, high loads are applied. Therefore, a large torque is required, but the load is low during finish grinding T or grinding with a small amount of straw machining, so it is sufficient to apply a small torque. Configuration 1: This connection is switched between delta connection and star connection, and a large torque cannot be obtained when using the delta connection, while a small torque cannot be obtained when using the star connection. , We focused on the relationship between the machining method of this Juni grinder and the torque of the electric motor. By switching to a star connection with a small value and starting operation, the magnetic loading of the motor, that is, the magnetic flux density is reduced to '/4 of the delta connection, resulting in an electric motor with extremely low electromagnetic vibration. A preferred embodiment of the present invention will be described with reference to Figures 1 to 4. Figure 1 shows a three-phase winding of a motor used in the present invention. In the figure, (1) is the U-phase winding that is connected to the R phase of the power supply during operation, with the power supply side terminal being U and the neutral point side terminal being X.
(2) is the V connected to the S phase of the power supply during operation.
In the phase winding, the power supply side terminal is >V, and the neutral point side terminals are Y and I. (3) is the W-phase winding that is connected to the power supply T phase during operation.The power supply side terminal is >W, and the neutral point side terminal is 2 (. In addition, the arrangement of the windings connected to S and T is shown, and if it is not shown in FIG.
By connecting Z, S -V -X, T -W-Y to l) J:, the motor becomes a delta connection, and
■-U, 8-V as shown in the figure. By connecting T-WOI and short-circuiting Z-X-Y, a star connection is established from ζζ.When a single electric motor configured as described above is used for grinding with a large amount of processing on a grinding machine, it is operated in a delta connection (7, When grinding with a small amount of machining, by switching to star connection and operating, the voltage applied to the U, V, and W phase windings of the motor becomes 1/V/1. , same frequency, same winding i.e. core. In an electrical load with exactly the same magnetic generation conditions, such as a wire diameter of 9 turns, the magnetic flux (magnetic load) per l contact changes the frequency by
The stator winding coefficient is +, and the number of series conductors for l stator phase is N.
+, the magnetic flux (Maxwell) per contact is Φ, and the applied voltage E1 becomes E+=2.22・f− +・N1
・Φ×lO (Hono Kano)... Represented by (1). [
, the magnetic flux (magnetic loading) per contact is proportional to the applied voltage O), and the applied voltage is also '/v''i,
In other words, in star connection, U phase winding, ■ phase winding,
The voltage applied to each winding of the W-phase winding is '/JE, which is generated in this star connection.In Figure 4, (4) is the torque curve for delta connection, and (5) is the torque curve for star connection. . (6) shows the load torque during finish grinding where the amount of machining is small. According to equation (1) above, the torque curve (5) for star connection has a magnitude of [,d]/8 compared to the torque curve (4) for delta connection, which is 8;71. Since the load torque (6) is extremely light, the star connection and [・The torque is l/31
There is no problem even if this decrease is L7.With this star connection, the operation is done by connecting each phase winding shown in Fig. 1, U phase winding (1), ■ phase winding (2), and W phase winding (3).
) The voltage applied to ) decreases to 1 / , and the magnetic loading of each of the 7 poles also decreases to ), so in the case of a three-phase induction motor, it is based on the harmonic magnetic flux that depends on the combination of the number of grooves in the soil. Excluding electromagnetic vibration and resonance with the mechanical structure system, the electromagnetic vibration that reaches the fundamental wave magnetic flux is almost proportional to the magnetic load (it can be considered that it decreases as / (71) The electromagnetic vibration has been significantly reduced) 1. Grinding The influence of electromagnetic vibration on the board can be reduced. In the above embodiment, the case where the motor is driven by commercial power is described.
A similar effect can be achieved when the motor is driven by a distorted wave power source operated by a distorted wave power source. If the windings of the motor according to this invention are star-connected, the operating efficiency will be the product of the motor efficiency and the power factor, and the product of the efficiency and power factor will be larger in the star-connected configuration. Improved operating efficiency [1. There is also a side effect of energy saving.As mentioned above, when grinding with a large amount of machining, this invention uses a three-phase winding kedelta connection to operate and machining. When finishing grinding a small amount, it is not necessary to switch to star connection.1,1 This finishing method can greatly reduce electromagnetic vibration during grinding, and can extremely reduce the shadow 4! caused by electromagnetic vibration on the grinding surface. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例にJる電#機の研削盤の駆動方
法を説明するもので、第1図は三相巻線を示すし1、第
2図はデルタ結線の接続を示す図、第3図はスター結線
の接続を示す肉、第4図はトルク特性図である。 図において、(1)はU相巻線、(2)は■相巻線、(
3)はW相巻線、(4)はデルタ結線時のトルク曲線、
(5)はスター結線時のトルク曲線、(6)は仕上げ研
削時の負荷トルクである。 代理人  葛 野 信 − 第1n 第2図 第4i 昭和  年  月  日 特許庁長官殿 1、事件の表示   特願昭58−048411号2、
発明の名称 三相誘導電動機による研削盤の駆動方法3、補正をする
者 5、補正の対象 (1)明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書中、第1頁第18行目〜第20行目に「精
密さが要求され、研削時に研削面を油砥石で研削し1こ
ときに」とあるのを[精密さが要求され、研削面を油砥
石で磨いたときに」と訂正するー (2)同第2頁第4行目に「バランス」とあるのを「残
留不平衡量」と訂正する。 (3)同第2頁第6行目、第7行目に1この電動機に発
生する」とあるのを[この電動機から発生する」と訂正
する、 (4)同第2頁第8行目、第9行目に1組立精度などに
よる機械的な振動と、磁気の発生に」とあるのを「組立
精度および残留不平衡1kt、rど(こよる機械的な振
動と、回転磁界の発生に」と訂正する、 (5)同第8頁第7行目に1トルクヶ与えるだけでよい
。」とあるのを1トルクが発生すればよい。 」と訂正する。 (6)同第5頁第6行目の[1極当りの磁束(磁気装荷
)は、」を抹消する。 (7)  同第5頁第11行目〜第13行目に[シ1コ
がってl接当りの磁束(磁気装荷)は印加電圧に比例す
るので印加される電圧も /VTとなる。 すなわちスター結線においては、」とあるのを[(1)
式により1極当りの磁束(磁気装荷)は印加電圧に比例
するのでスター結線時にはデルタ結線時の /aとなる
。ま1こ、スター結線においては、」と訂正する。 (8)  同第7頁第4行目〜第6行目に[運転効率は
[電動機効率と力率の積」とVることによ−・て「効率
と力率の積」はスター結線の方が大きくなり」とあるの
を[運転効率は[電動機効率と力率の積」と考えてよい
ので、1効率と力率の積」はスター結線の方がデルタ結
線によって軽負荷で・使用される場合より大きくなり」
と訂正する− 以上
The figures are for explaining a method of driving a grinding machine of an electric machine according to an embodiment of the present invention. , Fig. 3 shows the star connection, and Fig. 4 shows the torque characteristics. In the figure, (1) is the U-phase winding, (2) is the ■-phase winding, (
3) is the W-phase winding, (4) is the torque curve for delta connection,
(5) is the torque curve during star connection, and (6) is the load torque during finish grinding. Agent Makoto Kuzuno - No. 1n Figure 2 Figure 4i Date of Showa Year/Monday Mr. Commissioner of the Japan Patent Office 1, Indication of case Patent Application No. 1984-048411 2,
Name of the invention: Method for driving a grinding machine using a three-phase induction motor 3, Person making the amendment 5, Subject of the amendment (1) Column 6 of detailed explanation of the invention in the specification, Contents of the amendment (1) Section 1 in the specification On page 1, lines 18 to 20, it says, "Precision is required, and when grinding, the ground surface is ground with an oil stone." (2) In the fourth line of page 2, the word "balance" is corrected to "residual unbalance amount." (3) On the 6th and 7th lines of the 2nd page of the same page, correct the phrase ``Generated by this motor'' to ``The generation occurs from this motor.'' (4) On the 8th line of the 2nd page of the same page. , in the 9th line, it says "Mechanical vibrations due to assembly accuracy and generation of magnetism" is replaced with "Mechanical vibrations due to assembly accuracy and residual unbalance 1kt, r etc." (5) On page 8, line 7 of the same page, it is sufficient to apply one torque.'' is corrected to read, ``It is sufficient if one torque is generated.'' (6) On page 5 of the same page Delete [Magnetic flux (magnetic loading) per pole] in line 6. (7) Delete [magnetic flux per pole (magnetic loading)] from lines 11 to 13 on page 5 Since the magnetic flux (magnetic loading) is proportional to the applied voltage, the applied voltage is also /VT.In other words, in star connection,
According to the formula, the magnetic flux (magnetic loading) per pole is proportional to the applied voltage, so in star connection it becomes /a in delta connection. Well, in a star connection,'' I am corrected. (8) On page 7, lines 4 to 6, the operating efficiency is the product of the motor efficiency and the power factor. ``The operating efficiency can be thought of as the product of the motor efficiency and the power factor, so the product of the 1 efficiency and the power factor'' is larger with the star connection and with the delta connection, the load is lighter. Becomes larger when used
Correct that - That's all

Claims (1)

【特許請求の範囲】[Claims] 三相巻線がデルタ結線とスター結線とに切替えらねる三
相誘導電動機によって主軸が駆動さね、加工量が多く高
9荷の研削時には上記電動機はデルタ結線(こより、加
工量が少なく低負荷の研削時にはスター結線によって上
記主軸が駆動されることを特徴とてる三相誘導電rEI
I機(こよる研削盤の駆動方法。
The main shaft is driven by a three-phase induction motor whose three-phase winding is switched between delta connection and star connection. A three-phase induction electric rEI characterized in that the main shaft is driven by a star connection during grinding.
I machine (Koyoru grinding machine drive method.
JP58043411A 1983-03-16 1983-03-16 Driving method of grinding machine by 3-phase induction motor Pending JPS59169388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58043411A JPS59169388A (en) 1983-03-16 1983-03-16 Driving method of grinding machine by 3-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043411A JPS59169388A (en) 1983-03-16 1983-03-16 Driving method of grinding machine by 3-phase induction motor

Publications (1)

Publication Number Publication Date
JPS59169388A true JPS59169388A (en) 1984-09-25

Family

ID=12662988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043411A Pending JPS59169388A (en) 1983-03-16 1983-03-16 Driving method of grinding machine by 3-phase induction motor

Country Status (1)

Country Link
JP (1) JPS59169388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255599A (en) * 1988-08-19 1990-02-23 Fanuc Ltd Switchable winding type ac motor
JPH0666450A (en) * 1992-06-30 1994-03-08 Nepon Kk Fan control method of warm-air heater
JPH0666451A (en) * 1992-06-30 1994-03-08 Nepon Kk Fan control method of warm-air heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150993A (en) * 1980-04-23 1981-11-21 Daido Steel Co Ltd Controlling method for operation of induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150993A (en) * 1980-04-23 1981-11-21 Daido Steel Co Ltd Controlling method for operation of induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255599A (en) * 1988-08-19 1990-02-23 Fanuc Ltd Switchable winding type ac motor
JPH0666450A (en) * 1992-06-30 1994-03-08 Nepon Kk Fan control method of warm-air heater
JPH0666451A (en) * 1992-06-30 1994-03-08 Nepon Kk Fan control method of warm-air heater

Similar Documents

Publication Publication Date Title
Luo et al. A synchronous/permanent magnet hybrid AC machine
Heikkilä Permanent magnet synchronous motor for industrial inverter applications-analysis and design
Zhao et al. A new slot-PM vernier reluctance machine with enhanced zero-sequence current excitation for electric vehicle propulsion
Ohdachi et al. Optimum design of switched reluctance motors using dynamic finite element analysis
JP4629659B2 (en) Synchronous electric machine having one stator and at least one rotor and related control device
Radimov et al. Switched reluctance machines as three-phase AC autonomous generator
CN105009445B (en) Electric rotating machine drive device
US20240006967A1 (en) Field winding type rotating electric machine
JPS59169388A (en) Driving method of grinding machine by 3-phase induction motor
US3210644A (en) Dynamo electric machine
JPS6117240B2 (en)
Hidaka et al. A novel variable flux permanent magnet synchronous motor with separately excited field winding
Liu et al. Influence of gear ratio on electromagnetic performance and geometries of vernier permanent magnet synchronous machines
Ojeda et al. Comparison of 3-phase and 5-phase high speed synchronous motor for EV/HEV applications
JP4622897B2 (en) Rotating electric machine stator
JP2005057941A (en) Rotary electric machine
RU2249290C1 (en) Composite stator winding of induction generator
Fujii et al. Radial force harmonics reduction of ipm motor by injection of zero-sequence harmonic current
Meeker et al. Doubly salient synchronous generator for gas turbine engines
US3714542A (en) Excitation system for a synchronous machine
Cao et al. Comparative study of permanent-magnet vernier motor and interior permanent-magnet motor for hybrid electric vehicles
JPH0516867Y2 (en)
JPH01103143A (en) Self-excited brushless synchronous motor
Pohl et al. Low torque ripple synchronous reluctance machine with stator cage winding
JPS63194546A (en) Excitation switching reluctance motor