JPS59169100A - Ion energy recovering device - Google Patents

Ion energy recovering device

Info

Publication number
JPS59169100A
JPS59169100A JP58042345A JP4234583A JPS59169100A JP S59169100 A JPS59169100 A JP S59169100A JP 58042345 A JP58042345 A JP 58042345A JP 4234583 A JP4234583 A JP 4234583A JP S59169100 A JPS59169100 A JP S59169100A
Authority
JP
Japan
Prior art keywords
recovery
temperature
electrode
energy
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58042345A
Other languages
Japanese (ja)
Other versions
JPH0422000B2 (en
Inventor
英樹 吉田
清 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58042345A priority Critical patent/JPS59169100A/en
Publication of JPS59169100A publication Critical patent/JPS59169100A/en
Publication of JPH0422000B2 publication Critical patent/JPH0422000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、イオンのエネルギーを電流として回収する
イオン・エネルギー回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an ion energy recovery device that recovers ion energy as an electric current.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イオン・エネルギー回収装置は、例えばグッズマ加熱用
の中性粒子入射装置(NBI)における、非中性化イオ
ンのエネルギー回収に用いられる。
The ion energy recovery device is used, for example, to recover the energy of non-neutralized ions in a neutral particle injection device (NBI) for heating the goods.

第1図に、エネルギー回収装置を具備したNBIを示す
。放電室lからひきだされたイオンは、加速電極2の間
を通過する際に加速されて、高エネルギーのイオンにな
る。その後、比較的圧力の高い中性ガスでみたされた中
性化セル3を通過する際に中性分子との間に荷電交換を
おこして、高速の中性粒子を得る。しかし、この中性化
の効率はエネルギーがあがるにしたがい低下する。中性
化されなかったイオンは、各所の容器壁などに衝突し、
そのエネルギーは空費されてしまう。そのため、同図に
示すエネルギー回収装置4を設置して、残留イオンのエ
ネルギーを回収して、器壁の損傷を防ぐとともに、電流
として再利用する。
FIG. 1 shows an NBI equipped with an energy recovery device. Ions extracted from the discharge chamber 1 are accelerated when passing between the accelerating electrodes 2 and become high-energy ions. Thereafter, when passing through a neutralization cell 3 filled with relatively high-pressure neutral gas, charge exchange occurs between the particles and neutral molecules to obtain high-speed neutral particles. However, the efficiency of this neutralization decreases as the energy increases. The ions that are not neutralized collide with various parts of the container walls, etc.
That energy is wasted. Therefore, an energy recovery device 4 shown in the figure is installed to recover the energy of the residual ions to prevent damage to the vessel wall and to reuse it as an electric current.

この回収装置は、回収電極5の前後に同電極への電子の
流入を防止するだめの電子抑制電極6゜7が設置される
。このときのビーム軸にそっての電位分布9を中性化セ
ルを接地した場合を第1図に例示した。このときには、
6.7に負電位を与えることにより、回収装置域の外で
生まれた電子に対して静電障壁が形成される。
In this recovery device, electron suppression electrodes 6 and 7 are installed before and after the recovery electrode 5 to prevent electrons from flowing into the electrode. The potential distribution 9 along the beam axis at this time is illustrated in FIG. 1 when the neutralization cell is grounded. At this time,
By applying a negative potential to 6.7, an electrostatic barrier is formed against electrons generated outside the collection device area.

ところが、゛回収装置内においても、中性ガスとイオン
ビームとの衝突によって荷電粒子が生成される。このう
ち、イオンは、その大半が、6,7にあつめられ熱負荷
となる。その値を試算してみる。100KeVのHビー
ムを1OKeVの残留エネルギーで回収することを考え
る。電子抑制電圧を一5QKVとし、回収域の電場強度
を7KV76nbとし回収領域の圧力をl X l O
−’Torrとするとイオンパワーは高速イオンの入射
パワーの約2%になる。この値自身は、無視することは
できないが、回収装置全体の損失から許容されると考え
られる。しかし、イオン照射をうけた電極は電子を放出
して新たな損失源となる。しかも、その際、放出電子数
は、入射イオン数より多くなる。たとえば、モリブデン
電極を用いると、電子放出係数は、概ね3個/イオンで
ある。したがって、この放出電子が回収電極に衝突する
と、その損失は、高速イオンの入射パワーの8.4%に
も選し、高速イオンの回収時のパワーが、入射時の10
%であることを考えるとこの損失は深刻である。
However, even within the recovery device, charged particles are generated due to the collision between the neutral gas and the ion beam. Of these, most of the ions are concentrated in 6 and 7 and become a heat load. Let's try calculating that value. Consider recovering a 100 KeV H beam with a residual energy of 1 OKeV. The electron suppression voltage is -5QKV, the electric field strength in the recovery area is 7KV76nb, and the pressure in the recovery area is l X l O.
-'Torr, the ion power is approximately 2% of the incident power of high-speed ions. Although this value itself cannot be ignored, it is considered acceptable from the loss of the entire recovery device. However, the ion-irradiated electrode emits electrons, creating a new source of loss. Moreover, in this case, the number of emitted electrons becomes greater than the number of incident ions. For example, when a molybdenum electrode is used, the electron emission coefficient is approximately 3 pieces/ion. Therefore, when these emitted electrons collide with the recovery electrode, the loss is selected to be 8.4% of the incident power of the fast ions, and the power during recovery of the fast ions is 10% of the incident power.
%, this loss is serious.

しかるに、イオン照射を受けた電極は電子以外に電極表
面及び内部から吸着ガスを放出して上記中性ガスを急激
に増加させる。これら二次的な荷電粒子による損失を低
減するには、圧力の低下を図ればよいが、この要求は、
排気ポンプに巨大な容量を求めることになる。
However, in addition to electrons, the ion-irradiated electrode releases adsorbed gas from the surface and inside of the electrode, causing the neutral gas to rapidly increase. In order to reduce losses due to these secondary charged particles, it is possible to lower the pressure, but this requirement
This requires a huge capacity for the exhaust pump.

し発明の目的〕 本発明は、このような事情に鑑みてなされたもので、エ
ネルギー回収電極の損失をおさえ、効率の良いイオン・
エネルギー回収装置を提供することを目的とする。
OBJECT OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to reduce the loss of energy recovery electrodes and to provide efficient ion
The purpose is to provide an energy recovery device.

し発明の概要〕 本発明は高速イオンを静電場によって減速し、電流とし
て回収することによりイオンのもつ運動エネルギーを電
気エネルギーに変換するイオン・エネルギー回収装置に
於いて、回収電極表面及び内部から放出される吸着ガス
をイオン源運転中少なくするためのベーキング機能を、
高速イオンのエネルギー損失により回収電極が加熱され
ることを利用して、回収電極を冷却する冷媒の出口温度
を計測する湿層モニターと冷媒の流量を調整する流量調
整器とから回収電極温度をベーキング可能範囲になるよ
うに冷媒流量を制御して実現することを特徴するイオン
・エネルギー回収装置である。
Summary of the invention] The present invention is an ion energy recovery device that converts the kinetic energy of ions into electrical energy by decelerating fast ions using an electrostatic field and collecting them as an electric current. Baking function to reduce adsorbed gas during ion source operation.
Using the fact that the recovery electrode is heated due to the energy loss of fast ions, the temperature of the recovery electrode is baked using a wet layer monitor that measures the exit temperature of the refrigerant that cools the recovery electrode and a flow rate regulator that adjusts the flow rate of the coolant. This is an ion energy recovery device that is realized by controlling the refrigerant flow rate to within a possible range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡単な構成でエネルギー回収電極の放
出ガスによる損失を低減でき効率の良い装置を構成でき
る。
According to the present invention, it is possible to construct an efficient device that can reduce loss due to gas released from the energy recovery electrode with a simple configuration.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を詳細に説明する。なお従来装置と
その構成が同一の部分については同一符号を附けてその
説明を省略する。特に本発明が従来装置と比較できる点
は、回収電極の温度を300℃程度のベーキング可能範
囲になるように冷媒の流量を調整することにより回収電
極のベーキングができることに注目したことである。第
2図の例では、回収電極5のイオン照射の回収損失加熱
を防止するために冷却パイプ10が設けられ、パイプ中
を冷媒が流れていることを示している。回収電極5側の
冷却パイプ10の電位は回収電極5と同じになっている
ことから、冷却パイプ10は途中から絶縁性の接続具1
4で継ぎ換えである。入口側から流入した冷媒はイオン
照射中回収電極5で加熱されて出口側から流出する。出
口側の冷媒の温−変化を温度モニター11で計測して温
度データを向収電極温度制抑器13に転送する。温度制
抑器13は受は取った温度データからあらかじめ求めて
おいた冷轢温度変化と回収電極温度との対応表から回収
電極5の温度を求める。求まった回収電極5の温度力゛
S aoo度程度のベーキング可能範囲以下であれば、
流量調整器I2の流量弁を調整して冷媒の流速を遅め回
収電極5の温度を上げる。逆に、上記温度が高すぎて回
収電極5が破損する恐れがあるときは、流量弁を調整し
て冷媒の流速を速めて回収電極5の温度を下げる。以上
のように冷媒の流量を調整して回収電極5の温度をベー
キング可能範囲に保つことにより回収電極5のベーキン
グを実行する。ベーキングされた回収電極5がイオン照
射による吸着ガスの放出による回収効率低下を示さなく
なることは先に述べたとおりである。このように構成す
ることによりベーキングが可能になることから、ベーキ
ング用のヒータ等の必要がなくなり装置を小型化できる
Examples of the present invention will be described in detail below. Note that the same reference numerals are given to the parts having the same configuration as those of the conventional device, and the explanation thereof will be omitted. In particular, the present invention can be compared with conventional devices in that it focuses on the ability to bake the recovery electrode by adjusting the flow rate of the refrigerant so that the temperature of the recovery electrode falls within the baking range of about 300°C. In the example shown in FIG. 2, a cooling pipe 10 is provided to prevent recovery loss heating due to ion irradiation of the recovery electrode 5, and a coolant flows through the pipe. Since the potential of the cooling pipe 10 on the side of the recovery electrode 5 is the same as that of the recovery electrode 5, the cooling pipe 10 is connected to the insulating connector 1 from the middle.
4 is a replacement. The coolant flowing in from the inlet side is heated by the recovery electrode 5 during ion irradiation and flows out from the outlet side. The temperature change of the refrigerant on the outlet side is measured by a temperature monitor 11, and the temperature data is transferred to the counter-electrode temperature suppressor 13. The temperature suppressor 13 determines the temperature of the recovery electrode 5 from a correspondence table between the cold road temperature change and the recovery electrode temperature, which has been determined in advance from the collected temperature data. If the determined temperature force of the recovery electrode 5 is below the bakeable range of approximately Saoo degrees,
The flow rate valve of the flow regulator I2 is adjusted to slow down the flow rate of the refrigerant and raise the temperature of the recovery electrode 5. Conversely, if the temperature is too high and there is a risk of damage to the recovery electrode 5, the flow rate valve is adjusted to increase the flow rate of the refrigerant to lower the temperature of the recovery electrode 5. As described above, the recovery electrode 5 is baked by adjusting the flow rate of the refrigerant to maintain the temperature of the recovery electrode 5 within a baking possible range. As described above, the baked recovery electrode 5 no longer exhibits a decrease in recovery efficiency due to release of adsorbed gas due to ion irradiation. Since baking is possible with this configuration, there is no need for a heater or the like for baking, and the apparatus can be downsized.

本発明は、平板状のビームを用い、しかも、回収電極中
央に開口部のある、NBI用の(°イン・ラーイン型”
について説明したが、ビーム形状によらないことはもち
ろんのこと、NBI用エネルギー回収装置に限定される
ことなく、一般的な、高速イオンのエネルギー回収装置
に適用できる。
The present invention uses a flat beam and has an opening in the center of the collection electrode (in-line type) for NBI.
Although this has been described, it is not dependent on the beam shape, and is not limited to the energy recovery device for NBI, but can be applied to general energy recovery devices for fast ions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエネルギー回収装置をもつNBI装置の構成図
、第2図は本発明の実施例を示す要部図である。 l・・・放電室     2・・・加速電極3・・・中
性化セル    4・・・エネルギー回収装置5・・・
回収電極    6.7・・・電子抑制電極8・・・ド
リフト管   lO・・・冷却パイプ11・・・温度モ
ニター  12・・・流量調整器13・・・回収電極温
度制抑器 代理人弁理士 則 近 憲 佑 (はが1名)第  2
 図
FIG. 1 is a block diagram of an NBI device having an energy recovery device, and FIG. 2 is a diagram of main parts showing an embodiment of the present invention. l...discharge chamber 2...acceleration electrode 3...neutralization cell 4...energy recovery device 5...
Recovery electrode 6.7... Electron suppression electrode 8... Drift tube lO... Cooling pipe 11... Temperature monitor 12... Flow rate regulator 13... Recovery electrode temperature suppressor agent patent attorney Kensuke Noriyuki (1 person) 2nd
figure

Claims (1)

【特許請求の範囲】[Claims] 高速イオンを靜亀場によって減速し、イオンの有する運
動エネルギーを電気エネルギーに変換して回収するイオ
ン・エネルギー回収装置に於いて、回収電極中を通過し
た冷媒の温度を計測する温度モニタと冷媒の流量を調整
する流量調整器と、冷媒の温度から回収電極の温度を求
めて回収電極温度をベーキング可能温度範囲になるよう
に冷媒の流量を調整する回収電極温度制抑機能を具備し
てなることを特徴とするイオン・エネルギー回収装置。
In an ion energy recovery device that decelerates high-speed ions using a quiet field and converts the kinetic energy of the ions into electrical energy for recovery, there is a temperature monitor that measures the temperature of the coolant that has passed through the recovery electrode and a flow rate of the coolant. and a recovery electrode temperature suppression function that determines the temperature of the recovery electrode from the refrigerant temperature and adjusts the flow rate of the refrigerant so that the temperature of the recovery electrode falls within the baking temperature range. Characteristic ion energy recovery device.
JP58042345A 1983-03-16 1983-03-16 Ion energy recovering device Granted JPS59169100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042345A JPS59169100A (en) 1983-03-16 1983-03-16 Ion energy recovering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042345A JPS59169100A (en) 1983-03-16 1983-03-16 Ion energy recovering device

Publications (2)

Publication Number Publication Date
JPS59169100A true JPS59169100A (en) 1984-09-22
JPH0422000B2 JPH0422000B2 (en) 1992-04-14

Family

ID=12633429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042345A Granted JPS59169100A (en) 1983-03-16 1983-03-16 Ion energy recovering device

Country Status (1)

Country Link
JP (1) JPS59169100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629423B1 (en) 1999-07-27 2003-10-07 Tokyo Electron Limited Processor and temperature control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629423B1 (en) 1999-07-27 2003-10-07 Tokyo Electron Limited Processor and temperature control method therefor

Also Published As

Publication number Publication date
JPH0422000B2 (en) 1992-04-14

Similar Documents

Publication Publication Date Title
EP0110504B1 (en) Beam direct converter
Denpoh et al. Self-consistent particle simulation of radio frequency CF4 discharge: effect of gas pressure
JPS59169100A (en) Ion energy recovering device
EP0055452B1 (en) Neutral beam injector
US4588955A (en) Transverse field focused system
US3327090A (en) Dichromatic electron beam device
US3663852A (en) Double cell high intensity ion source
JPS5918840B2 (en) ion source
JPS58220399A (en) Ion beam energy recovering device
JPS6065499A (en) Ion energy recovering device
JPH07142020A (en) Electron beam exciting negative ion source and negative ion generating method
JPS5960898A (en) Ion energy recovering device
Dougar‐Jabon et al. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources
JPS59169099A (en) Ion energy recovering device
Makarov et al. Why does a low-pressure wire-discharge exist self-sustained?
JPS648920B2 (en)
JPS60182700A (en) Ion energy recoverying device
Turner et al. Gas pressure in the end plug regions of the TMX‐U thermal barrier experiment
JPH0747840Y2 (en) Tandem accelerator
JPS60182698A (en) Ion energy recoverying device
Penetrante et al. Computer predictions of ‘‘evaporative’’cooling of highly charged ions in EBIT
JPS61124029A (en) High frequency ion source
JPS60182696A (en) Ion energy recoverying device
JP2939779B2 (en) Storage ring
Zavjalov et al. Problems of cathode design and breakdown avoidance relevant to high-power broadband gas-plasma-filled microwave sources