JPS59168304A - Surface-shape measuring device - Google Patents

Surface-shape measuring device

Info

Publication number
JPS59168304A
JPS59168304A JP4151283A JP4151283A JPS59168304A JP S59168304 A JPS59168304 A JP S59168304A JP 4151283 A JP4151283 A JP 4151283A JP 4151283 A JP4151283 A JP 4151283A JP S59168304 A JPS59168304 A JP S59168304A
Authority
JP
Japan
Prior art keywords
sensor
sample
disturbance
detection output
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151283A
Other languages
Japanese (ja)
Inventor
Naoto Akaha
赤羽 尚登
Muneyoshi Ochi
越智 宗義
Taiji Matsumoto
泰治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4151283A priority Critical patent/JPS59168304A/en
Publication of JPS59168304A publication Critical patent/JPS59168304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces

Abstract

PURPOSE:To measure the shape of a surface highly accurately without effects of disturbance such as vibration and noises, by additionally using an auxiliary sensor, which detects only background noises caused by the disturbance. CONSTITUTION:The tip of the probe of a sensor 2 is contacted and fixed to the surface of a sample 1 and detects only background noises. The vicinity of the fixed position of said sensor 2 is scanned by the tip of the probe of a sensor 3, and the surface roughness corresponding to the shape of the surface and the background noises are detected. The detected outputs from the sensors 2 and 3 are fed to a signal processing circuit 6 through amplifiers 4 and 5, and subtraction and the like are performed in the circuit 6. Thus the measurement of the surface shape can be performed highly accurately without the effects of disturbance such as vibration and noises.

Description

【発明の詳細な説明】 本発明は、試料の表面の粗さ、うねり、試料の輪郭など
試料の面形状を計測するに好適な計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device suitable for measuring the surface shape of a sample, such as surface roughness, waviness, and outline of the sample.

従来、磁気テープなどの試料の表面粗さを計測する装置
としては、たとえは、触針を有するセンサを具備し、こ
の触針の先端を磁気テープの表面に当接させてセンサを
移動せしめ、該センサから試料表面の凹凸を表わすデー
タ信号を得るようにした計測装置が知られている。
Conventionally, a device for measuring the surface roughness of a sample such as a magnetic tape is equipped with a sensor having a stylus, and the sensor is moved by bringing the tip of the stylus into contact with the surface of the magnetic tape. A measuring device is known in which a data signal representing the unevenness of a sample surface is obtained from the sensor.

ところで、かが7る(来の計′6a+装置によると、振
動、騒音などの外乱によって、センサや試料などが影響
を受け、センサからの検出出力信号には、試料の表面粗
さを表わすデータ信号に外乱によるノイズ(以下、バッ
クグランドノイズという)が混入したものとなり、計測
精度が大幅に低下することになる。
By the way, according to the current Kaga7a+ device, the sensor and sample are affected by disturbances such as vibration and noise, and the detection output signal from the sensor contains data representing the surface roughness of the sample. Noise due to disturbance (hereinafter referred to as background noise) is mixed into the signal, and measurement accuracy is significantly reduced.

そこで、かかる外乱による計測精度の低下を防止するた
めに、外乱が生する環境の下で高精度の計測を行なう場
合には、試料を除振台上や防音ケース内に設けて計d)
11を行なっていた。しかしながら、超鏡面仕上げされ
た試料の表面粗さなどを計測する場合には、除伽台や防
音ケースを用いても、工場内のように、振動や騒音が比
較的大きい環境内では、充分な計測精度を得ることがで
きない。
Therefore, in order to prevent the measurement accuracy from decreasing due to such disturbances, when performing high-precision measurements in an environment where disturbances occur, the sample should be placed on a vibration isolation table or in a soundproof case.
I was doing 11. However, when measuring the surface roughness of a sample with an ultra-mirror finish, even if you use a stand or a soundproof case, it may not be sufficient in an environment with relatively large vibrations and noise, such as in a factory. Unable to obtain measurement accuracy.

また、特に、非常に大きな試料の表面状態を計測する揚
台には、その試料が作られた工場内で行なう必要性が多
く、このために、外乱が大きい上に、防振台や防音ケー
スなどを用いることができない場合が往々にしてあって
計測不能となるなどの欠点があった。
In addition, in particular, it is often necessary to use a lifting platform to measure the surface condition of a very large sample within the factory where the sample was manufactured, which causes large external disturbances and requires the use of a vibration-isolating platform or sound-proof case. There are many cases where it is not possible to use the method, which has the disadvantage of making measurement impossible.

本発明の目的は、上記従来技術の欠点を除き、振動、騒
音などの外乱に影響されることなく、高い精度で計測を
可能とした面形状計測装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface shape measuring device that eliminates the drawbacks of the prior art described above and enables highly accurate measurement without being affected by disturbances such as vibration and noise.

この目的を達成するために、本発明は、外古りによるバ
ックグランドノイズのみを検出する補助センサを設け、
該補助センサの検出出力信号により、試料を掃引するセ
ンサの検出出力信号からノ(・ツクグランドノイズを相
殺し、該試料の面形状を表わすデータ信号を得るように
した点に特徴がある。
To achieve this objective, the present invention provides an auxiliary sensor that detects only background noise due to external aging,
The feature is that ground noise is canceled out from the detection output signal of the sensor that sweeps the sample by the detection output signal of the auxiliary sensor, and a data signal representing the surface shape of the sample is obtained.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

図は本発明による面形状計測装置の一実施例を示す構成
図であって、1は試料、2,3はセンサ、4.5は増幅
回路、6は信号処理回路、7は出力端子である。
The figure is a configuration diagram showing an embodiment of the surface shape measuring device according to the present invention, in which 1 is a sample, 2 and 3 are sensors, 4.5 is an amplifier circuit, 6 is a signal processing circuit, and 7 is an output terminal. .

この実施例では、触針式面粗さ計を例にとって説明する
This embodiment will be explained using a stylus type surface roughness meter as an example.

同図において、センサ2は、静止している試料1の表面
に触針の先端が当接されて固定されており、バックグラ
ンドノイズのみを検出する補助センサである。センサ3
は、試料1の表面に触針の先端が当接され、試料1の表
面に平行に移動可能であって、試料1の表面の凹凸に応
じた信号を発生する。これらセンサ2,3は同一特性を
有し、かつ、極めて接近して配置されており、センサ2
の設定位置が決まると、その近傍をセンサ3が移動して
試料1の表面を掃引する。がかる掃引が完了すると、試
料1を移動させてセンサ2を試料1の表面上の新たな位
置に設定し、その近傍を再度センサ3で掃引する。この
ようにして、センサ3により、試料1の表面全体が掃引
される。
In the figure, a sensor 2 is fixed with the tip of a stylus touching the surface of a stationary sample 1, and is an auxiliary sensor that detects only background noise. sensor 3
The tip of the stylus is brought into contact with the surface of the sample 1, is movable parallel to the surface of the sample 1, and generates a signal corresponding to the unevenness of the surface of the sample 1. These sensors 2 and 3 have the same characteristics and are arranged very close to each other.
Once the setting position is determined, the sensor 3 moves in the vicinity and sweeps the surface of the sample 1. When such a sweep is completed, the sample 1 is moved, the sensor 2 is set at a new position on the surface of the sample 1, and the vicinity thereof is again swept with the sensor 3. In this way, the sensor 3 sweeps the entire surface of the sample 1.

ところで、いま、外乱により、試料1やセンサ2.3が
振動すると、センサ2がらは外乱にょるバンクグランド
ノイズのみが検出出力信号として得られ、また、センサ
3がらは、センサ3がセンサ2に極めて近接しているこ
とがら、試料1の表面粗さを表わすデータ信号にセンサ
2で検出されるバックグランドノイズと同様のバックグ
ランドノイズが混入した検出出力信号が得られる。
By the way, when the sample 1 and the sensors 2 and 3 vibrate due to a disturbance, the sensor 2 obtains only the bank ground noise caused by the disturbance as a detection output signal, and the sensor 3 obtains only the bank ground noise caused by the disturbance as a detection output signal. Because they are very close to each other, a detection output signal is obtained in which background noise similar to the background noise detected by the sensor 2 is mixed into the data signal representing the surface roughness of the sample 1.

センサ2,3からの検出出力信号は、夫々増幅回路4,
5に供給されて夫々の検出出力信号のバックグランドノ
イズのレベルが一致するように増幅され、信号処理回路
6に供給される。信号処理回路6は、増幅回路5の出力
信号から増幅回路4の出力信号を減算する。この結果、
センサ3の検出出力信号からバックグランドノイズが相
殺され、出力端子7にはバンクグランドノイズか除゛去
された上記データ信号が得られる。このデータ信号は、
従来の計測装置と同様に処理されて試料1の表面粗さが
計測され・る。
The detection output signals from the sensors 2 and 3 are sent to amplifier circuits 4 and 3, respectively.
5 and are amplified so that the background noise levels of the respective detection output signals match, and are supplied to a signal processing circuit 6. The signal processing circuit 6 subtracts the output signal of the amplifier circuit 4 from the output signal of the amplifier circuit 5. As a result,
The background noise is canceled out from the detection output signal of the sensor 3, and the data signal from which the bank ground noise has been removed is obtained at the output terminal 7. This data signal is
The surface roughness of the sample 1 is measured by processing in the same manner as with a conventional measuring device.

次に、この実施例を用いて試料の表面粗さを計測した結
果を、他の計測装置による計測結果と比較して示す。
Next, the results of measuring the surface roughness of a sample using this example will be shown in comparison with the results of measuring using other measuring devices.

試料としては、工作場内に設置された研削盤でもって異
なる精度の鏡面仕上げされた2種のハードクロムメッキ
金属板を用い、これらを試料A。
As samples, we used two types of hard chrome-plated metal plates that were polished to a mirror finish with different precision using a grinder installed in the workshop, and these were designated as Sample A.

試料おとした。The sample was dropped.

(a)  との実施例を用いた計測 試料A、Bは研削盤で鏡面仕上げした後、研削盤にその
まま載置しておぎ、外乱が大きい環境の中でこの実施例
を備えた表面粗さ計を用いて夫々の表面粗さの計測を行
なった。
Measurement samples A and B using Example (a) were polished to a mirror finish using a grinder, and then placed on the grinder as they were. The surface roughness of each was measured using a meter.

(b)  比較例1 上記(a)と同一条件のもとに、従来の表面粗さ計を用
いて夫々の試料の表面粗さの計測を行なった。
(b) Comparative Example 1 The surface roughness of each sample was measured using a conventional surface roughness meter under the same conditions as in (a) above.

(C)  比較例2 試料A、Bの一部を切り取って夫々除振台、防音ケース
を装備した計測専用室内に取りつけ、外乱が極めて小さ
くした状態で、上記(b)と同様に、従来の表向粗さ計
を用いて夫々の試料の表面粗さの白十枳11を行なった
(C) Comparative Example 2 Parts of Samples A and B were cut out and installed in a dedicated measurement room equipped with an anti-vibration table and a soundproof case, respectively, and the conventional The surface roughness of each sample was measured using a surface roughness meter.

なお、従来の表面粗さ計とは、先に従来技術として説明
した標準的な訂d(1]装置である。
Note that the conventional surface roughness meter is the standard correction d(1) device described above as the prior art.

以上の計測によって得られた夫々の粗さ断面曲線からR
a値を求めた。計測毎および試、料毎のRa値を次の表
に示す。
From each roughness cross-sectional curve obtained by the above measurements, R
The a value was determined. The following table shows the Ra value for each measurement, sample, and sample.

上表から明らかなように、実施例を用いて計6)1[し
た場合には、比較例2と同じ計測結果が得られることに
なる。比較例2はほとんど外乱がない状態での計測であ
るから、実施例を用いると、外乱が大きくても、外乱が
ない環境のもとでの計測と同様の結果が得られることに
なる。
As is clear from the above table, if a total of 6) 1[ was performed using the example, the same measurement results as Comparative Example 2 would be obtained. Comparative Example 2 is a measurement in a state where there is almost no disturbance, so if the example is used, even if the disturbance is large, results similar to measurements in an environment without disturbance can be obtained.

なお、上記実施例では、センザ゛之して触針式のセンサ
を用いたか、光学式グローブなどの他の原理によるセン
サを用いることができ、同様の効果を得ることができる
ことは百5までもない。
In addition, in the above embodiment, a stylus-type sensor was used as the sensor, or a sensor based on another principle such as an optical glove could be used, and it is possible to obtain the same effect. do not have.

また、上記実施例では、表面の粗さを計測する場合につ
いて説明したが、うねりや輪郭などの他の面形状の計測
にも同様に用いることができることは明らかであるし、
また、掃引用のセンサ(図のセンサ3)としては、複数
個を用いてもよい。
Furthermore, in the above embodiment, the case of measuring surface roughness was explained, but it is clear that it can be similarly used to measure other surface shapes such as undulations and contours.
Further, a plurality of sensors for sweeping (sensor 3 in the figure) may be used.

以上説明したように、本発明によれば、外乱によるバッ
クグランドノイズが除かれて高いS/Nの試料の面形状
を表わすデータ信号を得ることができ、外乱に影響され
ず任意の環境のもとで極めて篩い精度の計測を実現する
ことができるものであって、上記従来技術の欠点を除い
て優れた機能の面形状計測装置を提供することができる
As explained above, according to the present invention, it is possible to obtain a data signal representing the surface shape of a sample with a high S/N ratio by removing background noise caused by disturbance, and it is possible to obtain a data signal representing the surface shape of a sample with a high S/N ratio. Accordingly, it is possible to realize measurement with extremely high sieving accuracy, and it is possible to provide a surface shape measuring device with excellent functions by eliminating the drawbacks of the above-mentioned conventional techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による面形状計6;1j装置の一実施例を示
す構成図である。 1・・・・・試料、2,3・・・・・・センサ、4,5
・・・・・・増幅回路、6・・・・・・信号処理回路。
The figure is a configuration diagram showing an embodiment of the surface shape meter 6; 1j device according to the present invention. 1...Sample, 2,3...Sensor, 4,5
...Amplification circuit, 6...Signal processing circuit.

Claims (1)

【特許請求の範囲】[Claims] 試料に関して相対的に変位するセンサを具備し、該セン
サによって該試料を掃引することにより、該試料の面形
状を表わすデータ信号を得るようにした面形状計測装置
において、バックグランドノイズを検出する補助センサ
と、前記センサおよび該補助センサからの検出出力信号
が供給され前記センサの検出出力信号から該補助センサ
からの検出出力信号を差し引く信号処理回路とを設け、
該信号処理回路は、前記センサからの検出出力信号に混
入せる前記バックグランドノイズを相殺し、前記データ
信号f:得ることができるように構成したことを特徴と
する面形状計測装置。
An aid for detecting background noise in a surface shape measuring device that is equipped with a sensor that is displaced relative to the sample, and that sweeps the sample with the sensor to obtain a data signal representing the surface shape of the sample. a sensor, and a signal processing circuit that is supplied with detection output signals from the sensor and the auxiliary sensor and subtracts the detection output signal from the auxiliary sensor from the detection output signal of the sensor,
A surface shape measuring device characterized in that the signal processing circuit is configured to cancel out the background noise mixed in the detection output signal from the sensor and obtain the data signal f:.
JP4151283A 1983-03-15 1983-03-15 Surface-shape measuring device Pending JPS59168304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151283A JPS59168304A (en) 1983-03-15 1983-03-15 Surface-shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151283A JPS59168304A (en) 1983-03-15 1983-03-15 Surface-shape measuring device

Publications (1)

Publication Number Publication Date
JPS59168304A true JPS59168304A (en) 1984-09-22

Family

ID=12610423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151283A Pending JPS59168304A (en) 1983-03-15 1983-03-15 Surface-shape measuring device

Country Status (1)

Country Link
JP (1) JPS59168304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140411A (en) * 1988-11-21 1990-05-30 Honda Motor Co Ltd Muffler
JPH0542623U (en) * 1991-11-13 1993-06-11 株式会社三五 Sub muffler for internal combustion engine
JP2000310527A (en) * 1999-04-27 2000-11-07 Mitsutoyo Corp Surface-properties measuring device
WO2009019513A1 (en) * 2007-08-03 2009-02-12 Infinitesima Ltd Vibration compensation in probe microscopy
WO2016134893A1 (en) * 2015-02-25 2016-09-01 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining the measurement conditions of a roughness sensor, method for measuring the roughness of a workpiece surface, computer program product, and measuring device designed to perform the methods
US10837752B2 (en) 2015-05-20 2020-11-17 Carl Zeiss Industrielle Messtechnik Gmbh Method for capturing dynamic vibrations of a roughness sensor, method for measuring a roughness of a workpiece surface, computer program product and measuring device configured to carry out the methods
DE102022202996A1 (en) 2022-03-28 2023-01-12 Carl Zeiss Smt Gmbh Measuring method and measuring device for measuring surface roughness

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140411A (en) * 1988-11-21 1990-05-30 Honda Motor Co Ltd Muffler
JPH0542623U (en) * 1991-11-13 1993-06-11 株式会社三五 Sub muffler for internal combustion engine
JP2000310527A (en) * 1999-04-27 2000-11-07 Mitsutoyo Corp Surface-properties measuring device
DE10020734B4 (en) * 1999-04-27 2008-10-02 Mitutoyo Corp., Kawasaki Surface texture measuring device
WO2009019513A1 (en) * 2007-08-03 2009-02-12 Infinitesima Ltd Vibration compensation in probe microscopy
US8220066B2 (en) 2007-08-03 2012-07-10 Infinitesima Ltd. Vibration compensation in probe microscopy
WO2016134893A1 (en) * 2015-02-25 2016-09-01 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining the measurement conditions of a roughness sensor, method for measuring the roughness of a workpiece surface, computer program product, and measuring device designed to perform the methods
JP2017537322A (en) * 2015-02-25 2017-12-14 カール・ツアイス・インダストリーエレ・メステクニク・ゲーエムベーハー Method for determining the measurement conditions of a roughness sensor, method for measuring the roughness of a workpiece surface, computer program product and measuring device designed to carry out the method
US9982987B2 (en) 2015-02-25 2018-05-29 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining measurement conditions of a roughness sensor, method for measuring a roughness of a workpiece surface, computer program product, and measuring device designed to perform the methods
US10837752B2 (en) 2015-05-20 2020-11-17 Carl Zeiss Industrielle Messtechnik Gmbh Method for capturing dynamic vibrations of a roughness sensor, method for measuring a roughness of a workpiece surface, computer program product and measuring device configured to carry out the methods
DE102022202996A1 (en) 2022-03-28 2023-01-12 Carl Zeiss Smt Gmbh Measuring method and measuring device for measuring surface roughness

Similar Documents

Publication Publication Date Title
Sherrington et al. Modern measurement techniques in surface metrology: part I; stylus instruments, electron microscopy and non-optical comparators
Haitjema Uncertainty analysis of roughness standard calibration using stylus instruments
JPS59168304A (en) Surface-shape measuring device
US4169980A (en) Method and apparatus for interference fringe center sensing
Spragg Paper 32: Accurate Calibration of Surface Texture and Roundness Measuring Instruments
Neugebauer Uncertainty analysis for roundness measurements by the example of measurements on a glass hemisphere
Veldman Implementation of an accelerometer transverse sensitivity measurement system
JPS59168305A (en) Surface-shape measuring device
JP2979769B2 (en) Silicon wafer thickness sorting method
JPS582361B2 (en) Heikinkeishiya Savenjiyokiyasouchi
JP2885422B2 (en) Shape evaluation device and shape evaluation method
Thalmann Basics of highest accuracy roundness measurement
JPS586458A (en) Hot eddy current flaw detecting method of steel material
CN111650283B (en) Method for positioning residual stress peak value based on acoustic emission technology
JP3009345B2 (en) Measuring instrument whose detection range is set from outside and automatic processing system using it
JPS5819987B2 (en) AE
RU2107257C1 (en) Device for measuring of flat article thickness and method of its realization
He et al. Acoustoelastic determination of residual stress with laser doppler velocimetry
Afridi et al. Shock Measurements Based on Pendulum Excitation and Laser Doppler Velocimetry: Primary Calibration by SI-Traceable Distance Measurements
JPH0353111A (en) Measuring instrument
Jordan et al. Complex Piezoelectric Coefficients of PZT Ceramics: Method for Direct Measurement of d 33
Veldman Accelerometer transverse sensitivity calibration; validation and uncertainty estimation
JP3526724B2 (en) Error correction method in shape measuring device
Yokota et al. The accuracy of absolute calibration of vibration pickups and a new calibration method using separate mountings
JPS62118243A (en) Surface defect inspecting instrument