JPS59167234A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPS59167234A
JPS59167234A JP58042762A JP4276283A JPS59167234A JP S59167234 A JPS59167234 A JP S59167234A JP 58042762 A JP58042762 A JP 58042762A JP 4276283 A JP4276283 A JP 4276283A JP S59167234 A JPS59167234 A JP S59167234A
Authority
JP
Japan
Prior art keywords
filter
monomer
methyl methacrylate
dust
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58042762A
Other languages
Japanese (ja)
Other versions
JPH0259051B2 (en
Inventor
Yoshio Iki
伊木 義雄
Kazunori Yokoyama
横山 和紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58042762A priority Critical patent/JPS59167234A/en
Publication of JPS59167234A publication Critical patent/JPS59167234A/en
Publication of JPH0259051B2 publication Critical patent/JPH0259051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To greatly raise the efficiency of light transmission by using as a core component a methyl methacrylate polymer obtained by a block polymerization method in which a methyl methacrylate monomer purified to a high purity is circulated in a polymerizer of a completely enclosed system while being passed through a filter. CONSTITUTION:A pipe through which a monomer is circulated is provided in a polymerizer, a filter 4 is provided on the way of the pipe, and the monomer is circulated in the polymerizer while being passed through the filter 4. The inside of the polymerizer can thus be effectively cleaned with a small amount of monomer and the intermixture of dust into a polymer can be avoided. A high- purity monomer (methyl methacrylate) free of dust, transition metals, and coloring impurities, obtained by removing impurites in a distiller having a high refining effect, is used. The filter 4 used is preferably a membrane filter having a solvent resistance and a pore diameter of 0.2mum or less, more preferably a Teflon filter of a pore diameter of 0.1mum or less. In case where the removal of more fine dust is required, a filter of a pore diameter of 0.01mum or less may be used.

Description

【発明の詳細な説明】 本発明は、改良された芯成分メタクリlし酸メチル重合
体ヲ用いることにより光伝幕効率が向上したプラスチッ
クオプティカルファイバーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plastic optical fiber having improved light curtain efficiency through the use of an improved core component methyl methacrylate polymer.

プラスチックオプティカルファイバーは無機ガラス特に
石英ガラスファイバーに比較して大口径にしても可とり
性に優れ、軽量で、かつ高開口数のものが容易に得られ
るので光源との接続損失が少なく、また工業的に大量生
産が可能なので極めて安価であるという特徴を有し、短
距離伝送システムへの適用がなされている。しかしなが
らプラスチックオプティカルファイバーは、石英ガラス
ファイバーに比較して光伝送効率が劣るという欠点を有
し、その向上のための技術的努力が種々試みられてきた
Compared to inorganic glass, especially quartz glass fiber, plastic optical fiber has excellent flexibility even when made to a large diameter, is lightweight, and can easily be obtained with a high numerical aperture, resulting in less connection loss with the light source, and is suitable for industrial use. It has the characteristic of being extremely inexpensive as it can be mass-produced, and has been applied to short-distance transmission systems. However, plastic optical fibers have the drawback of being inferior in light transmission efficiency compared to silica glass fibers, and various technical efforts have been made to improve this.

光伝送効率を低下させる一つの要因として、芯成分メタ
ノl))し酸メチル重合体中に塵埃が混入し、散乱損失
を増大させることがあ)、従来メタクリル酸メチル単量
体、開始剤、連鎖移動剤中の塵埃と除去する精製方法が
種々試みられてさた。
One factor that reduces optical transmission efficiency is that dust gets mixed into the core component methanol (methyl methacrylate) polymer, increasing scattering loss), conventional methyl methacrylate monomer, initiator, Various purification methods have been attempted to remove dust from chain transfer agents.

しかるに本発明者等は、特に工業的観点から考えれば、
なによシも重合体全形成すべき重合機内の塵埃を徹底的
に除去することが光伝送効率の向上に寄与するものと考
え、鋭意検¥を重ね、本発明に示されるような芯成分メ
タクリル酸メチル重合陣ヲ用いることにより、光伝送効
率が飛躍的に向上するという事実を見出し、本発明に到
達した。
However, especially from an industrial perspective, the inventors of the present invention found that
Above all, we believe that thorough removal of dust inside the polymerization machine where the entire polymer is to be formed will contribute to improving the light transmission efficiency, and after conducting extensive tests, we have developed a core component as shown in the present invention. The present invention was achieved based on the discovery that light transmission efficiency is dramatically improved by using a methyl methacrylate polymerization group.

すなわち本発明の要旨とするところは、高純度に精製し
たメタクリル酸メチル単量体をフィルターを通過させつ
つ完全密閉系で重合機内を循環させ、重合機内通過後の
単量体中の塵埃量を減少せしめたのち碗状重合して得ら
れたツタクリlし酸メチル重合体を芯成分として用いる
ことを特徴とするプラスチックオプティカルファイバー
である。
In other words, the gist of the present invention is to circulate highly purified methyl methacrylate monomer through a polymerization machine in a completely closed system while passing through a filter, and to reduce the amount of dust in the monomer after passing through the polymerization machine. This is a plastic optical fiber characterized by using as a core component a methyl tacrylic acid polymer obtained by reducing the amount and then polymerizing it into a bowl shape.

以下、詳細に説明する。This will be explained in detail below.

本発明者等の知見によれば、どのように高純度「ヒした
ツタクリル酸メチル単量体を用いても、これと重合機内
で重合する際、重合様壁、配管、バルブ等に付着した塵
埃が溶出混入し、最終重合体中には単量体段階では予想
も出来ないぐらいの大量の塵埃が混入しておシ、これが
プラスチックオプティカルファイバーの光伝送効率を低
下させていた。
According to the findings of the present inventors, no matter how high-purity methyl tutaacrylate monomer is used, when it is polymerized in the polymerization machine, dust adhering to walls, piping, valves, etc. was eluted and mixed into the final polymer, and an unexpectedly large amount of dust was mixed into the final polymer at the monomer stage, reducing the optical transmission efficiency of plastic optical fibers.

重合機内?洗浄する方法としては、有機溶剤で洗浄する
方法があるが、その場合、残存有機溶剤の除去操作が必
要であるが、本発明ではその必要がない。
Inside the polymerization machine? As a cleaning method, there is a method of cleaning with an organic solvent, but in that case, an operation for removing the residual organic solvent is required, but this is not necessary in the present invention.

ところで、メタクリル酸メチル単量体を洗浄溶剤として
用いる場合、洗浄を操返すたびに単量体を廃棄あるいは
再精製することは、工業的観点からすれば煩雑な操作が
加わ9、好ましい方法ではない。
By the way, when methyl methacrylate monomer is used as a cleaning solvent, discarding or repurifying the monomer every time the cleaning is repeated is not a preferable method because it adds complicated operations from an industrial perspective9. .

したがって、図1に示す重合機内とモノマーが循環する
ような配管を設け、途中にフィルターを入れ、単量It
通過させつつ循環させることによシ、少量の単量体で重
合機内の効果的な洗浄が可能となシ、重合体中への塵埃
の混入が避けられ、ひいては光伝送効率の向上に寄与す
るものである。
Therefore, we installed piping to circulate the monomer with the interior of the polymerization machine shown in Figure 1, and inserted a filter in the middle to
By circulating the polymer while passing through it, it is possible to effectively clean the interior of the polymerization machine with a small amount of monomer, and it is possible to avoid dust from entering the polymer, which in turn contributes to improving the light transmission efficiency. It is something.

本発明で用いられるメタクリル酸メチル単量体は、鞘部
効果の高い蒸留器で不純物を除去する、あるいは適当な
tjnJ処理を行ったのち、さらに蒸留して塵埃、遷移
金属、着色性不純物のない高純度な単量体としたものを
用いる。
The methyl methacrylate monomer used in the present invention is purified by removing impurities in a distiller with a high sheath effect, or by performing an appropriate tjnj treatment, and then further distilling to make it free from dust, transition metals, and coloring impurities. A highly pure monomer is used.

本発明で用いられるフイノノターは、好ましくは孔径0
.2μ以下の耐溶剤性ノンプランフィルター、さらに好
ましくは孔径0.1μ以下のテフロンフィルターを用い
るのがよい。さらに微小の塵埃を除去する必要がある場
合、孔径0.01μ′以下のフィルグーを用いることも
可能である。
The fininotar used in the present invention preferably has a pore size of 0.
.. It is preferable to use a solvent-resistant non-plan filter with a pore size of 2 μm or less, more preferably a Teflon filter with a pore size of 0.1 μm or less. Furthermore, if it is necessary to remove minute dust, it is also possible to use a fill goo with a pore diameter of 0.01 μ' or less.

本発明で用いられる重合機はどのような型式のものを用
いてもよいが、塵埃等が容易に除去できるようなデッド
スペーヌのない構造にしておくことが好ましい。
Although any type of polymerization machine may be used in the present invention, it is preferable to have a structure without dead spaces so that dust and the like can be easily removed.

メタクリル酸メチル単量体の循環方法としては、どのよ
うな型式のポンプ等を用いてもよいが、ポンプ内等での
単量体の重合を防止するため、循環系の途中にバッファ
タンクを設け、窒素ガス・アルゴンガス等の不活性ガス
による加圧によシ循環させることが好ましい。
Any type of pump may be used to circulate the methyl methacrylate monomer, but a buffer tank must be installed in the middle of the circulation system to prevent polymerization of the monomer inside the pump. It is preferable to circulate by pressurizing with an inert gas such as nitrogen gas or argon gas.

またメタクリル酸メチル単量体の熱重合を防止するため
、循環系は冷水で5°C以下にすることが好ましい。
Further, in order to prevent thermal polymerization of the methyl methacrylate monomer, the circulation system is preferably kept at 5° C. or lower with cold water.

本発明で示される単量体による重合系内の循環洗浄は、
例えば循環系内途中に設けた耐圧ガラス管内のレーザー
光線による観察によシ、単量1本中の塵埃量が例えば1
rnm3あたり1個以下になるまで繰返し行なう必要が
ある。通常本発明者等の知見によれば、このようなレベ
ルに達するには30回以上の循環回数を必要とし、この
結果からも重合機内に大量の塵埃が残存しておシ、これ
の除去が高純度な重合体を得るために最も必要なことが
明らかである。さらにこれを洗浄除去するために、華に
洗浄時の使用化ツマ−を廃棄したとすれば大量の化ツマ
−を必要とすることが明らかであり、本発明のごときフ
ィルクーを通過させながら循環使用する方法が工業的観
点からすれば極めてすぐれた方法である。
Circulating cleaning within the polymerization system using the monomer shown in the present invention is as follows:
For example, observation using a laser beam inside a pressure-resistant glass tube installed midway through the circulation system reveals that the amount of dust in one tube is, for example, 1.
It is necessary to repeat this process until the number is one or less per rnm3. According to the findings of the present inventors, it usually takes 30 cycles or more to reach this level, and this result also suggests that a large amount of dust remains inside the polymerization machine, and that it is difficult to remove it. It is clear that this is most necessary in order to obtain highly pure polymers. Furthermore, in order to wash and remove this, it is clear that a large amount of waste is required if the waste used during washing is discarded, and it is recycled while passing through a filter like the one of the present invention. This method is extremely superior from an industrial perspective.

このようにして洗浄された重合機内へ所定量の単量体、
開始剤、連鎖移動剤を仕込み、塊状重合することによシ
得られたメタクリル酸メチル重合体を芯成分として用い
ることにより、光伝送効率の向上したプラスチックオプ
ティカルファイバーが得られる。
A predetermined amount of monomer is introduced into the polymerization machine that has been cleaned in this way.
A plastic optical fiber with improved light transmission efficiency can be obtained by using a methyl methacrylate polymer obtained by bulk polymerization with an initiator and a chain transfer agent as a core component.

本発明で用いられる芯成分メタクリル酸メチル重合本は
、他の10重重量板下のアクリル酸メチル、アクリル酸
エチル、アクリル酸ブチル等の共重合性単量体との共重
合体でもよい。
The core component methyl methacrylate polymer used in the present invention may be a copolymer with other copolymerizable monomers such as methyl acrylate, ethyl acrylate, and butyl acrylate under a 10-weight plate.

本発明で用いられる開始剤は、所望する物性、重合温度
、速度に応じて任意のもの全選択すればよく、例示すれ
ばアゾビスイソブチロニトリル、アゾビスイソバレロニ
トリル、ターシャリ−アゾブタン、ベンゾイルパーオキ
サイド、も−ブチルパーオキサイド等がある。その使用
量は適切な重合コントロールが可能な範囲で用いればよ
い。
The initiator used in the present invention may be selected according to the desired physical properties, polymerization temperature, and rate; examples include azobisisobutyronitrile, azobisisovaleronitrile, tertiary azobutane, benzoyl Peroxide, butyl peroxide, etc. The amount used may be within a range that allows appropriate polymerization control.

本発明に用いられる連鎖移動剤は、最終重合体に着色等
の悪影響を及ぼさないものであれば任意のものを選択す
ればよく、例示すればハーブチルメルカプタン、t−ブ
チルメルカプタン、n−ドデシルノルカフ0タン、t−
ドデシルメルカフ0タン等があげられる。その使用量は
最終重合体の重量平均分子量が8〜15万の範囲になる
ようにして使用するのが好ましい。
Any chain transfer agent used in the present invention may be selected as long as it does not have an adverse effect such as coloring on the final polymer. Tan, t-
Examples include Dodecyl Mercaf 0 Tan. The amount used is preferably such that the weight average molecular weight of the final polymer is in the range of 80,000 to 150,000.

本発明で用いられる開始剤、連鎖移動剤の仕込み方法と
しては、使用量が少ないので塵埃等が混入しないような
環境条件で少量の化ツマ−に溶解し重合機へ仕込むこと
が可能である。予期せぬ塵埃等の混入?避けるためには
蒸留可能な開始剤も一アゾブタン、t−ブチルパーオキ
サイド、蒸留可能な連鎖移動剤n−ブチルノルカプタン
、1−ブチルメルカプタン、n−ドデシルメルカプタン
、t−ドデシルメルカプタン等は蒸留仕込法を採用する
ことが可能であるし、少量の化ツマ−に開始剤、連鎖移
動剤を溶解したのちフィルターを通過させて重合機内へ
仕込むことも可能である。
As for the method of charging the initiator and chain transfer agent used in the present invention, since the amount used is small, it is possible to dissolve them in a small amount of polymer and charge them into the polymerization machine under environmental conditions where dust and the like are not mixed. Unexpected contamination of dust, etc.? To avoid distillable initiators such as monoazobutane, t-butyl peroxide, and distillable chain transfer agents such as n-butyl norcaptan, 1-butyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan, use distillation. Alternatively, it is possible to dissolve an initiator and a chain transfer agent in a small amount of polymer, and then to pass the mixture through a filter and charge it into the polymerization machine.

このようにして得られたメタクリル酸メチル重合体を芯
成分として用いて紡糸する。さや成分樹脂としては屈折
率が1.38〜1.41に調節されたフッ素樹脂を用い
る。また紡糸方法としてはコーティング方式、溶融紡糸
法等の任意の方法と選択すればよく、工業的観点からは
溶融紡糸法が好ましい。
The thus obtained methyl methacrylate polymer is used as a core component for spinning. As the sheath component resin, a fluororesin whose refractive index is adjusted to 1.38 to 1.41 is used. Further, as the spinning method, any method such as a coating method or a melt spinning method may be selected, and the melt spinning method is preferable from an industrial viewpoint.

以上のようにして得られたプラスチックオプティカルフ
ァイバーは光伝送効率が飛躍的に向1し、短距離伝送シ
ステムへの適用の範囲を拡大することが可能である。
The plastic optical fiber obtained as described above has dramatically improved optical transmission efficiency, and can expand the range of application to short-distance transmission systems.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

光伝送効率はオペレックス社製光フアイバー損失分光測
定器を用いて400〜7 OQ nm間を自動測定し、
(dEAm)にて表示した。
Optical transmission efficiency was automatically measured between 400 and 7 OQ nm using an optical fiber loss spectrometer manufactured by Operex.
(dEAm).

実施例 図1に示すような北下部にバルブ金有する内容積100
Qcc円笥状ステンレス製重合機IK孔径0.01μの
ノンプランフィルターを装填したフィルターホルダーと
104のバッファタンク2基を有する単量体濾過循環系
配管を取はずし可能な方法で接続する。バッファタンク
2に高純凍精製り′i、MA単量体を入れ、上部より高
純度窒素ガスで107cq/dに加圧し、フィルター4
を通じて、重合管下部よシ重合管内を洗浄しつつ通過さ
せ、バッファタンク3に入れる。次にバルブを切換えた
のち、同様の操作をバッファタンク3について行い、単
量m=2バツフアタンク2に入れる。この操作を繰返す
ことによシ重合機が洗浄されていく。
Example: Internal volume 100 with valve metal in the north lower part as shown in Figure 1
Qcc round stainless steel polymerization machine IK A filter holder loaded with a non-plan filter with a pore size of 0.01 μm and a monomer filtration circulation system piping having two 104 buffer tanks are connected in a removable manner. Put the high-purity freeze-refined product and MA monomer into the buffer tank 2, pressurize it to 107 cq/d with high-purity nitrogen gas from the top, and filter the filter 4.
The liquid is passed through the polymerization tube from the lower part to the inside of the polymerization tube while being washed, and then put into the buffer tank 3. Next, after switching the valve, the same operation is performed on the buffer tank 3, and the unit amount m=2 is put into the buffer tank 2. By repeating this operation, the polymerization machine is cleaned.

洗浄中に洗浄の程度を測定するため、配管途中に設けた
耐圧ガラス管5中を通過する単量体の塵埃量をンーザー
光線で測定した。
In order to measure the degree of cleaning during cleaning, the amount of monomer dust passing through the pressure-resistant glass tube 5 provided in the middle of the piping was measured using a sensor beam.

循環系を5°C以下に維持しつつ、約32回上記の洗浄
操作を行ったところ単量体1 mm”中の塵埃量が1個
以下となった。
When the above cleaning operation was carried out approximately 32 times while maintaining the circulation system at 5° C. or lower, the amount of dust particles per 1 mm” of monomer was reduced to one or less.

100Qccの単量体調整タンク6に高純度メタクリル
酸メチル8QQcc、t−アゾブタン0.8g、n−ブ
チルメルカプタンIFiそれぞれ蒸留仕込法で仕込み調
整する。上部より加圧し、重合機内に仕込む。上丁部の
パルプを閉じたのち配管を取はずし、重合機を130°
Cで76時間加熱、さらに180°Cで16時間加熱し
重合を完結させた。
8 QQcc of high purity methyl methacrylate, 0.8 g of t-azobutane, and n-butyl mercaptan IFi were charged and adjusted by distillation into a 100 Qcc monomer adjustment tank 6. Pressurize from the top and charge it into the polymerization machine. After closing the upper pulp, remove the piping and turn the polymerization machine to 130°.
C for 76 hours, and further heated at 180°C for 16 hours to complete polymerization.

重合機を200°Cに加・熱しつつ上部より60に9/
cdの高純度窒素ガスに加圧下部よシ樹脂を吐出させ、
屈折率1.40のフッ素樹脂をさや樹脂として複合溶融
紡糸し、ファイバーrヒしだ。このものの光伝送効率は
5701mの波長でs ()dBAmであった。
While heating the polymerization machine to 200°C, heat it from the top to 60°C.
Discharge the resin from the pressurized lower part of the CD using high-purity nitrogen gas.
Composite melt-spinning is performed using a fluororesin with a refractive index of 1.40 as the sheath resin, and the fiber is made of resin. The optical transmission efficiency of this material was s()dBAm at a wavelength of 5701 m.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のプラスチックオプティカルファイバーに
芯材として用いるメタクリル酸メチル重合体製造用、洗
浄濾過装置付重合機の説明用フローシート。 1・・・重合a、     2.3・・・バッファタン
ク、4・・・フィルター、   5・・・耐圧ガラス管
、6・・・単量オー調整タンク。 特許出願人  鐘電淵「ヒ学工業株式会社代理人 弁理
士 浅 野 真 − ]凹 1
FIG. 1 is an explanatory flow sheet of a polymerization machine equipped with a washing and filtration device for producing a methyl methacrylate polymer used as a core material in the plastic optical fiber of the present invention. DESCRIPTION OF SYMBOLS 1... Polymerization a, 2.3... Buffer tank, 4... Filter, 5... Pressure-resistant glass tube, 6... Monotonometry adjustment tank. Patent applicant: Kanedenfuchi "Higaku Kogyo Co., Ltd. agent, patent attorney Makoto Asano - ] Concave 1

Claims (4)

【特許請求の範囲】[Claims] (1)高純度に精製したメタクリル酸メチル単量体をフ
ィルターを通過させつつ重合機内を完全密閉系で循環さ
せ、重合機内通過後の単量体中の塵埃量を減少せしめた
のち塊状重合して得られたメタクリlし酸メチル重合体
を芯成分として用いることを特徴とするプラスチックオ
プティカルファイバー。
(1) Highly purified methyl methacrylate monomer is passed through a filter and circulated inside the polymerization machine in a completely closed system to reduce the amount of dust in the monomer after passing through the polymerization machine, and then subjected to bulk polymerization. A plastic optical fiber characterized in that it uses a methyl methacrylate polymer obtained as a core component.
(2)  フィルターとして孔径02μ以下の耐溶剤性
メンブランフィルタ−を使う特許請求の範囲第1項記載
のプラスチックオプティカルファイバー。
(2) The plastic optical fiber according to claim 1, wherein a solvent-resistant membrane filter with a pore size of 02 μm or less is used as the filter.
(3)  フィルターとして孔径0.1μ以下のテフロ
ンフィルターを使う特許請求の範囲第1項記載のプラス
チックオプティカルファイバー。
(3) The plastic optical fiber according to claim 1, wherein a Teflon filter with a pore diameter of 0.1 μm or less is used as the filter.
(4)  フィルターとして孔径0.01μ以下のフィ
ルターを使う特許請求の範囲第1項記載のプラスチック
オプティカルファイバー。
(4) The plastic optical fiber according to claim 1, wherein a filter having a pore diameter of 0.01 μm or less is used as the filter.
JP58042762A 1983-03-14 1983-03-14 Plastic optical fiber Granted JPS59167234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042762A JPS59167234A (en) 1983-03-14 1983-03-14 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042762A JPS59167234A (en) 1983-03-14 1983-03-14 Plastic optical fiber

Publications (2)

Publication Number Publication Date
JPS59167234A true JPS59167234A (en) 1984-09-20
JPH0259051B2 JPH0259051B2 (en) 1990-12-11

Family

ID=12644988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042762A Granted JPS59167234A (en) 1983-03-14 1983-03-14 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS59167234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257106A (en) * 1989-03-30 1990-10-17 Idemitsu Petrochem Co Ltd Plastic optical fiber and production thereof
JPH04204505A (en) * 1990-11-30 1992-07-24 Mitsubishi Rayon Co Ltd Sheath composition for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257106A (en) * 1989-03-30 1990-10-17 Idemitsu Petrochem Co Ltd Plastic optical fiber and production thereof
JPH04204505A (en) * 1990-11-30 1992-07-24 Mitsubishi Rayon Co Ltd Sheath composition for optical fiber

Also Published As

Publication number Publication date
JPH0259051B2 (en) 1990-12-11

Similar Documents

Publication Publication Date Title
US5298327A (en) High temperature plastic light conduit and composition of matter therefor
US5225166A (en) Method, apparatus and composition of matter for a high temperature plastic light conduit
JPH0445802B2 (en)
US8299139B1 (en) Process and reactor for synthesis of ultra-high molecular weight acrylic polymers
US4032488A (en) Dextran ester-olefin compound copolymer and process for preparing same
JPS633011A (en) Transparent copolymer having low water-absorption
JPS59167234A (en) Plastic optical fiber
JP4933875B2 (en) Method and apparatus for producing polymer for optical material
Ohtsuka et al. Studies on the light‐focusing plastic rod. IX. Chemical composition of the copolymer rod‐diethylene glycol bis (allyl carbonate) with 2, 2, 3, 3‐tetrafluoropropyl methacrylate
JPH06116319A (en) Method of continuously fractionating polymer and related apparatus
JPS60232506A (en) Manufacture of preform of optical fiber made of polymer
JPS6134504A (en) Plastic optical transmission body
JP4866040B2 (en) Manufacturing method of core material for plastic optical fiber
JPS59167233A (en) Plastic optical fiber having good photo transmission efficiency
JPS60124605A (en) Optical material
JPS60242404A (en) Preparation of plastic optical fiber
Dvořánek et al. Effects of composition and plastifier on the light scattering of polymer glasses and properties of polymeric optical fibers made from styrene‐methyl methacrylate copolymers
JPS63309914A (en) Contact lens
EP0258403A4 (en) Polymeric optical fiber.
JP3004090B2 (en) Fluoropolymer and method for producing the same
AU697468B2 (en) Composition and apparatus for making a high temperature plastic light conduit
JPS6134503A (en) Plastic optical transmission body
CA1222854A (en) Process and apparatus for production of plastic optical fiber
JPS5955401A (en) Plastic optical fiber
JPS60149005A (en) Plastic optical fiber