JPS5916687A - Joining material for ni-base sintered alloy - Google Patents

Joining material for ni-base sintered alloy

Info

Publication number
JPS5916687A
JPS5916687A JP12508282A JP12508282A JPS5916687A JP S5916687 A JPS5916687 A JP S5916687A JP 12508282 A JP12508282 A JP 12508282A JP 12508282 A JP12508282 A JP 12508282A JP S5916687 A JPS5916687 A JP S5916687A
Authority
JP
Japan
Prior art keywords
base material
weight
value
base
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12508282A
Other languages
Japanese (ja)
Other versions
JPS5950431B2 (en
Inventor
Masako Nakabashi
中橋 昌子
Kazumi Shimotori
霜鳥 一三
Tatsuo Yamazaki
山崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12508282A priority Critical patent/JPS5950431B2/en
Publication of JPS5916687A publication Critical patent/JPS5916687A/en
Publication of JPS5950431B2 publication Critical patent/JPS5950431B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To convert the metallic texture in a joint part to the texture resembling to that of a base material and to improve joint efficiency in the stage of subjecting Ni- base sintered alloys contg. much r' to liquid phase diffusion joining, by using an Ni alloy having the specific compsn. added with elements for decreasing m.p. CONSTITUTION:The joining material to be used in the stage of producing high temp. gas turbine blades, etc. made of an Ni3Al-r' reinforced type Ni-base sintered alloy of >=55% content of r' which is difficult to join from the parts thereof by a liquid phase diffusion joining method is formed of the following compsn.: Ni is used as an essential component. Co is contained at the same amt. as the amt. of Co contained in the Ni- base sintered alloy which is a base material. Ta is contained at (Ta+Nb) in the base material or below, W at 1/3 of the W-(W+Mo) in the base material, Al at the lower limit value-lower limit value+1% necessary for forming primary r' phase in the base material, Cr at the same amt. as that in the base material and B, Si are at 15- 22atom% total thereof and <1.5% Si. The m.p. expressed by the formula [ I ] is 1,050- 1,150 deg.C., and <=2.2atom% NV the average number of electron holes expressed by the formula [II] is satisfied. The joining material having such compsn. is used.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はN1基耐熱合金の熱機関部品、例えば高温ガス
タービン翼のように複線な形状をした部品を拡散接合法
で接合するために用いる接合材に関し、更に詳しくは、
従来の接合材では接合困難であるγ′量が55チ以上の
N1au−γ′強化型N1基超合金の母材に対しても、
接合部の金属組織が該母材と同じになシ従って継手効率
をも向上せしめるNi基超超合金液相拡散接合法(以下
にTLP法という。)に適用して有用な接合材に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a bonding method used for bonding heat engine parts made of N1-based heat-resistant alloys, such as parts having a double-track shape such as high-temperature gas turbine blades, by a diffusion bonding method. For more information on materials,
Even for base materials of N1au-γ' reinforced N1 base superalloys with a γ' content of 55 inches or more, which is difficult to bond with conventional bonding materials,
The present invention relates to a bonding material useful for Ni-based superalloy liquid phase diffusion bonding (hereinafter referred to as TLP method), in which the metallographic structure of the bonded portion is the same as that of the base material, thereby improving joint efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

通常、高温ガスタービン翼の材料としては、Nl基耐熱
超合金が用いられているが、それはその動作温度を高め
るために、内部に複雑な冷却通路を設けた冷却翼構造と
なっている。
Generally, Nl-based heat-resistant superalloy is used as a material for high-temperature gas turbine blades, and in order to increase its operating temperature, it has a cooling blade structure with complicated cooling passages provided inside.

典型的な構造例としては、(A)リターンフロ一式精密
鋳造虞と(B)十数枚以上のウェハーを平面で接合して
構成したウェハー翼があげられる。そして、これら複雑
な冷却通路を設けたガスタービン翼の製造に当っては、
通常、拡散接合法が適用されている。例えば(5)の場
合、第1図にその断面図を示したように、翼長方向に2
分割した形状の翼部材1.1′を精密鋳造した後、両者
の接合曲面2にインサートフィラーメタルを介在させて
組合せ、拡散接合して一体化するものである。この場合
、接合曲面が広いので用いるフィラーメタルは、取扱い
が容易で密度も高い急冷リボンフィラーであることが好
ましい。また、(B)の場合には、接合面が多くしかも
平面の寸法精度が厳しいので、薄いフィラーメタルが用
いられる。
Typical structural examples include (A) a return flow complete precision casting unit and (B) a wafer wing constructed by joining more than ten wafers on a plane. When manufacturing gas turbine blades with these complicated cooling passages,
Usually, diffusion bonding method is applied. For example, in the case of (5), as shown in the cross-sectional view in Figure 1, 2
After precision casting the divided wing members 1.1', they are combined with an insert filler metal interposed on the joining curved surface 2 of the two parts, and are integrated by diffusion bonding. In this case, since the joining curved surface is wide, it is preferable that the filler metal used is a quenched ribbon filler that is easy to handle and has a high density. In the case of (B), there are many joint surfaces and the dimensional accuracy of the plane is strict, so a thin filler metal is used.

(4)、53)の製造のために適用される拡散接合法と
しては、通常、TLP法が採用されている。これは、T
LP法が接合の信頼性を高めるからである。
As the diffusion bonding method applied for manufacturing (4), 53), the TLP method is usually adopted. This is T
This is because the LP method increases the reliability of bonding.

N1基耐熱合金をTLP法で接合する場合、従来、Ni
−B 、Ni−B −8t 、Ni−Cr−B等の組成
のフィラーメタルが用いられてきた。このフィラーメタ
ルはN1に低融点化元素のB、81など゛を含有させた
もので、母材(Ni基耐熱合金)の融点よシ数十度低い
温度で溶融する。したがって、接合に当っては、母材間
に上記フィラーメタルを介在させその接合部相当位置を
該フィラーメタルの融点以上母材の融点以下の温度に加
熱して該フィラーメタルを溶融し、母材をぬらしてろう
接した後、更に長時間該温度を維持してB、Stなどを
母材に拡散せしめるという方法が適用される。このとき
、同時にフィラーメタルは母材と同等に凝固する等温凝
固現象を起こし強固な接合部を形成する。
When joining N1-base heat-resistant alloys by the TLP method, conventionally Ni
Filler metals having compositions such as -B, Ni-B-8t, and Ni-Cr-B have been used. This filler metal is N1 containing lower melting point elements such as B and 81, and melts at a temperature several tens of degrees lower than the melting point of the base material (Ni-based heat-resistant alloy). Therefore, in joining, the filler metal is interposed between the base metals, and the position corresponding to the joint is heated to a temperature above the melting point of the filler metal and below the melting point of the base metal to melt the filler metal, and After wetting and brazing, a method is applied in which the temperature is maintained for a longer period of time to diffuse B, St, etc. into the base material. At this time, at the same time, the filler metal undergoes an isothermal solidification phenomenon in which it solidifies in the same manner as the base metal, forming a strong joint.

TLP法に用いられるフィラーメタルは、上記したよう
々N1基の合金ろうをスライスしたチップ状のもの、又
は合金ろうを溶融した後溶湯急冷法を適用してりだン状
にしたものなど種々のものがある。合金ろうの組成が同
一であった場合、溶湯急冷法によるりがンフイラーは、
密度も100チで必要形状に打抜き加工することが可能
で、延性もあり、取扱いが容易でしかもフィラー自体の
組織も均−彦ので信頼性の高い接合ができる。例えば、
γ′量が51チであるlN713Cのような母材に対し
ても、リボンフィラーを用いると、クリープ接合強度が
母材とほぼ同等の接合部を形成することができる。
Filler metals used in the TLP method include various kinds of filler metals, such as chips made by slicing N1-based solder alloys as described above, or pieces made into bulges by melting a solder alloy and then applying the molten metal quenching method. There is something. If the composition of the filler alloy is the same, the resin filler made by the molten metal quenching method is
It has a density of 100 inches and can be punched into the required shape, is ductile, is easy to handle, and the structure of the filler itself is uniform, allowing for highly reliable joining. for example,
If a ribbon filler is used even for a base material such as IN713C, which has a γ' amount of 51 inches, it is possible to form a joint with almost the same creep bonding strength as the base material.

最近、例えばlN738LC、MAN、−M247のよ
うに、強力なN1基精鋳用超合金が登場している。この
N1基超合金においては、金属組織内におけるγ′量を
可能外隅シ多くするために、その合金組成範囲が合金設
計に基づき限界ぎシぎシのところに設定されているが、
その範囲はそもそも非常に狭いものである。
Recently, strong N1 base casting superalloys have appeared, such as IN738LC, MAN, and -M247. In this N1-based superalloy, in order to increase the amount of γ' in the metal structure at the outer corners as much as possible, the alloy composition range is set at the limit based on alloy design.
Its range is extremely narrow.

したがって、このような母材に対し上記したよりなNi
合金ろうを用いてTLP法を適用した場合、接合部の金
属組織が母材の組織と異なったものになり、そのため母
材と等しい継手動電を得ることが一層困難になる。
Therefore, for such a base material, the above-mentioned thicker Ni
If the TLP method is applied using a solder alloy, the metallographic structure of the joint will be different from that of the base metal, making it more difficult to obtain a joint power equal to that of the base metal.

この上うな問題を解消するためには、フイラーメタルの
合金組成を母材のそれに対応して最適化することが必要
となる。
In order to solve these problems, it is necessary to optimize the alloy composition of the filler metal in accordance with that of the base metal.

しかじかから、現在までそのような試みは系統′的に行
なわれておらず、試行錯誤を重ねながら経験的に行なわ
れているにすぎなかった0そのため、γ′量の多い、例
えばr′量55%以上であるよりなN1基超合金の母材
をTLP法で接合するに適した合金組成のフィラーメタ
ルは未だ開発されていないO 〔発明の目的〕 本発明は、上記したよう麦問題点を解消し、γ′量が5
596以上であるよりなN1基超合金の母材をTLP法
で接合した場合でも、接合部の金属組織が母材のそれと
同一になシ、その結果、継手効率を向上せしめる接合材
の提供を目的とする。
However, until now, such attempts have not been carried out systematically, and have only been carried out empirically through repeated trial and error.0Therefore, when the amount of γ′ is large, for example, the amount of r′ A filler metal with an alloy composition suitable for joining base materials of N1-based superalloys with a content of 55% or more by the TLP method has not yet been developed. , and the amount of γ′ is 5.
Even when base metals of N1-based superalloys with a grade of 596 or higher are joined by the TLP method, the metallographic structure of the joint is not the same as that of the base metals.As a result, it is desirable to provide a joining material that improves joint efficiency purpose.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記目的を達成するために金属組織学上
の原理を考慮して鋭意研究を重ね、γ′量の多いNi基
超合金のTLP法による接合に用いることができかつ溶
湯急冷法で作成したり?ンフイラーに関して、その合金
組成の最適化を企る上で考慮すべき影響因子は、接合特
性因子と溶接特性因子とに大別されることに着目した。
In order to achieve the above object, the present inventors have carried out extensive research in consideration of metallographic principles, and have found that the method can be used for joining Ni-based superalloys with a large amount of γ′ by the TLP method and that can be rapidly cooled by molten metal. Created by law? Regarding fillers, we focused on the fact that the influencing factors that should be taken into account when attempting to optimize the alloy composition are broadly classified into bonding property factors and welding property factors.

まず、本発明において考慮すべき接合特性因子には以下
のものがある。すなわち、■接合材の固溶強化元素の種
類と量、■接合部において生成させるべきγ′の種類、
量とそのために必要な元素の種類と量、■接合部の周囲
に形成すべき酸化保唖皮膜の種類とそれに必要な元素の
種類と量、■接合部における粒界炭化物強化量を規定す
る元素の種類と量、■接合部におけるTCP相(Top
olog1+−cal13’ closed pack
ed phase )の生成を防止する因子としての平
均電子空孔数(N v )、■接合時における接合材の
異常拡散防止のだめの因子、などである。
First, the bonding characteristic factors to be considered in the present invention include the following. In other words, ■ the type and amount of the solid solution strengthening element in the bonding material; ■ the type of γ′ that should be generated in the joint;
■The type and amount of the oxidized protective film that should be formed around the joint, and the type and amount of the element necessary for it;■Elements that determine the amount of grain boundary carbide reinforcement in the joint. type and amount, ■ TCP phase at the joint (Top
olog1+-cal13' closed pack
These include the average number of electron vacancies (Nv) as a factor for preventing the generation of ed phase), and (2) a factor for preventing abnormal diffusion of the bonding material during bonding.

また、溶接特性因子としては、O接合、材のリセイフ、
fラーを成形する際の溶湯成形性又は非晶質化を規定す
る元素の種類と量、0融点(Tm:℃)が考察対象とな
る。
In addition, welding characteristic factors include O-joint, material resafety,
The types and amounts of elements that define the molten metal formability or amorphization when forming f-color, and the zero melting point (Tm:° C.) are subject to consideration.

本発明の接合材における組成は、以上列記した各因子を
考慮して決定される。その決定の方法を以下に詳述する
The composition of the bonding material of the present invention is determined in consideration of each of the factors listed above. The method for making this determination will be explained in detail below.

まず、接合材の合金組成を決定するに先立ち母材に関し
て分析して初期条件を設定する。
First, before determining the alloy composition of the bonding material, the base material is analyzed and initial conditions are set.

すなわち、母材を構成する各元素の種類と量、母材中の
一次ど相(粗大γ′相)の量、二次γ′相(微細γ′相
)の量、母材中の炭化物(MC型又はh’1xsca型
;Mは金属元素を表わす。)の量、母材のNv値などを
測定して主データとする。これらのデータは、接合部の
目標組織となる0 ■の因子において、固溶強化元素としてはCo 。
In other words, the types and amounts of each element constituting the base material, the amount of primary phase (coarse γ' phase) in the base material, the amount of secondary γ' phase (fine γ' phase), and the amount of carbides ( The amount of MC type or h'1xsca type (M represents a metal element), the Nv value of the base material, etc. are measured and used as main data. These data indicate that Co is the solid solution strengthening element at a factor of 0, which is the target structure of the joint.

Ta、Wが選定される。coは母材中の00重量%と同
じ値に設定される(、Taは、母材中のT&重量%と陥
重量%とを合せた量以下、すなわち0≦’l’awt%
≦(Ta+Nb)母材wt%の関係を満足する値に設定
される。
Ta and W are selected. co is set to the same value as 00% by weight in the base material (Ta is less than or equal to the sum of T & weight% and depressed weight% in the base material, that is, 0≦'l'awt%
It is set to a value that satisfies the relationship: ≦(Ta+Nb) base material wt%.

T&の量がこの範囲を外れると、COを上記の如゛くに
設定したとき、固溶強化に資することがない。Wは、■
の因子を規定する元素でもあシ、その量は、母量チとを
合せた東すなわち1/3W母材wt%≦Wwtl≦(W
 +Mo )母材w t %の関係を満足する値と、接
合部に母材中の粒界炭化物と同種類、同量の粒界炭化物
を生成するに必要なW重量俤の下限値とを比較してそれ
らのうちの大きい値に設定される。
If the amount of T& is outside this range, it will not contribute to solid solution strengthening when CO is set as described above. W is ■
It is also the element that defines the factor of
+Mo) Compare the value that satisfies the relationship of base material w t % with the lower limit value of W weight distribution required to generate the same type and amount of grain boundary carbide as the grain boundary carbide in the base material at the joint. and set to the greater of those values.

Wの量がこの範囲を外れると、接合部の固溶強化が低下
すると同時にその金属組織が母材と同じにならないので
不適である。
If the amount of W is outside this range, the solid solution strengthening of the joint will decrease and at the same time the metal structure will not be the same as that of the base material, which is unsuitable.

次に■の因子において、接合部の二次γI相は接合時に
母材から拡散して母材と同等に表るので考察の外に置い
てもよい。したがって、−次r′相に関して考察した場
合、接合部に母材と同じ一次γ′相を生成させる元素と
してはAIが選定される。なお、Tlも一次γ′相を生
成させる元素であるが、同時にTiは接合部において異
常拡散現象を惹起せしめる元素でもあって■の因子に悪
影響を与えるので本発明の睦合材においては含有させな
い。klは一次γ′相を生成させる主要な元素でありそ
のAI′iitが、接合部に母材中の一次γ′相を生成
するに必要なM重、It%の下限値以上でかつ(該下限
値+1)重量−以下であれば、■の因子に悪影響を与え
ずにかつ必要量の一次γ′相を生成することができる。
Next, regarding the factor (2), the secondary γI phase in the bonded portion diffuses from the base material during bonding and appears in the same manner as the base material, so it may be left out of consideration. Therefore, when considering the -order r' phase, AI is selected as the element that produces the same primary γ' phase as the base material at the joint. Incidentally, Tl is also an element that generates the primary γ' phase, but at the same time, Ti is an element that causes an abnormal diffusion phenomenon in the joint, and since it has an adverse effect on the factor (2), it is not contained in the mating material of the present invention. kl is the main element that generates the primary γ' phase, and its AI'iit is greater than or equal to the lower limit of M weight and It% required to generate the primary γ' phase in the base material at the joint. If it is below the lower limit + 1) weight -, the necessary amount of primary γ' phase can be produced without adversely affecting the factor (2).

また、M量が上記の範囲内にあった場合、TLP法によ
る拡散接合が終了した時点で1.接合部中のA頗濃度は
、母材中のCrが8重量%以下のときにはAl≧14−
5 /Cr (単位は重量%)、母材中のCrが8重量
%よυ大きいときにはAI≧Cr/10+1(単位は重
量%)の関係を満足している。
Moreover, when the amount of M is within the above range, 1. The A concentration in the joint is Al≧14− when the Cr content in the base material is 8% by weight or less.
5/Cr (unit: weight %), and when Cr in the base material is greater than 8 weight %, the relationship of AI≧Cr/10+1 (unit: weight %) is satisfied.

■の因子については、酸化保護皮膜としてN20゜が選
定され、該)JtO*皮膜を接合部の周囲に形成するだ
めの元素としてCrが選定される。Crの量は母材中の
Or重量%と同じ値に設定される。
Regarding factor (2), N20° is selected as the oxidation protective film, and Cr is selected as the element necessary to form the JtO* film around the joint. The amount of Cr is set to the same value as the weight percent of Or in the base material.

以上で接合特性に関する各因子を規定する元素の種類と
量が基本的には決定される。なお、■の因子については
後述する。
In the above manner, the types and amounts of elements that define each factor related to bonding characteristics are basically determined. Note that the factor (■) will be described later.

次に溶接特性因子について考察すると、まず、0の因子
に関しては、BとSiが選定される。BとStの量は、
その合わせた量が接合材中で15原子チ以上22原子チ
以下、すなわち15at%≦B+si≦22atチで、
かつ、Slの量が接合材中で1.5重量%以下の範囲、
すなわちOI≦81≦1.5wt%に設定される。B+
Siが15at’%未満あるいは22at%を超える場
合のいずれにおいても接合材は非晶質状態にならず、S
lが1.5wt%を超えると接合部にStが残留し、悪
影響を及lコすおそれがあるので不都合である。
Next, considering the welding characteristic factors, first, B and Si are selected as factors of 0. The amounts of B and St are
The combined amount is 15 atoms or more and 22 atoms or less in the bonding material, that is, 15 at%≦B+si≦22at,
and a range in which the amount of Sl in the bonding material is 1.5% by weight or less,
That is, it is set to OI≦81≦1.5wt%. B+
When Si is less than 15 at'% or more than 22 at'%, the bonding material does not become amorphous and S
If 1 exceeds 1.5 wt%, St will remain in the joint, which may have an adverse effect, which is disadvantageous.

以上のようにして本発明の接合材の必須の成分の種類と
量が基本的には決定されるが、本発明にあっては、更に
、このようにして決定した各成分の量を基にして、■の
因子及び0の因子に考察をフィードバックさせて最終的
に各成分の量が決定される。すなわち、まず、融点(T
m )の関係から各成分が再調整される。
Although the types and amounts of the essential components of the bonding material of the present invention are basically determined as described above, in the present invention, the amounts of each component determined in this manner are further used. Then, the amount of each component is finally determined by feeding back the consideration to the factor (2) and the factor (0). That is, first, the melting point (T
Each component is readjusted based on the relationship m ).

適用する桶の式は、而=1433−(8,03XJ5 Ag   +75.43XB  +56.34XSi 
 +60.8X C−2,4X W−Cr −1,6X
Co+Mo )、(但し、各成分はいずれも重量%を表
わす。)であシ、ここに、上記した各成分の値をいれ、
得られた一値(℃)が1050≦翫≦1150の関係を
満足゛する値になるか否かを検証する。稀において、−
の上限値1150℃は接合及び均一化処理の物理的可能
な値であシ、下限値1050℃は融点降下元素(B、S
t)の上限値及び固溶強化元素(Co l Ta IW
)の下限値から定まる値である。Tm式から得られた値
が上記稀の範囲を外れた場合には、接合材の種類によっ
ては、均一化処理が不可能となシ使用出来ないこともあ
る。
The bucket equation to be applied is = 1433-(8,03XJ5 Ag +75.43XB +56.34XSi
+60.8X C-2,4X W-Cr -1,6X
Co + Mo ), (however, each component represents weight %), and here, enter the value of each component above,
It is verified whether the obtained single value (° C.) satisfies the relationship 1050≦1≦1150. In rare cases, -
The upper limit of 1150°C is a physically possible value for bonding and uniformization treatment, and the lower limit of 1050°C is for melting point depressing elements (B, S
t) and the solid solution strengthening element (Co l Ta IW
) is the value determined from the lower limit value of If the value obtained from the Tm formula is outside the rare range mentioned above, depending on the type of bonding material, it may not be possible to perform uniformity treatment and the bonding material may not be usable.

この一式で再調整された各成分の値は、最後に平均電子
空孔数(Nv)の式にいれて、Nv≦2.2atチの関
係を満足するように再々度調整されて■の因子が考察さ
れる。NvO式は、TCP相生成による強度劣化を防止
するために用いられているPHACOMP(phase
 computation)法によるものである。すな
わち、Nv= 0.66 XNi + 1.7 XCo
十2、66 XFe+3..66 XMn+ 4.66
 X (Cr十Mo+W)+ 6.66 x (Si+
Zr)、(但し、各成分はいずれも原子チを表わす。)
が用いられる(、 Nv値が2.2at%を超えるとT
CP相が生成し易すくなる。
The values of each component readjusted in this set are finally put into the formula for the average number of electron vacancies (Nv), and adjusted again and again to satisfy the relationship Nv≦2.2at. will be considered. The NvO formula is based on PHACOMP (phase
This method is based on the calculation method. That is, Nv = 0.66 XNi + 1.7 XCo
12, 66 XFe+3. .. 66 XMn+ 4.66
X (Cr+Mo+W)+ 6.66 x (Si+
Zr), (However, each component represents an atom.)
is used (, when the Nv value exceeds 2.2 at%, T
CP phase is more likely to be generated.

以上のようにして、各因子を考察して決定された各成分
は、所定量配合されて、常用の溶湯急冷法を適用してリ
デンフイラーとする。このとき、冷却速度はI X 1
0’℃/sec以上に設定される。
Each component determined by considering each factor as described above is blended in a predetermined amount, and a reden filler is prepared by applying a commonly used molten metal quenching method. At this time, the cooling rate is I
It is set to 0'°C/sec or higher.

冷却速度がこの値よシ小さい場合には、(1)結晶質化
が進行し、す?ンフイラーの延性が低下する、(11)
金属間化合物が生成し易くなシ、組成の変動が生じるの
で不適当である。
If the cooling rate is smaller than this value, (1) crystallization will proceed and The ductility of the filler decreases (11)
It is unsuitable because intermetallic compounds are not likely to be formed and compositional fluctuations occur.

本発明の接合材は、母材の組成に対応させて合金組成が
最適化されているものであって、とくにI N738 
、 MAR,−M247のようにr′量が55チ以上の
N1基超合金の接合材として有用である0また、lN7
13Cのようにγ′量が55−以下のものに対しても、
有用であることはいうまで゛もない0 〔発明の実施例〕 MAR−N247の母材に対する接合を行なった。
The bonding material of the present invention has an alloy composition optimized in accordance with the composition of the base material, and is particularly suitable for I N738.
, MAR,-M247, which is useful as a bonding material for N1-based superalloys with an r' content of 55 inches or more, is also lN7
Even for those with a γ' amount of 55- or less, such as 13C,
It goes without saying that it is useful. [Examples of the Invention] MAR-N247 was joined to a base material.

まず、MAR−N247の組成を表1に示す0次に、表
2に示した組成の各種の接合材を準備した。
First, the composition of MAR-N247 is shown in Table 1. Next, various bonding materials having the compositions shown in Table 2 were prepared.

表2中、試料番号1,2はいずれも市販のN1基超合金
用のフィラーで、1は非晶質、2は粉末である。試料番
号3〜11は、所定の組成比で配合した合金を水冷鋼モ
ールド中で真空フ0ラズマ溶解し、との溶湯を単ロール
上に噴出して約3 X’ 10’’C/seeの冷却速
度で急冷したり?ンである。
In Table 2, sample numbers 1 and 2 are both commercially available fillers for N1-based superalloys, with 1 being amorphous and 2 being powder. Sample numbers 3 to 11 were made by melting alloys blended at a predetermined composition ratio in a water-cooled steel mold using a vacuum plasma, and then spouting the molten metal onto a single roll to form a melt of approximately 3 X'10'' C/see. Rapid cooling with cooling speed? It is.

なお、−値、Nv値はいずれも計算値として示した。表
2中、試験番号4,5,6.9が本発明の接合材のり?
ンフイラーである。
Note that both the - value and the Nv value are shown as calculated values. In Table 2, are test numbers 4, 5, and 6.9 the bonding material glue of the present invention?
It is a filler.

これらの接合材を用いてTLP法によ、iDMAR−M
247の母材を接合した。接合部の金属組織の顕微鏡写
真を、試料番号1(比較例)に関しては図2(倍率50
00)に、試料番号3(比幹II)に関しては図3(倍
率500)に、試料番号9(実施例)に関しては図4(
倍率200)に、そして図4の接合部を更に拡大したも
のを図5(倍率5000)に示した。
Using these bonding materials, iDMAR-M was fabricated by TLP method.
247 base materials were joined. A micrograph of the metal structure of the joint is shown in Figure 2 (magnification 50) for sample number 1 (comparative example).
00), sample number 3 (hikei II) in Figure 3 (magnification 500), and sample number 9 (example) in Figure 4 (
FIG. 5 (magnification: 5000) shows a further enlarged view of the joint in FIG. 4 (magnification: 200).

図2では、接合部には二次γ′相が均一に析出している
が、−次γ′相の析出はみられず、母材と同じ金属組織
ではない。
In FIG. 2, the secondary γ' phase is uniformly precipitated at the joint, but no -order γ' phase is observed, and the metal structure is not the same as that of the base metal.

また、母材に単純に融点降下元素(B、81)を添加し
たものに関しては、図3で明瞭な如く、母材と接合部と
は画然と異なった組織になっている。
Furthermore, in the case where the melting point lowering element (B, 81) was simply added to the base material, as is clear from FIG. 3, the base material and the bonded part have a distinctly different structure.

これに反し、図4で明らかなように本発明の接合材によ
る接合部は一次r′相、二次γ′相がいずれも母材と同
等に析出しておシ、EPMAによる分析結果くおいても
接合部におけるA7濃度は母材のそれと同じであった。
On the other hand, as is clear from Fig. 4, in the bonded part using the bonding material of the present invention, both the primary r' phase and the secondary γ' phase are precipitated in the same manner as the base metal. However, the A7 concentration in the joint was the same as that in the base metal.

更に、この接合部を更に拡大した図5から明らかなよう
に、接合部にはMC型粒界炭化物が析出しており、その
W濃度もEPMAによる分析結果においても母材と同勢
であった。
Furthermore, as is clear from Figure 5, which shows a further enlargement of this joint, MC-type grain boundary carbides were precipitated at the joint, and the W concentration was also the same as that of the base metal according to the EPMA analysis results. .

〔清明の効果〕[Effect of Qingming]

以上の説明で明らかなように、本発明の接合材を用いて
TLP法でγ′量が55q6以上のNi基超超合金接合
しても、その接合部が母材の金属組織と同等になり極め
て高い信頼性の接合が可能となり、例えばその使用温度
の高いガスタービン冷却翼の・M造にあっても接合部の
強度を母材と同等にして分割構造で組立てることができ
それだけ内部冷却法を効率化することが可能となるので
その工業的価値は極めて大である。また、本発明の接合
材の組成決定に適用した手法を駆使すれば、各種のNi
基超超合金接合材に関する従来の試行錯誤は払拭されて
、極めて系統だって巾広い接合用のり?ンフイラーを成
形することができるので、その適用範囲は極めて広い。
As is clear from the above explanation, even if the bonding material of the present invention is used to bond a Ni-based superalloy with a γ' content of 55q6 or more using the TLP method, the bonded portion will have the same metal structure as the base metal. This makes it possible to join with extremely high reliability.For example, even in the M construction of gas turbine cooling blades, which have high operating temperatures, the strength of the joint can be made equal to that of the base material and it can be assembled in a split structure, which makes it possible to use the internal cooling method. Its industrial value is extremely great because it makes it possible to improve efficiency. Furthermore, by making full use of the method applied to determining the composition of the bonding material of the present invention, it is possible to
The conventional trial and error regarding base super superalloy bonding materials has been dispelled, and an extremely systematic and wide bonding glue has been developed. Since the filler can be molded, its range of applications is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

図1はガスタービン冷却翼の断面図である。図2、図3
2図42図5はそれぞれ接合部の顕微鏡写真である。 図1 図 2 図3 、・semi、
FIG. 1 is a sectional view of a gas turbine cooling blade. Figure 2, Figure 3
2, 42 and 5 are microscopic photographs of the joints. Figure 1 Figure 2 Figure 3 ,・semi,

Claims (1)

【特許請求の範囲】 少なくとも一方のγ′量が55%以上であるN15AA
−γ′強化型Ni基照合金の母材を液相拡散接合するた
めのすzン形状接合材であって、 該接合材が、Co + Ta g W s All g
 Cr g BとSLのいずれか又は両方、及びNiを
必須成分とする合金で、その組成は、 (I)  Coが、母材中のCoの重量比(重量%)と
同じ値; Q[)  Taが、0重量%以上母材中のTa重量%と
歯型量%とを合せた値以下; ([)Wが、母材中のW重量−の気の値以上母材中W重
量%とMo重量%とを合せた値以下、又は、接合部に粒
界炭化物を生成するに必要なW重量%の下限値のいずれ
かの値のうちの大きい値; (EV)  AJが、接合部に母材中の一次γ′相を生
成するに必要なAI重量%の下限値以上腋下限値+1重
量%以下の値; (V)  Crが、母材中のCr重量%と同じ値;mB
15iは、両者を合せた量が15原子チ以上22原子チ
以下の値であって、がっ、少なくともSiは1.5重量
−以下である値;(2) しかも、該接合材中の各成分
の量が、次に示す融点(Tkn)の式; %式% ≦−≦1150℃の関係を満足する値;(VID  ま
た、該接合材中の各成分の量が、次に示す平均電子空孔
数(Nv)の式: %式% x (S1+Zr) (但し、各成分は原子−を表わす
。) において、Nv≦2.2原子チの関係を満足する値; (IX′)残部がNi; であり、 かつ、 冷却速度10”C/ sec以上の溶湯急冷法で作成し
たことを特徴とするN1基超合金用接合材。
[Claims] N15AA in which at least one of the γ′ amounts is 55% or more
- A tin-shaped bonding material for liquid phase diffusion bonding of a base material of a γ'-reinforced Ni-based alloy, the bonding material comprising Co + Ta g W s All g
Cr g An alloy containing either or both of B and SL and Ni as essential components, the composition of which is: (I) Co has the same value as the weight ratio (wt%) of Co in the base material; Q [) Ta is 0% by weight or more and less than or equal to the sum of Ta weight% in the base material and tooth profile amount%; ([) W is greater than or equal to the value of W weight in the base material - W weight% in the base material and Mo weight %, or the larger of the lower limit of W weight % necessary to generate grain boundary carbide at the joint; (EV) AJ is the joint A value that is greater than or equal to the lower limit of the AI weight percent necessary to generate the primary γ' phase in the base material and less than or equal to the armpit limit value + 1 weight percent; (V) A value where Cr is the same as the Cr weight percent in the base material; mB
15i is a value in which the combined amount of both is 15 atoms or more and 22 atoms or less, and at least Si is 1.5 weight or less; (2) Moreover, each of the The amount of each component in the bonding material satisfies the following formula for the melting point (Tkn); Formula for the number of vacancies (Nv): % formula % x (S1+Zr) (However, each component represents an atom -) A value that satisfies the relationship Nv ≦ 2.2 atoms; (IX') The remainder is A bonding material for an N1-based superalloy, characterized in that it is Ni; and is produced by a molten metal rapid cooling method at a cooling rate of 10"C/sec or more.
JP12508282A 1982-07-20 1982-07-20 Bonding material for Ni-based superalloys Expired JPS5950431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12508282A JPS5950431B2 (en) 1982-07-20 1982-07-20 Bonding material for Ni-based superalloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12508282A JPS5950431B2 (en) 1982-07-20 1982-07-20 Bonding material for Ni-based superalloys

Publications (2)

Publication Number Publication Date
JPS5916687A true JPS5916687A (en) 1984-01-27
JPS5950431B2 JPS5950431B2 (en) 1984-12-08

Family

ID=14901380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12508282A Expired JPS5950431B2 (en) 1982-07-20 1982-07-20 Bonding material for Ni-based superalloys

Country Status (1)

Country Link
JP (1) JPS5950431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171646A (en) * 2017-03-03 2018-11-08 ゼネラル・エレクトリック・カンパニイ Weld filler and method of welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171646A (en) * 2017-03-03 2018-11-08 ゼネラル・エレクトリック・カンパニイ Weld filler and method of welding

Also Published As

Publication number Publication date
JPS5950431B2 (en) 1984-12-08

Similar Documents

Publication Publication Date Title
RU2703670C1 (en) Cobalt-based alloy made from additive technology, article from cobalt-based alloy and method of making said alloy
US5783318A (en) Repaired nickel based superalloy
JP3842717B2 (en) Welding material, welded structure, gas turbine rotor blade, and gas turbine rotor blade or stationary blade repair method
JP6935579B2 (en) Cobalt-based alloy product and method for manufacturing the product
US4478638A (en) Homogenous alloy powder
JP5068927B2 (en) Nickel-based braze alloy composition, related methods and articles
JP2017222929A (en) Ni-BASE SUPERALLOY COMPOSITION AND METHOD FOR SLM-PROCESSING SUCH Ni-BASE SUPERALLOY COMPOSITION
JP4146178B2 (en) Ni-based sintered alloy
JP6994564B2 (en) Heat exchanger
JP6935577B2 (en) Cobalt-based alloy product
JPH1029088A (en) Nickel base brazing filler metal
JP2007518877A (en) Methods of processing, such as repairing of workpieces such as brazing alloys, the use of brazing alloys, and parts of gas turbines
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
CN108396200A (en) A kind of cobalt base superalloy and preparation method thereof and the application in heavy duty gas turbine
US2822269A (en) Alloys for bonding titanium base metals to metals
KR102414975B1 (en) Alloys with good oxidation resistance for gas turbine applications
JP7223878B2 (en) Cobalt-based alloy product and manufacturing method thereof
JP4486658B2 (en) Ni-based sintered alloy
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
JPS5916687A (en) Joining material for ni-base sintered alloy
JP2006016671A (en) Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
Berthod et al. Microstructures and hardness of model niobium-based chromium-rich cast alloys
CN107414224B (en) Method of brazing wide gaps in nickel-based superalloys without significant degradation of properties
JP4223627B2 (en) Nickel-based single crystal heat-resistant superalloy, manufacturing method thereof, and turbine blade using nickel-based single crystal heat-resistant superalloy
JP3957261B2 (en) Filler material for Ni-base heat-resistant superalloy and method for fusion welding of Ni-base heat-resistant superalloy