JPS59166712A - Static pressure bearing - Google Patents

Static pressure bearing

Info

Publication number
JPS59166712A
JPS59166712A JP3907083A JP3907083A JPS59166712A JP S59166712 A JPS59166712 A JP S59166712A JP 3907083 A JP3907083 A JP 3907083A JP 3907083 A JP3907083 A JP 3907083A JP S59166712 A JPS59166712 A JP S59166712A
Authority
JP
Japan
Prior art keywords
pressure
lubricant
diaphragm
chambers
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3907083A
Other languages
Japanese (ja)
Inventor
Sadao Asanabe
朝鍋 定生
Susumu Taniguchi
谷口 邁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3907083A priority Critical patent/JPS59166712A/en
Publication of JPS59166712A publication Critical patent/JPS59166712A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0644Details of devices to control the supply of liquids to the bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent the displacement of a rotary shaft, by forming three pressure chambers in an internal peripheral wall of the main unit of a bearing while variable throttle flow paths between a diaphragm and throttle wall parts so as to supply a lubricant to the pressure chambers through these variable throttle flow paths. CONSTITUTION:Forming three pressure chambers 13a-13c at an equal space in an internal peripheral wall of the main unit 12 of a bearing while variable throttle flow paths 22 between a diaphragm 17 displaced in accordance with a change of pressure in the pressure chambers 13a-13c and throttle wall parts 18, a lubricant of high pressure is supplied to the pressure chambers 13a-13c through these variable throttle flow paths 22. In this way, if a pressure in the chambers 13a-13c becomes a high level, the variable throttle flow paths 22 are spread allowing the lubricant of high pressure of flow into these pressure chambers 13a-13c, thus the displacement of a rotary shaft 11 caused by the change of a load can be prevented before its occurrence.

Description

【発明の詳細な説明】 本発明は1回転軸に荷重変動が生じてもこの回転軸を支
持する軸受に対して当該回転軸の相対位置が変わシにく
くなるように企図した静圧軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrostatic bearing designed to prevent the relative position of a rotating shaft from changing with respect to a bearing supporting the rotating shaft even if a load fluctuation occurs on the rotating shaft.

従来の一般的な静圧軸受は、その概念を表す第1図に示
すように1回転軸1が貫通する軸受本体2の内周壁に等
間隔に複数(図示例では四つ)の圧力室3a〜3dを形
成し、高圧の潤滑剤を供給する高圧潤滑剤供給源4とこ
れら圧力室3a〜3dとをそれぞれ絞り通路5a〜5d
を介して導管6によシ接続した構造となっている。との
静圧軸受は厳密な寸法管理と高速回転とが要求される研
削盤等の工作機械やその他の産業機械に利用されてお9
1回転軸に対する負荷変動が発生しても軸受に対する回
転軸の相対位置が変化しないことが望ましい。
As shown in FIG. 1, which shows the concept of a conventional static pressure bearing, a plurality (four in the illustrated example) of pressure chambers 3a are arranged at equal intervals on the inner circumferential wall of a bearing body 2 through which a single rotation shaft 1 passes. ~3d, and a high pressure lubricant supply source 4 that supplies high pressure lubricant and these pressure chambers 3a~3d are connected to throttle passages 5a~5d, respectively.
It has a structure in which it is connected to a conduit 6 via a. Hydrostatic bearings are used in machine tools such as grinders and other industrial machinery that require strict dimensional control and high-speed rotation.
It is desirable that the relative position of the rotating shaft with respect to the bearing does not change even if a load change occurs on the rotating shaft.

ところが、第1図に示した従来の静圧軸受では1図中1
例えば下向きの負荷が回転lll11に作用すると、下
側の圧力室3Cの潤滑剤の圧力が上昇すると共に上側の
圧力室3.aの潤滑剤の圧力が下降するため、下側の絞
9通路5Cの両端部での潤滑剤の圧力差が小さくなると
共に上側の絞り通路5aの両端部での潤滑剤の圧力差が
大きくなり、下側の圧力室3cへの潤滑剤の流量が減少
すると共に上側の圧力室3aへの潤滑剤の流量が増大す
る。この結果、下側の圧力室3Cと回転軸1との間の隙
間が狭まると共に上側の圧力室3aと回転軸lとの間の
隙間が拡が91回転軸1は軸受本体2に対して相対的に
下側へ変位し、新たな平衡状態へ移行することとなる。
However, in the conventional hydrostatic bearing shown in Fig. 1,
For example, when a downward load acts on the rotation lll11, the pressure of the lubricant in the lower pressure chamber 3C increases, and at the same time, the pressure of the lubricant in the lower pressure chamber 3C increases. Since the pressure of the lubricant in a decreases, the lubricant pressure difference at both ends of the lower throttle passage 5C becomes smaller, and the lubricant pressure difference at both ends of the upper throttle passage 5a increases. , the flow rate of lubricant to the lower pressure chamber 3c decreases and the flow rate of lubricant to the upper pressure chamber 3a increases. As a result, the gap between the lower pressure chamber 3C and the rotating shaft 1 narrows, and the gap between the upper pressure chamber 3a and the rotating shaft l widens.91 The rotating shaft 1 is relative to the bearing body 2. This results in a downward displacement and a transition to a new equilibrium state.

このように従来の静圧軸受では1回転軸に対する負荷変
動によって回転軸の位置が変化してしまい1例えは工作
機械においては製品の寸法精度が悪化してしまう欠点が
あった。
As described above, conventional hydrostatic bearings have the disadvantage that the position of the rotating shaft changes due to load fluctuations on the rotating shaft, resulting in a deterioration of the dimensional accuracy of the product, for example in machine tools.

本発明は上述した従来の静圧軸受における根本的な不具
合に鑑み1回転軸に負荷変動があっても軸受に対する回
転軸の相対位置が変化しにくくなるように企図した静圧
軸受を提供することを目的とする。
In view of the fundamental drawbacks of the conventional hydrostatic bearings described above, the present invention provides a hydrostatic bearing designed to make it difficult for the relative position of the rotating shaft to change even if there is a load change on the rotating shaft. With the goal.

この目的を達成する本発明の静圧軸受にががる構成は、
密閉されたケーンング内を等しい三つの部屋に仕切る放
射状のタイヤフラムと、前記三つの部屋内にそれぞれ密
閉状態で形成され且つ前記タイヤフラムに近接状態で対
向する絞シ壁部をそれぞれ具えた三つの仕切シ箆と、こ
れら三つq仕切り室内に高圧の潤滑剤をそれぞれ送給す
る高圧潤滑剤供給源と1回転軸が貫通する軸受本体の内
周壁に等間隔に形成され且つ前記仕切シ室外の前記部屋
内にそれぞれ一対一で連通する三つの圧力室と、前記仕
切シ室の数多壁部にそれぞれ穿設され且つ前記仕切シ室
の内側と外側とを連通して前記ダイヤフラムと前記絞シ
壁部との間に前記潤滑剤の可変絞多流路を形成させる潤
滑剤供給孔とからなるものである。
The structure of the hydrostatic bearing of the present invention that achieves this objective is as follows:
A radial tire flange that partitions the inside of a sealed caning into three equal chambers, and a diaphragm wall that is formed in each of the three chambers in a sealed state and faces the tire flam in a close state. A high-pressure lubricant supply source that supplies high-pressure lubricant into each of these three q partition chambers, and a high-pressure lubricant supply source that is formed at equal intervals on the inner peripheral wall of the bearing body through which the one-rotation shaft passes, and that is located outside the partition chamber. Three pressure chambers each communicate one-to-one within the chamber, and the diaphragm and the diaphragm are connected to each other by perforating each wall of the partition chamber and communicating between the inside and outside of the partition chamber. The lubricant supply hole forms a variable throttling multi-flow path for the lubricant between the lubricant supply hole and the wall portion.

以下1本発明による静圧軸受の一夾施例についてその概
略構造を表す第2図を参照しなから詐細に説明する。回
転軸llが貫通ずる円筒状の軸受本体12の内周壁には
三つの圧力室13a〜13cが等間隔で形成され、それ
ぞれ絞、!l) 14a〜14cf:介してこれら圧力
室13a〜・13cに送給されて来る潤滑剤の圧力によ
91回転軸11が軸受本体工2の中心に回転自在に支持
されるようになっている。一方、円筒状をなす密閉され
たクーソング15内には、このクーソング15内を等し
く三つの部屋16a〜16cに仕切る放射状のダイヤフ
ラム17が取シ付けられておp、これら三つに仕切られ
た部屋16a〜16cにはダイヤフラム17と近接状態
で対向する絞シ壁部18を具えた密閉状態の仕切シ室1
9a〜19cがそれぞれ形成されている。
Hereinafter, one embodiment of a hydrostatic bearing according to the present invention will be described in detail with reference to FIG. 2, which schematically shows the structure thereof. Three pressure chambers 13a to 13c are formed at equal intervals on the inner circumferential wall of the cylindrical bearing body 12 through which the rotation axis 11 passes, and each has a constriction. l) 14a to 14cf: The rotating shaft 11 is rotatably supported at the center of the bearing body 2 by the pressure of the lubricant supplied to these pressure chambers 13a to 13c via the lubricant. . On the other hand, a radial diaphragm 17 is attached to the cylindrical sealed coos song 15 to equally partition the coos song 15 into three chambers 16a to 16c. 16a to 16c are partitioned chambers 1 in a sealed state, which are provided with a diaphragm wall 18 that faces the diaphragm 17 in close proximity.
9a to 19c are formed, respectively.

これら仕切シ室19a〜19c内には高圧の潤滑剤を送
給する高圧潤滑剤供給源20が導管21を介してそれぞ
れ接続しておシ、絞シ壁部18には、この絞り壁部18
とダイヤフラム17との間に形成された可変絞多流路2
2に連通する潤滑剤供給孔23が穿設されている。従っ
て。
A high-pressure lubricant supply source 20 for supplying high-pressure lubricant is connected to each of these partition chambers 19a to 19c via a conduit 21.
and the diaphragm 17.
A lubricant supply hole 23 communicating with the lubricant supply hole 2 is bored. Therefore.

高圧の潤滑剤は仕切シ室19a〜19cから潤滑剤供給
孔23を介してこれら仕切多室19a〜19c外の部屋
16a−16c内に充満することとなる。これら仕切シ
室19aへ・19c外の部屋16 a −L 6 cと
前述した紋り14a〜14cとはそれぞれ導管24f:
介して一対一で連通してお多、これら導管24を介して
部屋16a〜16c内の潤滑剤が圧力室13a〜13c
側へ送給されるようになっている。
The high-pressure lubricant is filled from the partitioned chambers 19a to 19c through the lubricant supply hole 23 into the rooms 16a to 16c outside of the partitioned multichambers 19a to 19c. The rooms 16a-L6c to and from these partitioned rooms 19a and 19c and the aforementioned ridges 14a to 14c are conduits 24f:
The lubricant in the chambers 16a to 16c is connected to the pressure chambers 13a to 13c through these conduits 24 on a one-to-one basis.
It is designed to be sent to the side.

従って1例えは回転軸11に図中、下向きの負荷が作用
すると、下側の圧力室13bの潤滑剤の圧力が高くなっ
てこれと対応する部屋16b内の圧力が上昇すると共に
逆に上側二つの圧力室13a、13eの潤滑剤の圧力が
低下してこれと対応する部屋16a、46c内の圧力が
低下するため、ダイヤフラム17が上側に変位して仕切
υ室19a、19cの紋シ壁部18とダイヤフラム■7
との間の絞シ流路22が狭くなると共に仕切シ室19b
の絞シ壁部18とターイヤフラム17との間の絞シ流路
22が拡がる。
Therefore, for example, when a downward load is applied to the rotating shaft 11 in the figure, the pressure of the lubricant in the lower pressure chamber 13b increases, the pressure in the corresponding chamber 16b increases, and conversely, the pressure in the upper chamber 13b increases. The pressure of the lubricant in the two pressure chambers 13a, 13e decreases, and the pressure in the corresponding chambers 16a, 46c decreases, so the diaphragm 17 is displaced upward, causing the patterned walls of the partition υ chambers 19a, 19c to decrease. 18 and diaphragm■7
As the throttle channel 22 between the partition chamber 19b becomes narrower and the
The throttle channel 22 between the throttle wall 18 and the tire diaphragm 17 widens.

この結果、仕切シ室19a、19c内の高圧の潤滑剤が
それらの潤滑剤供給孔、23から流れ出にくくなる一方
、仕切り室19b内の高圧の潤滑剤が多量に部屋16b
内に吐出されるため。
As a result, the high-pressure lubricant in the partition chambers 19a and 19c becomes difficult to flow out from their lubricant supply holes 23, while a large amount of the high-pressure lubricant in the partition chamber 19b flows into the chamber 16b.
Because it is discharged inside.

上側二つの圧力室13 a 、 13 cへの潤滑剤の
流量よシも下側の圧力室13bへの潤滑剤の流量が大幅
に増大し1回転軸11にはこれを上側へ持ち上げるよう
な潤滑剤の圧力が作用して下側への負荷と釣シ合う。つ
まシ、ダイヤンラム17の撓み剛性と可変絞多流路22
と幅とを適切に選択することによって回転軸11に対す
る負荷と等しい潤滑剤の圧力をこの負荷と逆向きに発生
させることが可能であり、軸受本体12に対して回転軸
重1を常に一定位置に保持することができる。
The flow rate of lubricant to the two upper pressure chambers 13a and 13c increases significantly, as does the flow rate of lubricant to the lower pressure chamber 13b, and the 1-rotation shaft 11 is lubricated to lift it upward. The pressure of the agent acts to balance the load on the lower side. The bending rigidity of the knob and diamond ram 17 and the variable throttle multi-flow path 22
By appropriately selecting the width and width, it is possible to generate a lubricant pressure equal to the load on the rotating shaft 11 in the opposite direction to this load, and it is possible to keep the rotating shaft load 1 at a constant position with respect to the bearing body 12. can be held.

このように本発明の静圧軸受によると、圧力室の圧力変
動に伴って変位するダイヤフラムと絞り壁部との間に可
変絞り流路を形成し、この可変絞多流路を介して圧力室
へ高圧の潤滑剤を供給するようにしたので、圧力室が高
圧になると逆に可変絞り流路が拡がって高圧の潤滑列が
この圧力室に流れ込み1回転軸の変位を未然に防止でき
る。
In this way, according to the hydrostatic bearing of the present invention, a variable throttle flow path is formed between the diaphragm and the throttle wall that are displaced in accordance with pressure fluctuations in the pressure chamber, and the pressure chamber is Since high-pressure lubricant is supplied to the pressure chamber, when the pressure in the pressure chamber becomes high, the variable throttle flow path expands and a high-pressure lubricant train flows into the pressure chamber, thereby preventing displacement of the single rotation shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静圧41I受の概略)荷造を表す概念図
、第2図に本発明による静圧軸受の一実施例の概略構造
を表す概念図であシ、図中の符号で 11は回転軸。 12は軸受本体。 13 a −13cは圧力室。 15はケーシング。 16a〜i6cは部屋。 エフはダイヤスラム。 18は数多壁部。 19a−19cは仕切り室。 20は高圧潤滑剤供給装置。 22は可変絞多流路。 23は潤滑剤供給孔である。 特許出願人 三菱重工業株式会社
Fig. 1 is a conceptual diagram showing the schematic structure of a conventional static pressure bearing (41I), and Fig. 2 is a conceptual diagram showing the schematic structure of an embodiment of the static pressure bearing according to the present invention. is the axis of rotation. 12 is the bearing body. 13a-13c are pressure chambers. 15 is the casing. Rooms 16a-i6c are. F is Diamond Slam. 18 is a large number of walls. 19a-19c are partition rooms. 20 is a high pressure lubricant supply device. 22 is a variable throttle multi-channel. 23 is a lubricant supply hole. Patent applicant Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 密閉されたケーソング内を等しい三つの部屋ニ仕切る放
射状のダイヤフラムと、前記三つの部屋内にそれぞれ密
閉状態で形成され且つ前記ダイヤフラムに近接状態で対
向する絞υ壁部をそれぞれ具えた三つの仕切シ室と、こ
れら三つの仕切シ室内に高圧の潤滑剤をそれぞれ送給す
る高圧潤滑剤供給源と1回転軸が貫通する軸受本体の内
周壁に等間隔に形成され且つ前記仕切多室外の前記部屋
内にそれぞれ一対一で連通ずる三つの圧力室と、前記仕
切り室の絞シ壁部にそれぞれ穿設され且つ前記仕切シ室
の内側と外側とを連通して前記ダイヤフラムと前記絞シ
壁部との間に前記潤滑剤の可変絞シ流路を形成させる潤
滑剤供給孔とからなる静圧軸受。
Three partition systems each comprising a radial diaphragm that partitions a sealed casing into three equal chambers, and a diaphragm υ wall formed in each of the three chambers in a sealed state and facing the diaphragm in close proximity. a chamber, a high-pressure lubricant supply source that supplies high-pressure lubricant into each of these three partitioned chambers, and a chamber formed at equal intervals on the inner circumferential wall of the bearing body through which the one-rotation shaft passes, and which is outside the partitioned multi-chamber; three pressure chambers each communicating one-to-one within the diaphragm and the diaphragm and the diaphragm wall, each of which is perforated in the diaphragm wall of the partition chamber and communicating between the inside and outside of the partition chamber; A hydrostatic bearing comprising a lubricant supply hole forming a variable restriction flow path for the lubricant between the lubricant supply holes.
JP3907083A 1983-03-11 1983-03-11 Static pressure bearing Pending JPS59166712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3907083A JPS59166712A (en) 1983-03-11 1983-03-11 Static pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3907083A JPS59166712A (en) 1983-03-11 1983-03-11 Static pressure bearing

Publications (1)

Publication Number Publication Date
JPS59166712A true JPS59166712A (en) 1984-09-20

Family

ID=12542858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3907083A Pending JPS59166712A (en) 1983-03-11 1983-03-11 Static pressure bearing

Country Status (1)

Country Link
JP (1) JPS59166712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703666A1 (en) * 2012-08-27 2014-03-05 Alstom Wind, S.L.U. Rotating system for a wind turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839946U (en) * 1971-09-16 1973-05-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839946U (en) * 1971-09-16 1973-05-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703666A1 (en) * 2012-08-27 2014-03-05 Alstom Wind, S.L.U. Rotating system for a wind turbine
US9885342B2 (en) 2012-08-27 2018-02-06 Ge Renewable Technologies Wind B.V. Rotating system for a wind turbine

Similar Documents

Publication Publication Date Title
US5104237A (en) Self-compensating hydrostatic linear motion bearing
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
US8262062B2 (en) Rotary valve
US3223463A (en) Machine tool spindle
JP2002357222A (en) Fluid bearing
US2578711A (en) Bearing
US3934947A (en) Fluid bearing system
WO1988003611A1 (en) A hydrostatic thrust bearing system
US4002086A (en) Device for automatic correction of unbalance in rapidly rotating machine elements
US5033317A (en) Apparatus for ascertaining the magnitude of stresses upon the bearings for rolls in calenders and like machines
CN101164724A (en) Spindle device
JPH0125946B2 (en)
US3998502A (en) Fluid bearing system
JPS59166712A (en) Static pressure bearing
US3508799A (en) Gas bearings
JPH02215984A (en) Screw compressor
US3049383A (en) Damping vibrations in a gas bearing
US3158039A (en) Dynamic balancing system for rotating structures
US5584463A (en) Radial vibration damping arrangement
US4365849A (en) Hydrodynamic shaft bearing with concentric outer hydrostatic squeeze film bearing
JP3089270B2 (en) Hydrostatic gas bearing
US3761146A (en) Fluid bearing
US3651706A (en) Lead screw device
US5872875A (en) Hydrodynamic shaft bearing with concentric outer hydrostatic bearing
US3938862A (en) Fluid bearing system