JPS59165802A - Cooling apparatus for moving blade shroud of steam turbine - Google Patents
Cooling apparatus for moving blade shroud of steam turbineInfo
- Publication number
- JPS59165802A JPS59165802A JP3743383A JP3743383A JPS59165802A JP S59165802 A JPS59165802 A JP S59165802A JP 3743383 A JP3743383 A JP 3743383A JP 3743383 A JP3743383 A JP 3743383A JP S59165802 A JPS59165802 A JP S59165802A
- Authority
- JP
- Japan
- Prior art keywords
- shroud
- steam
- cooling
- outer ring
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/10—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は蒸気タービンの冷却構造(二係り、特に動翼先
端(−設けられたシュラウドな良好(二冷却する装置(
二関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a cooling structure for a steam turbine (two systems, particularly a rotor blade tip (-a shroud provided with a cooling device (two cooling devices)).
Two matters.
一般(=蒸気タービンの入口蒸気温度を高温化すること
は蒸気タービンの高効率化(二つながるが、反面、材料
強度の低下等の悪影響をおよほす。General (= Increasing the steam temperature at the inlet of a steam turbine leads to higher efficiency of the steam turbine, but on the other hand, it has negative effects such as a decrease in material strength.
第1図(二示す如く、蒸気タービン動翼の先端には振動
減衰、wlJ翼先翼部端部蒸気漏洩防止め、シュラウド
1が設けられている。このシュラウド1)ま、動翼先端
の一部を突起させ、その突起2をかしめること(二よっ
て1m1足されている。このかしめ部には、シュ2ウド
1が遠心力を受けるため大きな応力が生じる。また、シ
ュラウド1と、それに向って#真先端部蒸気漏洩防止用
に設けられたチップフィン3との間隙は、蒸気漏洩を防
止して蒸気タービンの効率を同上せしめるためにせまく
設計されている。したがって、シュラウド1の少しの変
形がチップフィン3との接触(二つながシ、タービンロ
ータの不安定な振動な引き起こして大きな事故(=至る
危険性がめる。また蒸気温度が篩温化し、シュラウドか
しめ部が高温(二なると、この部分の材料強度が低下し
、シュラウド1の受ける遠心力(二よシかしめ部が変形
、破壊を起こし、シュラウド1とチップフィン3との接
触事故を起こす危険性かめるので特(−シュラウドかし
め部な冷却する必要がある。As shown in Figure 1 (2), a shroud 1 is provided at the tip of the steam turbine rotor blade for vibration damping and to prevent steam leakage at the end of the wlJ blade tip. The protrusion 2 is made to protrude, and the protrusion 2 is caulked (1 m1 is added to the protrusion 2).A large stress is generated in this caulked part because the shroud 1 receives centrifugal force. # The gap between the tip fin 3 and the tip fin 3 provided to prevent steam leakage at the true tip is designed to be narrow in order to prevent steam leakage and improve the efficiency of the steam turbine. Therefore, slight deformation of the shroud 1 contact with the tip fin 3 (two connections), causing unstable vibration of the turbine rotor and leading to a serious accident.In addition, the steam temperature becomes sieve temperature, causing the shroud caulked part to become hot. The material strength of the shroud 1 is reduced, and the centrifugal force that the shroud 1 is subjected to (the cooling part of the shroud crimped part may be deformed or destroyed, increasing the risk of a contact accident between the shroud 1 and the tip fin 3). There is a need to.
従来シュラウドの冷却(二ついては、第1図(二示す冷
却構造が考えられている。第1図(二おいて、作動流体
でおる高温蒸気は、ノズルダイアフラム外輪4と、ノズ
ルダイアフラム外輪5と、それらによって固定されてい
るノズル板6と(二よシ構成されるノズル通路部(二お
いて加速され、ロータディスク7と、それ(二固定され
た動翼8と、その先端(−設けられたシュラウド1と(
二より構成される動翼通路部を通って次段落へ流れる。Conventionally, shroud cooling (for example, the cooling structure shown in Fig. 1 (2) has been considered. The nozzle plate 6 fixed by them, the nozzle passage section (2) which is accelerated by the rotor disk 7, the fixed rotor blade 8, Shroud 1 and (
It flows to the next stage through the rotor blade passage section which is composed of two parts.
シュラウド部を冷却するための低温蒸気は、ケーシング
9の通路10、ノズルダイアフラム外輪4の通路11を
通シシュラウド1(二回って吹き出される。このよう(
二構成された冷却構造(二おいては、シュラウド1の外
面は低温の冷却蒸気(二より冷却されるが、シュラウド
lの内面(二は高温蒸気が流れているため、シュラウド
内外面で温度差を生じ、そのためシュラウド1が外面方
向4二曲が9変形を起こし、シュラウド1とチップフィ
ン3との接触事故を起こす危険性がある。またかしめ部
の根元部は高温蒸気(二さらされているためほとんど冷
却されず、この部分の材料強度が低下して変形、破壊孟
二至る危険性がある。Low-temperature steam for cooling the shroud section is blown out through the passage 10 of the casing 9 and the passage 11 of the nozzle diaphragm outer ring 4 into the shroud 1 (twice.
2 cooling structures (in 2, the outer surface of shroud 1 is cooled by low-temperature cooling steam (2), but the inner surface of shroud 1 (2 is cooled by high-temperature steam, so there is a temperature difference between the inner and outer surfaces of the shroud). As a result, the shroud 1 is deformed in the outer surface direction 42 and there is a risk of contact accident between the shroud 1 and the tip fin 3. Also, the root of the caulked part is exposed to high temperature steam (2). Therefore, there is little cooling, and there is a risk that the strength of the material in this area will decrease, leading to deformation and breakage.
本発明は上記従来技術の欠点を除くため(二なされたも
ので、蒸気温度が高畝化した場盆(二もシュラウドかし
め部の材料強度の低下がなく、またシュラウド内外面で
温に差が生じないような動翼シュラウドの冷却装置を提
供することを目的とする。The present invention has been made in order to eliminate the drawbacks of the above-mentioned prior art (2).The present invention has been made in order to eliminate the disadvantages of the above-mentioned prior art. It is an object of the present invention to provide a cooling device for a rotor blade shroud that does not cause such a problem.
上記目的を達成するため本発明は、蒸気進路の開口部ノ
ズルダイアフラム外輪の側面に設け、冷却蒸気がシュラ
ウドの側面に向って軸方向(二噴出するようにしたこと
を特徴とするものである。To achieve the above object, the present invention is characterized in that the opening of the steam path is provided on the side surface of the nozzle diaphragm outer ring, so that cooling steam is ejected in the axial direction (two directions) toward the side surface of the shroud.
以下本発明の一央流例について第2図2よび第3図を参
照して説明する。第2図(二示すよう(二、ノズル板6
の4長を従来技術の翼長よシ少し短かくするために、ノ
ズルダイアフラム外輪内径?小さくする。ケーシング9
には、外部高圧吐温蒸気を導くためのケーシング通路1
0が設けられ、ノズルダイアフラム外輪4t=設けられ
たノズルダイアフラム外輪通路11(二接続されている
。ノズルダイアフラム外輪通路出口は、#J翼シュラウ
ド1の側面(二回って軸方向に開口しており、この部分
(二は、第3図に示したよう(二、フィン12がノズル
先端流出角αと同じ角度で設けられている。A central flow example of the present invention will be described below with reference to FIGS. 2 and 3. Figure 2 (2, Nozzle plate 6
In order to make the length of the blade a little shorter than the blade length of the conventional technology, the inner diameter of the nozzle diaphragm outer ring was changed. Make it smaller. Casing 9
1 has a casing passage 1 for guiding external high-pressure discharged hot steam.
0 is provided, nozzle diaphragm outer ring 4t = provided nozzle diaphragm outer ring passage 11 (two connected. , This part (2) As shown in FIG. 3 (2) The fin 12 is provided at the same angle as the nozzle tip outflow angle α.
このように構成された蒸気タービン動翼シュラウドの冷
却構造においては、作動びC坏でめる高温蒸気はノズル
通路部(−おいて加速さBて動翼に流入する。この時ノ
ズル板翼長が従来技術よシ短かくなっていること、およ
びケーシング通路1oとノズルダイアフラム外輪通路1
1を通して動翼先端部(二泥入する高圧低温の冷却蒸気
流かめることと(二よって、7ユラウド1の内外面(二
は高温蒸気が当たらない。また冷却蒸気の一部はシュラ
ウド1とチップフィン3との同(−流れる。このように
シュラウドlは外面のみでなく内面も冷勾J蒸気にょ9
冷却されるので内外面温度差(二よる熱変形がなく、M
g先端かしめ部の材料強度低下が防止できシュラウドの
信頼性は尚く保たれる。ノズルダイアフラム外輪通e4
11からa翼先端に向って流出する冷却益気の流れは、
第3図中に示した速厩3角形で衣わされる。つまシ、流
出絶対速度Cおよび流邑角αを従来技術(二等しくなる
ように、冷却蒸気圧力および各フィン120間隔を決屋
して必る。そのため、周速Uとの関係から羽根相対流入
速度はW、相対流入角はβと従来技術と等しくな夛、動
翼先端部での流体損失は低く押えられる。以上の説明(
二おいてはフィン12を設けること(二より、ノズルシ
ダイアフラム外輪通路部出口での蒸気流れを実現したが
、フィンでなく、角度αを持った孔でも実現可能でおる
。また、ノズルダイアスラム通路出口部とシュラウドと
の半径方向相対位置および出口部での子午面角度ン適当
に選ぶこと);より、シュラウド外面、内面(=流れる
冷却蒸気の割合を変化させることも可能である。In the steam turbine rotor blade shroud cooling structure configured in this way, high-temperature steam generated during operation is accelerated at the nozzle passage (-) and flows into the rotor blade.At this time, the nozzle plate blade length is shorter than in the prior art, and the casing passage 1o and nozzle diaphragm outer ring passage 1
The high-pressure, low-temperature cooling steam that enters the tip of the rotor blade (2) through the shroud 1 (2) and the high-pressure, low-temperature cooling steam that enters the shroud (2) through the shroud 1 (2) prevents high-temperature steam from hitting the inner and outer surfaces of the rotor blade (2). The same flow as the fin 3 (- flows. In this way, the shroud l has a cooling gradient J steam flow not only on the outer surface but also on the inner surface.
Because it is cooled, there is no temperature difference between the inside and outside surfaces (there is no thermal deformation due to
g Decrease in material strength at the tip caulked portion can be prevented, and the reliability of the shroud can still be maintained. Nozzle diaphragm outer ring passage e4
The flow of cooling air flowing from No. 11 toward the tip of wing a is as follows:
It is covered with a fastening triangle shown in FIG. The cooling steam pressure and the spacing between each fin 120 must be determined so that the absolute outflow velocity C and the flow angle α are equal to the conventional technique. The speed is W, the relative inflow angle is β, which is the same as the conventional technology, and the fluid loss at the tip of the rotor blade can be kept low.The above explanation (
In the second step, the fins 12 are provided (in the second step, steam flow is realized at the outlet of the nozzle diaphragm outer ring passage section, but it is also possible to realize it with holes having an angle α instead of fins. By appropriately selecting the relative radial position of the passage outlet and the shroud and the meridional plane angle at the outlet, it is also possible to change the outer and inner surfaces of the shroud (=the ratio of flowing cooling steam).
以上述べたよう(二本発明によれば、MJJ翼シュラク
トの冷却を外面のみでなく内外面一様C二冷却す石よう
にし、流体損失を低く押さえたので、蒸気温度が高温化
した場合にも信頼性の高い蒸気タービンを実現するため
の動翼シュラウドの冷却装置を提供することができる。As mentioned above (according to the present invention), the MJJ blade shracto is cooled not only on the outer surface but also on the inner and outer surfaces uniformly by a stone to keep the fluid loss low. It is also possible to provide a cooling device for rotor blade shrouds to realize a highly reliable steam turbine.
S1図は従来の蒸気タービンNIJgシュラウド冷却装
置を示す断面図、第2図は本発明の一実施例を示す断面
図、第3図は第2図のA−A線矢視断面図である。
1・・・シュラウド、 4用ノズルダイアスラム外輪
、6・・・ノズル板、 8川動翼、
9・・・ケーシング、 1o・・・ケーシングの通路
、11・・・ノズルダイアフラム外輪の通路、12・・
・フィン。
代理人 弁理士 則 近 憲 佑(はが1名)第1図
第 2 図FIG. S1 is a sectional view showing a conventional steam turbine NIJg shroud cooling system, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a sectional view taken along the line A--A in FIG. DESCRIPTION OF SYMBOLS 1... Shroud, Nozzle diaphragm outer ring for 4, 6... Nozzle plate, 8-river moving blade, 9... Casing, 1o... Passage of casing, 11... Passage of nozzle diaphragm outer ring, 12・・・
·fin. Agent: Patent Attorney Noriyuki Chika (1 person) Figure 1 Figure 2
Claims (4)
貫通しfihIxシュラウド(二向けて開口する蒸気通
FJ′6+=。 高圧低温蒸気を送ってシュラウドを冷却する蒸気タービ
ン動翼シュラウドの冷却装置(二おいて、前記蒸気通路
の開口部をノズルダイアフラム外輪の側面(−設け、冷
却蒸気がシュラウドの側面(二向って軸方向(二噴出す
るよう(ニしたことヲ特徴とする蒸気タービン動翼シュ
ラウドの冷却装置。(1) Remove the casing and nozzle diaphragm 131
The steam passage FJ'6+= which penetrates the fihIx shroud and opens toward the nozzle diaphragm outer ring. A cooling device for a steam turbine rotor blade shroud, characterized in that the cooling steam is jetted in the axial direction toward the side surface of the shroud.
ノズル板翼長を短かくしたことを!?!feとする特許
請求の範囲第1項記載の蒸気タービン動翼シュラウドの
冷却装置。(2) The inner diameter of the nozzle diaphragm outer ring was made smaller to shorten the nozzle plate blade length! ? ! A cooling device for a steam turbine rotor blade shroud according to claim 1, wherein the cooling device is defined as fe.
溝の中に複数個のフィンを設け、このフィンの出口角度
をノズル翼の出口角度と等しくしたことを特徴とする特
許請求の範囲第1項および第2項記載の蒸気タービン動
翼シュラウドの冷却装置。(3) The opening of the cooling steam passage is shaped like an annular groove, a plurality of fins are provided in this groove, and the exit angle of the fins is made equal to the exit angle of the nozzle blade. A cooling device for a steam turbine rotor blade shroud according to scopes 1 and 2.
この孔の出口角度をノズル翼の出口角度と等しくしたこ
とを特徴とする特許請求の範囲第1項および第2項記載
の蒸気タービンwJ典シュラウドの冷却装置。(4) The opening of the cooling steam passage has a plurality of holes;
A cooling device for a steam turbine shroud according to claims 1 and 2, characterized in that the exit angle of the hole is equal to the exit angle of the nozzle blade.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3743383A JPS59165802A (en) | 1983-03-09 | 1983-03-09 | Cooling apparatus for moving blade shroud of steam turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3743383A JPS59165802A (en) | 1983-03-09 | 1983-03-09 | Cooling apparatus for moving blade shroud of steam turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59165802A true JPS59165802A (en) | 1984-09-19 |
Family
ID=12497375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3743383A Pending JPS59165802A (en) | 1983-03-09 | 1983-03-09 | Cooling apparatus for moving blade shroud of steam turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59165802A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702670A (en) * | 1985-02-12 | 1987-10-27 | Rolls-Royce | Gas turbine engines |
FR2619162A1 (en) * | 1987-08-03 | 1989-02-10 | Gen Electric | NON-CONTACT FLOW PATH SEAL |
JP2009085185A (en) * | 2007-10-03 | 2009-04-23 | Toshiba Corp | Axial flow turbine and axial flow turbine stage structure |
EP2775096A3 (en) * | 2013-03-08 | 2018-02-21 | Siemens Aktiengesellschaft | Diffuser assembly for an exhaust housing of a steam turbine, and steam turbine with the same |
-
1983
- 1983-03-09 JP JP3743383A patent/JPS59165802A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702670A (en) * | 1985-02-12 | 1987-10-27 | Rolls-Royce | Gas turbine engines |
FR2619162A1 (en) * | 1987-08-03 | 1989-02-10 | Gen Electric | NON-CONTACT FLOW PATH SEAL |
JP2009085185A (en) * | 2007-10-03 | 2009-04-23 | Toshiba Corp | Axial flow turbine and axial flow turbine stage structure |
EP2775096A3 (en) * | 2013-03-08 | 2018-02-21 | Siemens Aktiengesellschaft | Diffuser assembly for an exhaust housing of a steam turbine, and steam turbine with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3431875B1 (en) | Dilution holes for gas turbine engines | |
JP3789153B2 (en) | Apparatus for sealing a gap between adjacent blades of a gas turbine engine rotor assembly | |
JPH05195988A (en) | Gap sealing device between moving vane and casing of turbomachinery | |
JPH10274001A (en) | Turbulence promotion structure of cooling passage of blade inside gas turbine engine | |
JPS58167802A (en) | Axial-flow steam turbine | |
KR19980033014A (en) | How to cool gas turbine stator vanes and stator vanes | |
JPH0424523B2 (en) | ||
US6328532B1 (en) | Blade cooling | |
GB2075123A (en) | Turbine cooling air deswirler | |
JPS5918588B2 (en) | Vibration resistant valve | |
US6908278B2 (en) | Device for straightening the flow of air fed to a centripetal bleed in a compressor | |
JPS59165802A (en) | Cooling apparatus for moving blade shroud of steam turbine | |
US6217280B1 (en) | Turbine inter-disk cavity cooling air compressor | |
JPH06257597A (en) | Cascade structure of axial flow compressor | |
JPS5951104A (en) | Internal structure of turbine stage | |
JPH06323105A (en) | Leaking and flowing passage structure for axial-flow turbo-machinery | |
JPS59155503A (en) | Rotor cooling device for axial flow turbine | |
US20170292385A1 (en) | Rotation enhanced turbine blade cooling | |
JPS62174507A (en) | Exhaust diffuser for axial flow turbo machine | |
JPH06200704A (en) | Steam turbine nozzle chamber | |
CA2120428A1 (en) | Impeller blade with reduced stress | |
JPS5934402A (en) | Rotor device of steam turbine | |
JP3241241B2 (en) | Hollow gas turbine blades | |
JPH11264328A (en) | Compressor disc for gas turbine engine | |
JPS63117105A (en) | Moisture removing device for blade cascade of steam turbine |