JPS59165536A - Optical heterodyne/homodyne detecting method - Google Patents

Optical heterodyne/homodyne detecting method

Info

Publication number
JPS59165536A
JPS59165536A JP58039878A JP3987883A JPS59165536A JP S59165536 A JPS59165536 A JP S59165536A JP 58039878 A JP58039878 A JP 58039878A JP 3987883 A JP3987883 A JP 3987883A JP S59165536 A JPS59165536 A JP S59165536A
Authority
JP
Japan
Prior art keywords
light
optical
signal
output
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58039878A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58039878A priority Critical patent/JPS59165536A/en
Publication of JPS59165536A publication Critical patent/JPS59165536A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Abstract

PURPOSE:To improve the receiving sensitivity by controlling the intensity of the locally oscillated light so that the S/N of a demodulated output signal is set at the maximum level. CONSTITUTION:The output light 2 of the relative noise intensity K which is delivered from a local oscillator 1 receives the control of light intensity through an optical variable attenuator 3 and is turned into the locally oscillated light 4. This light 4 is multiplexed with the faint signal light 5 through an optical multiplexer 6. This multiplexed light 7 is detected by a light receiving part 9 having a photodetector with the equivalent input current noise set at i<2> and turned into a demodulated signal output 10. An output current 11 of the photodetector is virtually produced from the light 4. Therefore the current 11 is monitored by an ammeter 12, and the attenuator 3 is controlled so that the value of the current 11 satisfies I=(i<2>t/K)<1/2>.

Description

【発明の詳細な説明】 この発明は光通信システムや、元情報処理システム等に
用いられる光ヘテロダイン及び光ホモダイン検波方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical heterodyne and optical homodyne detection methods used in optical communication systems, original information processing systems, and the like.

一般に光ヘテロダイン及び光ホモダイン検波方法は、従
来の光直接検波方法に比べ受信感度を10〜100倍以
上に高めることができるという大きな特長があるため、
長距離光通信幹線システムや各抽高感度光センサに有効
な光検波方法として期待されている。
In general, optical heterodyne and optical homodyne detection methods have the great advantage of increasing reception sensitivity by 10 to 100 times more than conventional optical direct detection methods.
It is expected to be an effective optical detection method for long-distance optical communication trunk systems and various high-sensitivity optical sensors.

この光検波方法において高い受信感度が実現されるのは
、十分に大きい局部発振光を用いることによって光検出
器において生じるショット雑音に比べ光受信部の電気的
な雑音の影響が無視しうる、いわゆるショット雑音制限
の状態で検波を行なえるからである。局部発振光の大き
さが十分でない場合には光受信部の電気的な雑音の影響
が表われ′O!d信号出力の信号対雑音比が悪くなる。
This optical detection method achieves high reception sensitivity because it uses sufficiently large locally oscillated light, so that the influence of electrical noise in the optical receiver can be ignored compared to the shot noise generated in the photodetector. This is because detection can be performed with shot noise limited. If the local oscillation light is not large enough, the influence of electrical noise in the optical receiver will appear, causing 'O! The signal-to-noise ratio of the d signal output becomes poor.

そこで従来、光ヘテロダイン・光ホモダイン検波を行な
う場合には局部発振光のパワーは大きいほどよいと考え
られていた。ところが一般に局部発振光には光強度雑音
が含まれているため、局部発振光を大きくすればするほ
ど復調信号の信号対雑音比が向上するわけではなく、あ
る程度以上の局部発振光強度になるとかえって信号対雑
音比が劣化することを本発明者は見出した。すなわち、
従来の光ヘテロゲイン・光ホモダイン検波方法では復6
r4信号出力の信号対雑音比が最大になっていないとい
う欠点があった。
Conventionally, it has been thought that when optical heterodyne/optical homodyne detection is performed, the higher the power of the locally oscillated light, the better. However, since locally oscillated light generally includes optical intensity noise, increasing the intensity of locally oscillated light does not necessarily improve the signal-to-noise ratio of the demodulated signal; The inventor has found that the signal-to-noise ratio is degraded. That is,
Conventional optical heterogain/optical homodyne detection methods
There was a drawback that the signal-to-noise ratio of the r4 signal output was not maximized.

そこで本発明の目的は、このような状況のもとて復調信
号出力の信号対雑音比を最大にするよう7に光ヘテロダ
イン・光ホモダイン検波方法を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an optical heterodyne/optical homodyne detection method that maximizes the signal-to-noise ratio of demodulated signal output under such circumstances.

本発明の光へテロダイン・元ホモゲイン検波方法は信号
光と局部発振光とを合波し、この合波した光を光検出器
を富む先覚16″部で愛情して復調信号出力を取り出す
光ヘテロダイン・元ホモダイン検波方法において、光検
出器に入射する局部発振光の強度を光受信部からの徨A
信号出力の信号対雑音比が最大になるように制御する点
に0徴がある。
The optical heterodyne/original homogain detection method of the present invention is an optical heterodyne method in which a signal light and a local oscillation light are combined, and the combined light is sent to a photodetector in a 16-inch front section to extract a demodulated signal output.・In the original homodyne detection method, the intensity of the locally oscillated light incident on the photodetector is determined by the intensity A from the optical receiver.
The point of zero is that the signal output is controlled so that the signal-to-noise ratio is maximized.

次に本発明の原理を、光検出器としてフォトダイオード
を用いた場合を例にとシ、h1単に説明する。フォトダ
イオードを用いて光ヘテロダイン検波あるいは元ホモダ
イン検波を行なう場合の復調信号出力における単位周波
数当りの信号対雑音比は次式で衣わされる。
Next, the principle of the present invention will be simply explained using an example in which a photodiode is used as a photodetector. When performing optical heterodyne detection or original homodyne detection using a photodiode, the signal-to-noise ratio per unit frequency in the demodulated signal output is given by the following equation.

ここで ■s:信号光によって生じる光検出器の出力電
流 ■L二局部発振光によって生じる光検出器の出力′屯訛 e:電子電荷 に3局部発振光の雑音光強度が度と平均光強度の二乗比
で表わされる相対雑 音強度 <i%>:光受信部で生じる全雑音を等測的に光受信部
の入力電流で表わした 等価入力端子雑音 ここで第(1)式を微分することにより、信号対雑音比
を最大にするILの最適値■。、tを求めると次の関係
式が得られる。
Here ■ s: Output current of the photodetector caused by the signal light ■L Output of the photodetector caused by the two locally oscillated lights e: Noise light intensity of the three locally oscillated lights added to the electron charge Relative noise intensity <i%> expressed as the square ratio of: Equivalent input terminal noise where the total noise generated in the optical receiver is expressed isometrically by the input current of the optical receiver. Here, differentiating equation (1) The optimal value of IL that maximizes the signal-to-noise ratio is determined by ■. , t, the following relational expression is obtained.

< 1>=K ” I opt           
(2)を 従って、上記の関係式を満たすように光減衰器等で局部
発振光強度を調整すれば、信号対雑音比が最大になると
ころで光ヘテロダイン・元ホモダイン検波を行なうこと
ができる。
<1>=K” I opt
(2) Therefore, by adjusting the local oscillation light intensity using an optical attenuator or the like so as to satisfy the above relational expression, optical heterodyne/original homodyne detection can be performed where the signal-to-noise ratio is maximized.

次に図面によシ本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第1の実施例を説明するためのブロッ
ク図である。まず局部発振器】から出射される相対雑音
強度にの出力光2は光可変減衰器3によって光強度が制
御され、局部発振光4となる。次に光合波器6によって
局部発振光4は微弱5− な信号光5と合波される。この合波光7は、光検出器を
有し寺価入力軍流価音が〈+ ’t>の光受信部9で検
波され、復調信号出力10がえられる。このとき光検出
器の出力電流11はほとんど局部発振光4によるのでこ
の出力電流11を電流h112でモニタし、その電流値
が第(3)式を満たずように光可変減辰器3を調整する
こ、とによシ俵調信号出力10の信号対雑音比が最大に
なるようにした。
FIG. 1 is a block diagram for explaining a first embodiment of the present invention. First, the output light 2 having a relative noise intensity emitted from the local oscillator is controlled in optical intensity by a variable optical attenuator 3, and becomes locally oscillated light 4. Next, the local oscillation light 4 is multiplexed with the weak signal light 5 by the optical multiplexer 6. This combined light 7 is detected by an optical receiver 9 which has a photodetector and whose input signal tone is <+'t>, and a demodulated signal output 10 is obtained. At this time, since the output current 11 of the photodetector is mostly caused by the local oscillation light 4, this output current 11 is monitored by the current h112, and the optical variable attenuator 3 is adjusted so that the current value does not satisfy equation (3). In particular, the signal-to-noise ratio of the bale-like signal output 10 is maximized.

この実施例において局部発振器1としては、He −N
e  レーザを用いた。このHe −Ne  レーザの
出力光の相対雑音強度は−1,50dB/Hz ”C”
あった。
In this embodiment, the local oscillator 1 is He −N
e Laser was used. The relative noise intensity of the output light of this He-Ne laser is -1.50 dB/Hz "C"
there were.

元可変減挾器3としては透過率が連わじ的に司変なガラ
ス板を用いた。また光合波器6としては透過率約7(1
、反射率約約30メのシラー13を用いて局部発振光4
、信号光5に対して45°の角度をつくシ、両光の合波
を行なった。光検出器としては高速フォトダイオード8
を用いた。光受信部9はこの高速フォトダイオード8お
よび前置増幅器、主増幅器等で構成される。この光受信
部9の等価人力奄流稚音は10pA4mであった。
As the variable attenuator 3, a glass plate having a variable transmittance was used. In addition, the optical multiplexer 6 has a transmittance of about 7 (1
, local oscillation light 4 is generated using Schiller 13 with a reflectance of about 30 meters.
, the two lights were combined at an angle of 45° with respect to the signal light 5. A high-speed photodiode 8 is used as a photodetector.
was used. The optical receiver 9 is composed of this high-speed photodiode 8, a preamplifier, a main amplifier, etc. The equivalent human power output of this optical receiver 9 was 10 pA4m.

6一 この前側入力電流雑音と局部発振光4の相対雑音強度と
から、局部発振光4によって生じる高速フォトダイオー
ド8の出力電流11の最適値工。、。
6 - From this front input current noise and the relative noise intensity of the local oscillation light 4, calculate the optimum value of the output current 11 of the high speed photodiode 8 generated by the local oscillation light 4. ,.

を求めると、第(3)式よl。p t”” o、 32
 mA が得られる。実際に元司変減衰器3を調整し高
速フォトダイオード8の出力電流11を0.32mA前
後で変化させながら復調信号出力10の信号対雑音比の
測定を行ない、高速フォトダイオード8の出力電流11
が0.32mAのとき最大の信号対雑音比が得られるこ
とを確認した。第2図に局部発振光40強度の変化によ
って復調信号出力10の信号対雑音比が変化し、最大値
が存在する様子を示す。このように局部発振光40強度
によって復調信号出力10の信号対雑音比は変化するが
、局部発振光4によって生じる高速フォトダイオード8
の出力電流11が第(4)式を満たす範囲内の値であれ
ば失調信号出力10の信号対雑音比をその最大値のほぼ
3 dB以内の値にすることができる。
According to equation (3), l. p t"" o, 32
mA is obtained. We actually measured the signal-to-noise ratio of the demodulated signal output 10 while adjusting the Motoshi variable attenuator 3 and varying the output current 11 of the high-speed photodiode 8 around 0.32 mA.
It was confirmed that the maximum signal-to-noise ratio can be obtained when is 0.32 mA. FIG. 2 shows how the signal-to-noise ratio of the demodulated signal output 10 changes with changes in the intensity of the local oscillation light 40, and a maximum value exists. Although the signal-to-noise ratio of the demodulated signal output 10 changes depending on the intensity of the local oscillation light 40, the high-speed photodiode 8 generated by the local oscillation light 4
If the output current 11 is within a range that satisfies equation (4), the signal-to-noise ratio of the ataxic signal output 10 can be set to a value within approximately 3 dB of its maximum value.

0.25 Iopt <IL < 4 Iopt   
      (4)第3図は本発明の第2の実施例のブ
ロック図である。この実施例においては、局部発振器1
の出力光の大きさは局部発振器1の駆動回路14がら出
力される駆M’ltt流15の大きさを変えることによ
って調整される。その他の部分は第1の実施例と同様で
ある。この実施例において局部発振器1としては半纏体
レーザを用い、この半導体レー°ザの駆動電流15を変
化させることによって局部発振光4の大きさを調整した
。このとき局部発振光4の相対雑音強度は駆動電流15
の増加にともなって減少する傾向を示したが、駆動電流
値が発振閾値it 6tff値の1.5倍以上ではt’
iぼ一定11& −15oaa/Hz になった。この
実施例においても、半導体レーザの相対雑音強度を一1
50dB/H2と仮定し高速フォトダイオード8の出力
型に11が前占己第(3)式を満たすように調整するこ
とによって信号対雑音比がほば最大になる状態で光ヘテ
ロダイン・光ホモダイン検波を実現することが可能であ
った。
0.25 Iopt < IL < 4 Iopt
(4) FIG. 3 is a block diagram of a second embodiment of the present invention. In this embodiment, the local oscillator 1
The magnitude of the output light is adjusted by changing the magnitude of the driving M'ltt current 15 output from the drive circuit 14 of the local oscillator 1. Other parts are the same as in the first embodiment. In this embodiment, a semi-integrated laser was used as the local oscillator 1, and the magnitude of the local oscillation light 4 was adjusted by changing the drive current 15 of this semiconductor laser. At this time, the relative noise intensity of the local oscillation light 4 is the drive current 15
However, when the drive current value is 1.5 times or more than the oscillation threshold it6tff value, t'
i became constant 11 & -15 oaa/Hz. In this example as well, the relative noise intensity of the semiconductor laser is
Assuming 50 dB/H2, by adjusting the output type of high-speed photodiode 8 so that 11 satisfies the pre-occupation equation (3), optical heterodyne/optical homodyne detection is performed with the signal-to-noise ratio almost at its maximum. It was possible to realize this.

第4図は本発明の第3の実施例を説明するだめのブロッ
ク図である。この実施例において光検出器としてはアバ
ランシェフォトダイオード(APD)16を用いた。こ
のAPD16の出力電流17はコントローラ18で基準
値と比較されコントロール信号19が出力される。この
コントロールm号19によって光可変減我器3の減衰量
がコントロールされ、つねにAPD16の出力電流17
が一定に保たれる。その他は第1の実施例と同様である
FIG. 4 is a block diagram for explaining a third embodiment of the present invention. In this example, an avalanche photodiode (APD) 16 was used as the photodetector. The output current 17 of this APD 16 is compared with a reference value by a controller 18 and a control signal 19 is output. The attenuation amount of the optical variable attenuator 3 is controlled by this control number 19, and the output current 17 of the APD 16 is always controlled.
is kept constant. The rest is the same as the first embodiment.

光検出器としてAPD16を用いる場合にはAPD16
の増倍率および局部発振光40強度を最適化することに
より、後調信号出力10の信号対雑音比を最大にするこ
とが可能になる。APD16を用いて光ヘテロダイン検
波を行なうこの実施例での復調信号出力10における単
位周波数当りの信号対雑音比は次式で表わされる。
When using APD16 as a photodetector, APD16
By optimizing the multiplication factor and the intensity of the local oscillation light 40, it is possible to maximize the signal-to-noise ratio of the after-tone signal output 10. In this embodiment in which optical heterodyne detection is performed using the APD 16, the signal-to-noise ratio per unit frequency in the demodulated signal output 10 is expressed by the following equation.

但し M  :  APD16の増倍率I8.:M=1
の場合に信号光5によって生じるAPD16の出力電流
17 ’L1:M=1の場合に局部発振光4によって生じるA
PD16の出力型 9− 流17 x  :  APD16の過剰増倍雑音指数ここで第(
5)式を微分することによりIL+に関する最適値を求
めると次の関係式が得られる。
However, M: APD16 multiplication factor I8. :M=1
The output current 17 of the APD 16 generated by the signal light 5 in the case of L1:A generated by the local oscillation light 4 when M=1
Output type of PD16 9- Current 17 x: Excess multiplication noise figure of APD16 where (
5) The following relational expression is obtained by finding the optimum value for IL+ by differentiating the expression.

従ってAPD16を用いる場合にも復調1ご号出力10
の信号対雑音比を最大にする、APD16の出力電流1
7の最適i= I。、tは、第(7)式に示すようにフ
ォトダイオードの場合と同じ式で与えられる。
Therefore, even when using APD16, demodulation 1 signal output 10
The output current of the APD 16, which maximizes the signal-to-noise ratio of
7 optimal i = I. , t are given by the same equation as in the case of the photodiode, as shown in equation (7).

なおAPD16を用いる場合にはさらにMを最適化する
ことが望ましく、その最適な増倍率M。、側次式で与え
られる。
Note that when using the APD16, it is desirable to further optimize M, and the optimum multiplication factor M. , given by the side equation.

この実施例においてAPD16としてはx−02のSt
 −APD  を用いた。
In this example, the APD16 is St of x-02.
-APD was used.

第(7)式、第(8)式よりこの場合の、局部発掘光4
10− によって生じるAPD16の出力電流17の最適値■o
ptおよび最適なAPDO増倍率Mop、はそれぞれI
 o、t:0.32mA 、 Mop(= 6.7と求
められる。APD16の出力電流17およびAPD16
の増倍率をこれらの値に調整したのち、復調信号出力1
0の信号対雑音比の測定を行ない、第1の実施例よシさ
らに約2dB高い信号対雑音比が実現されていることを
確認した。本実施例においても第(4)式で示される範
囲内にAPD16の出力電流17を制御し、さらにAP
DI6の増倍率をNuすることにより復調信号出力IO
の信号対雑音比をその最大値のほぼ3 dB以内の値に
することができる。
From equations (7) and (8), in this case, the local excavation light 4
10- The optimum value of the output current 17 of the APD 16 caused by o
pt and the optimal APDO multiplication factor Mop, respectively, are I
o, t: 0.32 mA, Mop (= 6.7 is calculated. Output current 17 of APD 16 and APD 16
After adjusting the multiplication factor to these values, the demodulated signal output 1
A signal-to-noise ratio of 0 was measured, and it was confirmed that a signal-to-noise ratio that was approximately 2 dB higher than that of the first embodiment was achieved. In this embodiment as well, the output current 17 of the APD 16 is controlled within the range shown by equation (4), and
Demodulated signal output IO by increasing the multiplication factor of DI6
The signal-to-noise ratio can be brought to within approximately 3 dB of its maximum value.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。例えは半導体レーザを用いる第2の実施
例の場合、相対雑音強度を一定と仮定しないで、局部発
振光強度依存性をも考朦して復調信号出力の信号対雑音
比が最大になる条件を導き出し、それによって局部発振
光の大きさを調整してもよい。又半導体レーザのような
相対雑音強度がその出力の大きさに依存する光源を局部
発振器として用いる場合には、局部発振器出力の大きさ
は相対雑音強度か最小になるように調整し、復調信号出
力の信号対雑音比を最適化するだめの局部発振光強度の
調整は元減衰器寺で行なうようにしてもよい。
In addition to the above-described embodiments, various modifications can be made to the present invention. For example, in the case of the second embodiment using a semiconductor laser, instead of assuming that the relative noise intensity is constant, the local oscillation light intensity dependence is also considered to find the conditions that maximize the signal-to-noise ratio of the demodulated signal output. The magnitude of the locally oscillated light may be adjusted accordingly. In addition, when using a light source such as a semiconductor laser whose relative noise intensity depends on the magnitude of its output as a local oscillator, the magnitude of the local oscillator output is adjusted to minimize the relative noise strength, and the demodulated signal output Adjustment of the local oscillation light intensity to optimize the signal-to-noise ratio may be performed at the source of the attenuator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のブロック図である。第
2図は本発明の背景と々る基本的特性である、局部発振
光強度の変化によって復調信号出力の信号対雑音比が変
化し、その最大値が存在することを示した図である。第
3図は本発明の第2の実施例のブロック図、第4図は本
発明の第3の実施例のブロック図である。 図において、I・・・局部発振器、2・・・出力光、3
・・・光可変減衰器、4・・・局部発振光、5・・・信
号光、6・・・光合波器、7・・・合波jt、8・・・
高速フォトダイオード、9・・・光受信部、10・・・
復調信号出力、11.17・・・出力電流、12・・・
電流計、13・・・ミラー、14・・・駆動回路、15
・−・駆動電流、16・・・アバランシェフォトダイオ
ード(APD)、18・・・コントローラ、19・・・
コントロール信号である。 代r8i1人ヅr埋士 内 M  署 13− 蛸/n 第3 口
FIG. 1 is a block diagram of a first embodiment of the present invention. FIG. 2 is a diagram showing that the signal-to-noise ratio of the demodulated signal output changes with changes in the local oscillation light intensity, and that there is a maximum value, which is a basic characteristic that is the background of the present invention. FIG. 3 is a block diagram of a second embodiment of the invention, and FIG. 4 is a block diagram of a third embodiment of the invention. In the figure, I...Local oscillator, 2... Output light, 3
... Optical variable attenuator, 4... Local oscillation light, 5... Signal light, 6... Optical multiplexer, 7... Multiplexing jt, 8...
High-speed photodiode, 9... Optical receiver, 10...
Demodulated signal output, 11.17... Output current, 12...
Ammeter, 13... Mirror, 14... Drive circuit, 15
- Drive current, 16... Avalanche photodiode (APD), 18... Controller, 19...
It is a control signal. Substitute r8i 1 person burial inside M station 13- octopus/n 3rd mouth

Claims (1)

【特許請求の範囲】 (1)信号光と局部発振光とを合波し、この合波した光
を光受信部で受信してこの光受信部から復調信号出力を
取シ出す光ヘテロダイン・光ホモダイン検波方法におい
て、光受信部からの復調信号出力の1ぎ号対雑音比が最
大になるように、前記光受信部に入射する前記局部発振
光の強度を制御することを特徴とする光ヘテロダイン・
元ホモダイン検波方法。 (2)局部発振光によって生じる光検出器の出力電流値
■1を 0.25 Io、、 <I 、<4 I。、。 (但し <ij>: 光受信部の等価入力電流雑音、K
:局部発振光の相対雑音強度) となるように局部発振光強度を制御することを特徴とす
る特許請求の範囲第1項記載の光ヘテロゲイン・光ホモ
ダイン検波方法。
[Claims] (1) An optical heterodyne system that combines signal light and local oscillation light, receives this combined light in an optical receiver, and extracts a demodulated signal output from the optical receiver. In the homodyne detection method, an optical heterodyne is characterized in that the intensity of the locally oscillated light incident on the optical receiver is controlled so that the signal-to-noise ratio of the demodulated signal output from the optical receiver is maximized.・
Original homodyne detection method. (2) The output current value of the photodetector caused by the local oscillation light ■1 is 0.25 Io, <I, <4 I. ,. (However, <ij>: equivalent input current noise of the optical receiver, K
2. The optical heterogain/optical homodyne detection method according to claim 1, characterized in that the local oscillation light intensity is controlled so that: : relative noise intensity of local oscillation light).
JP58039878A 1983-03-10 1983-03-10 Optical heterodyne/homodyne detecting method Pending JPS59165536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039878A JPS59165536A (en) 1983-03-10 1983-03-10 Optical heterodyne/homodyne detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039878A JPS59165536A (en) 1983-03-10 1983-03-10 Optical heterodyne/homodyne detecting method

Publications (1)

Publication Number Publication Date
JPS59165536A true JPS59165536A (en) 1984-09-18

Family

ID=12565238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039878A Pending JPS59165536A (en) 1983-03-10 1983-03-10 Optical heterodyne/homodyne detecting method

Country Status (1)

Country Link
JP (1) JPS59165536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434029A (en) * 1987-07-29 1989-02-03 Atr Kodenpa Tsushin Kenkyusho Method and device for receiving optical signal of heterodyne detection system
EP1130813A2 (en) * 2000-01-20 2001-09-05 Agilent Technologies Inc. a Delaware Corporation Method and system for optical heterodyne detection using optical attenuation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434029A (en) * 1987-07-29 1989-02-03 Atr Kodenpa Tsushin Kenkyusho Method and device for receiving optical signal of heterodyne detection system
EP1130813A2 (en) * 2000-01-20 2001-09-05 Agilent Technologies Inc. a Delaware Corporation Method and system for optical heterodyne detection using optical attenuation
EP1130813A3 (en) * 2000-01-20 2004-01-02 Agilent Technologies, Inc. (a Delaware corporation) Method and system for optical heterodyne detection using optical attenuation

Similar Documents

Publication Publication Date Title
CA2083954A1 (en) Feed forward amplifier network with frequency swept pilot tone
CN103983340A (en) Micro vibration measuring system and measuring method based on long-distance pulse laser speckles
EP0058703A1 (en) An arrangement for increasing the dynamic range at the input stage of a receiver in an optical fibre information transmission system.
JPS59165536A (en) Optical heterodyne/homodyne detecting method
JPH05227104A (en) Light receiver
CN101762317B (en) Device and method for measuring inner-layer vibration parameters of double window
JPH05129857A (en) Gain control method for avalanche photodiode
CN104034408A (en) Laser interception device based on correlation detection technology
JPS57162542A (en) Optical signal transmitting system
KR102330772B1 (en) Noise Cancelling System, and Hi-pass Fee Collecting System with the same
CN115420272B (en) Method for realizing adaptive suppression of relative intensity noise of optical fiber gyro light source
CN109061671A (en) A kind of device and method for improving LDV technique scene availability
KR102440067B1 (en) Laser detector based reflector and method for reducing disturbance light noise thereof
SU970711A1 (en) Transmitter-receiver for radio relay line
JPS6040223B2 (en) Automatic threshold control method for optical communication receiving system
JPH088837A (en) Optical communication equipment
RU1809542C (en) Receiver of optical signals
JPH025276B2 (en)
JP2003344168A (en) Optically sampling measuring system and its method
RU2042149C1 (en) Signal detection unit
RU2342792C2 (en) Photodetector
CN116260509A (en) Method, apparatus, medium and device for determining photon emission parameters
JP2000224111A (en) Optical space transmitter
CN115265618A (en) Sensitivity-adjustable large-amplitude signal distributed weak grating array demodulation method
JPS63280466A (en) Light receiving circuit