JPS5916493B2 - Catalyst recovery method - Google Patents

Catalyst recovery method

Info

Publication number
JPS5916493B2
JPS5916493B2 JP54076454A JP7645479A JPS5916493B2 JP S5916493 B2 JPS5916493 B2 JP S5916493B2 JP 54076454 A JP54076454 A JP 54076454A JP 7645479 A JP7645479 A JP 7645479A JP S5916493 B2 JPS5916493 B2 JP S5916493B2
Authority
JP
Japan
Prior art keywords
isomerization
boron trifluoride
hydrogen fluoride
extraction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076454A
Other languages
Japanese (ja)
Other versions
JPS55167045A (en
Inventor
武彦 高橋
保 上野
實 高川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP54076454A priority Critical patent/JPS5916493B2/en
Publication of JPS55167045A publication Critical patent/JPS55167045A/en
Publication of JPS5916493B2 publication Critical patent/JPS5916493B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】 本発明は炭化水素を異性化中のまたは異性化した後のふ
つ化水素一三ふつ化ほう素(以下HF一BF3と記す)
触媒を回収し、さらには所望により再使用する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hydrogen fluoride-triboron trifluoride (hereinafter referred to as HF-BF3) during or after isomerization of hydrocarbons.
The present invention relates to a method for recovering and optionally reusing a catalyst.

従来、ガソリンのオクタン価向上剤として使用されてき
た四エチル鉛の使用が規制されはじめてからすでに久し
く、低鉛化によるガソリンのオクタン価の低下を補うた
めに多量の芳香族炭化水素ぁるいはオレフィン分を多量
に含む接触分解油などの添加が行なわれている。
It has been a long time since the use of tetraethyl lead, which has traditionally been used as an octane improver in gasoline, has been regulated, and large amounts of aromatic hydrocarbons or olefins have been added to compensate for the decrease in the octane number of gasoline due to lower lead. A large amount of catalytic cracking oil is added.

芳香族炭化水素は化学工業用原料として重要であり、こ
れをエネルギー源として多量に消費することは石油資源
有効利用の観点から好ましいものではない。また、オレ
フィン分はガム質を形成しやすく良質のガソリンを製造
するためには不適当である。四エチル鉛にかわるガソリ
ン添加物としてメチルー を−ブチルエーテル(以下M
TBEと記す)が使用されてきている。
Aromatic hydrocarbons are important as raw materials for the chemical industry, and consuming large quantities of them as an energy source is not preferable from the standpoint of effective utilization of petroleum resources. In addition, the olefin content tends to form a gum, making it unsuitable for producing high-quality gasoline. Methyl-butyl ether (hereinafter M) is used as a gasoline additive to replace tetraethyl lead.
TBE) has been used.

MTBEは添加剤として作用する一方エネルギー源とし
ても作用し、ガソリンに5〜15wt%添加することが
できると言われており、ガソリンの実質的な生産量を増
加でき、またこれによりガソリン中の芳香族炭化水素の
含有量を減少させることができる。しかしながらMTB
Eを使用する場合にも芳香族炭化水素の添加を省略する
までに至らなかつた。しかして、この芳香族炭化水素は
高価であり、この高価な芳香族炭化水素をさらに節約す
るためにはガソリンの基剤そのもののオクタン価をさら
に上昇することが必要である。ガソリンを構成する基剤
に含まれるC5−C6パラフィン類は、一般に枝わかれ
の程度が・」、さくオクタン価への寄与が小さいことが
知られている。
While MTBE acts as an additive, it also acts as an energy source, and it is said that it can be added to gasoline in an amount of 5 to 15 wt%, which can substantially increase the production volume of gasoline and improve the aroma in gasoline. The content of group hydrocarbons can be reduced. However, MTB
Even when E was used, the addition of aromatic hydrocarbons could not be omitted. However, this aromatic hydrocarbon is expensive, and in order to further save on this expensive aromatic hydrocarbon, it is necessary to further increase the octane number of the gasoline base itself. It is known that the C5-C6 paraffins contained in the base material constituting gasoline generally have a degree of branching and have a small contribution to the octane number.

このためC5−C6留分を異性化して枝分かTi、を増
加させてオクタン価を向上する方法が工業的に実施され
ている。C5−C6パラフィン類の異性化触媒として、
HF−BF3、ふつ化水素一五ふつ化アンモンなどのフ
リーデルクラフト触媒、白金一アルミナなどの固体酸触
媒などが知られている。
For this reason, a method of increasing the octane number by isomerizing the C5-C6 fraction to increase the branched Ti content has been carried out industrially. As an isomerization catalyst for C5-C6 paraffins,
Friedel-Crafts catalysts such as HF-BF3, hydrogen fluoride-15 ammonium fluoride, and solid acid catalysts such as platinum-alumina are known.

フリーデルクラフト触媒の場合は枝わ、ウゝれ炭化水素
の生成に、平衡的に有利な10〜60℃の低温で異性化
を行なうことができるが、固体酸触媒の場合は一般に1
20〜300℃の高温が必要であり、かつ、一回通油あ
たりのオクタン価の増加はそれはど大きくない。たとえ
ばユニオンオイルブロダクツ社の門 ペネツクス(Pe
nex)法ではC5−C6パラフィン類の異性化触媒と
して工業的に使用されている白金−アルミナ触媒の一回
通油後のオクタン価(RON)は82程度と言われてい
る。これに対して、HF−BF3触媒を用いて異性化す
るときの一回通油あたりのRONは88〜90であるこ
とを本発明者らは確認した。HF−BF3触媒による炭
化水素の異性化は、本来、不均一系で行なわれ、通常、
不均一系液々反応で使用される反応器であればどのよう
なものでも使用jることができ、たとえば完全混合槽型
反応器、ミキサーセトラー型反応器および管式反応器な
どが使用される。
In the case of Friedel-Crafts catalysts, isomerization can be carried out at a low temperature of 10 to 60°C, which is equilibrium-favorable for the production of branched and wet hydrocarbons, but in the case of solid acid catalysts, isomerization is generally
A high temperature of 20 to 300°C is required, and the increase in octane number per oil pass is not very large. For example, Union Oil Products Co., Ltd.
In the Nex) method, the octane number (RON) of the platinum-alumina catalyst, which is used industrially as an isomerization catalyst for C5-C6 paraffins, is said to be about 82 after passing through the oil once. On the other hand, the present inventors have confirmed that the RON per oil passage when isomerizing using an HF-BF3 catalyst is 88 to 90. Hydrocarbon isomerization using HF-BF3 catalyst is originally carried out in a heterogeneous system, and usually
Any reactor used in a heterogeneous liquid-liquid reaction can be used, such as a complete mixing tank reactor, a mixer-settler reactor, and a tube reactor. .

たとえば、完全混合槽型反応器を用いる場合は、HF−
BF3触媒の入つた反応器に原料炭化水素を間歇的また
は連続的に供給して触媒と炭化水素とを一定時間十分接
触せしめた後の反応生成液を、反応器内または別に設け
た分離槽で触媒層と炭化水素槽とに分離する。ついでこ
の炭化水素層を加熱して製品炭化水素と触媒成分とに分
解して製品炭化水素を取り出す。この触媒成分にはHF
−BF3と少量のC1〜C4の炭化水素が含まれている
。またHF−BF3触媒による炭化水素の異性化では原
料炭化水素中の芳香族炭化水素あるいは反応中に少量生
成する高沸点生成物等により触媒の活性が徐々に低下す
るので、触媒層の一部を間歇的あるいは連続的に抜き出
して再生ずることが必要である。常圧下でふつ化水素は
沸点20℃の液体であり、また三ふつ化はう素は−10
0,3℃のガス体であるので、活性低下の原因である芳
香族炭化水素あるいは高沸点炭化水素と触媒との分離は
蒸留などによりきわめて容易に行なうことができる。こ
のように触媒再生がきわめて容易であるということは、
HF−BFS媒を用いる場合の大きな利点の一つである
。これに対したとえば、ふつ化水素一五ふつ化アンチモ
ン触媒を使用する場合は、加熱などにより劣化した触媒
の再生は事実上不可能であり、高価な触媒の損失を避け
ることはできない。上記の異性化反応生成液から得られ
た炭化水素層には2〜10wt%の三ふつ化ほう素が同
伴または溶解している。
For example, when using a completely mixed tank reactor, HF-
The raw material hydrocarbon is intermittently or continuously supplied to the reactor containing the BF3 catalyst, and after the catalyst and the hydrocarbon are brought into sufficient contact for a certain period of time, the reaction product liquid is collected inside the reactor or in a separate separation tank. It is separated into a catalyst layer and a hydrocarbon tank. This hydrocarbon layer is then heated to decompose it into product hydrocarbons and catalyst components, and the product hydrocarbons are removed. This catalyst component contains HF
-BF3 and small amounts of C1-C4 hydrocarbons. In addition, in the isomerization of hydrocarbons using an HF-BF3 catalyst, the activity of the catalyst gradually decreases due to aromatic hydrocarbons in the feedstock hydrocarbons or high-boiling products generated in small amounts during the reaction, so a part of the catalyst layer is It is necessary to extract and reproduce it intermittently or continuously. Under normal pressure, hydrogen fluoride is a liquid with a boiling point of 20°C, and boronic trifluoride is a liquid with a boiling point of -10°C.
Since the catalyst is a gas having a temperature of 0.3° C., separation of aromatic hydrocarbons or high boiling point hydrocarbons, which cause a decrease in activity, from the catalyst can be carried out very easily by distillation or the like. This extremely easy catalyst regeneration means that
This is one of the major advantages of using the HF-BFS medium. On the other hand, for example, when using a hydrogen fluoride-15-antimony fluoride catalyst, it is virtually impossible to regenerate a catalyst that has deteriorated due to heating or the like, and loss of the expensive catalyst cannot be avoided. The hydrocarbon layer obtained from the above-mentioned isomerization reaction product liquid contains 2 to 10 wt% of boron trifluoride accompanied or dissolved therein.

炭化水素層の三ふつ化ほう素の含有量は反応温度および
圧力によつて異なり、たとえば、反応温度50℃の場合
には反応圧力10k9/CtAGで約2wt%、30k
9/詞Gで約7wt%、501cg/CtliGで約1
0wt%であることを見出した。炭化水素層に含まれる
三ふつ化はう素は、事実上物理溶解している三ふつ化は
う素でありノ加熱により容易に除去することができ、こ
の炭化水素層から分離された三ふつ化はう素は圧縮機で
反応圧力まで圧縮した後、または冷却器で液化した後、
異性化工程に戻される。
The content of boron trifluoride in the hydrocarbon layer varies depending on the reaction temperature and pressure. For example, when the reaction temperature is 50°C, the content of boron trifluoride at the reaction pressure of 10k9/CtAG is about 2wt%, 30k
9/CtliG is about 7wt%, 501cg/CtliG is about 1
It was found that it was 0 wt%. The boron trifluoride contained in the hydrocarbon layer is actually physically dissolved boron trifluoride and can be easily removed by heating. After compressing the hydrogen chloride to the reaction pressure in a compressor or liquefying it in a cooler,
Returned to the isomerization process.

炭化水素層から分離された三ふつ化はう素は通常はふつ
化水素蒸気を含んでおり、腐食性がきわめて強いので圧
縮機を使用することは、その寿命が短かいことおよび高
級材質が必要なことなどから経済的に不利であり、さら
に大量を扱う場合にはこの経済的不利は増大する。また
、液化によるリサイクルも液化温度がたとえば40kg
/CdGで−30℃と低いので経済的に有利とは言えな
い。本発明者らは炭化水素層に溶解している三ふつ化:
よう素を異性化工程にリサイクルする方法について検討
し、この溶解三ふつ化ほう素を少なくともふつ化水素を
含む液状抽剤で抽出して回収し、この抽出液は所望によ
り異性化反応に再使用することにより圧縮機または液化
装置を省略しうるか乃至は圧縮機または液化装置の負荷
を軽減できるとの新知見を儀 この新知見に基づいて本
発明に到.達した〇すなわち、本発明はふつ化水素およ
び三ふつ化ほう素の存在下で炭化水素を異性化して得ら
nた反応生成液から分離したふつ化水素および三ふつ化
はう素ならびに炭化水素を含有する炭化水素層と、少く
ともふつ化水素を含有する液状抽剤とを接触させて、前
記の炭化水素層から三ふつ化はう素を抽出して抽出液を
得、所望により該抽出液を異性化反応に再使用すること
を特徴とする触媒の回収方法である。
The borosulfur trifluoride separated from the hydrocarbon layer usually contains hydrogen fluoride vapor and is extremely corrosive, making the use of compressors difficult due to their short lifespan and the need for high-grade materials. For this reason, it is economically disadvantageous, and this economic disadvantage increases when a large amount is handled. In addition, for recycling by liquefaction, the liquefaction temperature is, for example, 40 kg.
/CdG is as low as -30°C, so it cannot be said to be economically advantageous. The inventors discovered that the trifluoride dissolved in the hydrocarbon layer:
A method of recycling iodine to the isomerization process was studied, and the dissolved boron trifluoride was extracted and recovered with a liquid extractant containing at least hydrogen fluoride, and this extract was reused for the isomerization reaction if desired. Based on this new knowledge, we have arrived at the present invention. That is, the present invention is directed to hydrogen fluoride and boron trifluoride and hydrocarbons separated from the reaction product liquid obtained by isomerizing hydrocarbons in the presence of hydrogen fluoride and boron trifluoride. A hydrocarbon layer containing hydrogen fluoride is brought into contact with a liquid extraction agent containing at least hydrogen fluoride to extract boron trifluoride from the hydrocarbon layer to obtain an extract, and if desired, the extraction This is a catalyst recovery method characterized by reusing the liquid in the isomerization reaction.

本発明はHF−BF3を使用した炭化水素の異性化で得
られた反応の途中または反応後の反応生成液であればよ
く、またいかなる異性化条件で得られた反応生成液に対
しても適用することができる。
The present invention is applicable to any reaction product liquid obtained during or after the reaction of hydrocarbon isomerization using HF-BF3, and is applicable to reaction product liquids obtained under any isomerization conditions. can do.

異性化反応には特に制限はないが、実用上、C5〜C6
のパラフィン類の枝分かれを増加させるための異性化お
よびエンド−トリシクロ〔5,2,1,02・6〕デカ
ンからアダマンタンへの異性化などの反応生成液に対し
て好適に適用される。また異性化条件としては、たとえ
ば通常、反応温度0〜100℃好ましくは10〜60℃
が、また反応圧力1〜1001Cg/CtltG好まし
くは10〜50kg/DGが用いられる。異性化の途中
のまたは異性化後の反応生成液は、反応温度乃至常温ま
たは室温で静置することにより炭化水素層と触媒層とに
分かれる。
There are no particular restrictions on the isomerization reaction, but in practice, C5 to C6
It is suitably applied to reaction product liquids such as isomerization to increase branching of paraffins and isomerization of endo-tricyclo[5,2,1,02.6]decane to adamantane. As for the isomerization conditions, for example, the reaction temperature is usually 0 to 100°C, preferably 10 to 60°C.
However, a reaction pressure of 1 to 1001 Cg/CtltG, preferably 10 to 50 kg/DG is used. The reaction product liquid during or after isomerization is separated into a hydrocarbon layer and a catalyst layer by being allowed to stand at room temperature from the reaction temperature or at room temperature.

通常、この静置時間は実用上30分以下でよく、30秒
〜5分が好ましい。また、たとえば遠心分離機などを使
用した重力場裡に積極的においてもよい。また、このと
き加熱または冷却する必要は特にないが6加熱または冷
却することもできる。前記のようにこの炭化水素層には
比較的多量の炭化水素ならびに比較的少量のふつ化水素
および三ふつ化ほう素が含まれており、また、触媒層に
は比較的多量のふつ化水素および三ふつ化ほう素ならび
に比較的少量の炭化水素が含有されている。この炭化水
素層と少なくともふつ化水素を含有する液状抽剤とを十
分接触させることにより炭化水素層に含まれている三ふ
つ化はう素が高い抽出率で抽出される。
Usually, this standing time may be practically 30 minutes or less, preferably 30 seconds to 5 minutes. Alternatively, it may be actively placed in a gravitational field using, for example, a centrifuge. Further, heating or cooling is not particularly necessary at this time, but heating or cooling can also be performed. As mentioned above, this hydrocarbon layer contains a relatively large amount of hydrocarbons and a relatively small amount of hydrogen fluoride and boron trifluoride, and the catalyst layer also contains a relatively large amount of hydrogen fluoride and boron trifluoride. It contains boron trifluoride as well as relatively small amounts of hydrocarbons. By bringing this hydrocarbon layer into sufficient contact with a liquid extractant containing at least hydrogen fluoride, boron trifluoride contained in the hydrocarbon layer can be extracted at a high extraction rate.

抽剤には、ふつ化水素のほかに三ふつ化ほう素、芳香族
炭化水素および/または高沸点生成物を含有していても
よい。たゾし抽剤の三ふつ化はう素の濃度が多くなると
三ふつ化ほう素の抽出率が低下するので少ない程よいが
、実用上5wt%以下とすることが好ましい。また、芳
香族炭化水素および/または高沸点生成物は抽剤中の濃
度を通常10wt%以下とすれば実用上何ら問題はない
。また、抽剤中の水分濃度が高いと抽出液の腐食性が増
大し、かつ.三ふつ化はう素の抽出率が低下するので低
いはど好ましく通常は5wt%以下好ましくは1wt%
以トとされる。反応生成液から分離した触媒層から三ふ
つ化はう素を除去してその残分を抽剤として使用するこ
とができる。抽出温度は−70〜100℃好ましくは−
20〜20℃、抽出圧力は1〜100kg/CdG好ま
しくは10〜50k9/CdGの範囲が実用上適当であ
る。炭化水素層の重量に対する抽剤の重量との割合は特
に制限はないが、実用上通常は0.1以上好ましくは0
.1〜3とする。抽出に要する時間は通常は5分以上好
ましくは5〜30分であればよい。なお、反応圧力と抽
出圧力とは等しくともよくまた異つてもよい。
In addition to hydrogen fluoride, the extraction agent may contain boron trifluoride, aromatic hydrocarbons, and/or high-boiling products. If the concentration of boron trifluoride in the tazoshi extraction agent increases, the extraction rate of boron trifluoride will decrease, so the lower the concentration, the better, but in practice it is preferably 5 wt% or less. Further, there is no problem in practical use as long as the concentration of aromatic hydrocarbons and/or high boiling point products in the extractant is usually 10 wt % or less. In addition, if the water concentration in the extractant is high, the corrosivity of the extract will increase, and... Since trifluoridation reduces the extraction rate of borage, it is preferably low, usually 5 wt% or less, preferably 1 wt%.
It is said that Boron trifluoride can be removed from the catalyst layer separated from the reaction product liquid, and the residue can be used as an extractant. Extraction temperature is -70 to 100℃, preferably -
A temperature of 20 to 20°C and an extraction pressure of 1 to 100 kg/CdG, preferably 10 to 50 k9/CdG are practically appropriate. The ratio of the weight of the extraction agent to the weight of the hydrocarbon layer is not particularly limited, but in practice it is usually 0.1 or more, preferably 0.
.. 1 to 3. The time required for extraction is usually 5 minutes or more, preferably 5 to 30 minutes. Note that the reaction pressure and the extraction pressure may be equal or different.

抽出は回分および連続のいずれでも可能であり、また後
者の場合には抽出器中の液の流れは向流および並流のい
ずれでもよい。また抽出器はたとえば回転多孔板式向流
抽出塔、槽型抽出器および管型混合器のような通常使用
されているものを使用することができる。このようにし
て得られた抽出液は、そのまま異性化反応に再使用する
こともできるし、また例えばフラッシュ蒸発または蒸留
などにより三ふつ化はう素を濃縮した後で異性化反応に
供給して再使用することもできる。
Extraction can be carried out either batchwise or continuously, and in the latter case, the flow of liquid in the extractor may be either countercurrent or cocurrent. Further, as the extractor, commonly used extractors such as a rotary perforated plate countercurrent extraction column, a tank type extractor, and a tube type mixer can be used. The extract thus obtained can be reused as is for the isomerization reaction, or it can be supplied to the isomerization reaction after concentrating the borosulfide trifluoride, for example by flash evaporation or distillation. It can also be reused.

本発明を適用したプロセスのフローシートを第1図に例
示する。すなわち、原料炭化水素および所望に応じてさ
らに新触媒(HF−BF3)が経路1から異性化反応器
2に供給さ仏こ\で異性化反応は進行する。
A flow sheet of a process to which the present invention is applied is illustrated in FIG. That is, the raw material hydrocarbon and, if desired, a new catalyst (HF-BF3) are supplied to the isomerization reactor 2 from route 1, where the isomerization reaction proceeds.

異性化反応器2から抜き出された反応生成液は経路3を
経て分離槽4に送られ、こ\で炭化水素層(上層)と触
媒層(下層)とに分かれる。炭化水素層はポンプ5およ
び経路6を経て抽出塔7の塔底へ送られ抽出塔7内を上
昇する。一方、触媒層は経路8を経て異性化反応器2へ
送られおよび/または経路9を通つて分離塔10へ送ら
れる。分離塔10では触媒層は三ふつ化ほう素を同伴す
るふつ化水素と、ふつ化水素と高沸物との混合物に分け
られる。少量のふつ化水素を同伴する三ふつ化はう素は
ガスとなつて分離塔10の塔頂から経路11を経て凝縮
器12に送られ、こ\でふつ化水素は凝縮して液状とな
り経路13を通つて分離塔10の塔頂付近に戻される。
また、凝縮器12では三ふつ化ほう素は凝縮せずガス状
のま\で経路14を通つて異性化反応器2へ戻される。
なお、異性化反応器2、分離槽4および経路14は均圧
管15によつて互に接続さ札異性化反応器2、分離槽4
および分離塔10のそれぞれの内圧は異性化反応圧に近
い圧力に保たT1ている。分離塔10の塔底からはふつ
化水素と高沸物との混合物が排出され この混合物は経
路16を経てふつ化水素蒸留塔17へ送られる。この混
合物はふつ化水素蒸留塔17で高沸物とふつ化水素とに
分けら孔高沸物は塔底から経路18により取り出さ仏ふ
つ化水素はガス状で経路19を経て冷却器20に送られ
こ\で液状となり、この液状ふつ化水素はポンプ21お
よび経路22を経て抽出塔7の塔頂付近に送られ抽剤と
して抽出塔7内を下降する。抽出塔7の塔頂から抽残液
が排出さ札 この抽残液は経路23を通つてたとえば蒸
留などの次工程へ送られる。一方、抽出塔7の塔底から
抽出液が抜き出さTl..この抽出液はポンプ24およ
び経路25を経、さらに経路25から分岐した経路26
を通り、経路9からの触媒層と合して分離塔10へ供給
さへおよび/または経路25から分岐した経路27およ
び経路8を通つて異性化反応器2へ送られる。なお、ふ
つ化水素蒸留塔の内圧は異性化反応圧よりも低くされて
おり、また抽出塔の内圧は異性化反応圧よりも僅かに高
くされている。
The reaction product liquid extracted from the isomerization reactor 2 is sent to a separation tank 4 via a route 3, where it is separated into a hydrocarbon layer (upper layer) and a catalyst layer (lower layer). The hydrocarbon layer is sent to the bottom of the extraction column 7 via the pump 5 and the line 6 and rises within the extraction column 7. On the other hand, the catalyst layer is sent via route 8 to the isomerization reactor 2 and/or via route 9 to the separation column 10. In the separation column 10, the catalyst layer is separated into hydrogen fluoride accompanied by boron trifluoride and a mixture of hydrogen fluoride and high-boiling substances. The borosulfur trifluoride accompanied by a small amount of hydrogen fluoride becomes a gas and is sent from the top of the separation column 10 to the condenser 12 via the path 11, where the hydrogen fluoride is condensed into a liquid state and passed through the path. 13 and returned to the vicinity of the top of the separation column 10.
Further, in the condenser 12, boron trifluoride is not condensed and is returned to the isomerization reactor 2 through a path 14 in a gaseous state.
Note that the isomerization reactor 2, the separation tank 4, and the path 14 are connected to each other by a pressure equalization pipe 15.
The internal pressure of each of the separation columns 10 and 10 is maintained at a pressure T1 close to the isomerization reaction pressure. A mixture of hydrogen fluoride and high boilers is discharged from the bottom of the separation column 10, and this mixture is sent to a hydrogen fluoride distillation column 17 via a path 16. This mixture is separated into high-boiling substances and hydrogen fluoride in a hydrogen fluoride distillation column 17. The high-boiling substances are taken out from the bottom of the column through a path 18, and the hydrogen fluoride is sent in gaseous form to a cooler 20 through a path 19. This liquid hydrogen fluoride is sent to the vicinity of the top of the extraction tower 7 via a pump 21 and a path 22, and descends inside the extraction tower 7 as an extractant. The raffinate is discharged from the top of the extraction column 7. This raffinate is sent to the next step, such as distillation, through a path 23. On the other hand, an extract is extracted from the bottom of the extraction tower 7 and Tl. .. This extract passes through a pump 24 and a route 25, and then a route 26 branched from the route 25.
It is combined with the catalyst layer from route 9 and fed to separation column 10 and/or sent to isomerization reactor 2 through route 27 and route 8 branched from route 25. Note that the internal pressure of the hydrogen fluoride distillation column is lower than the isomerization reaction pressure, and the internal pressure of the extraction column is slightly higher than the isomerization reaction pressure.

このようにして本発明では炭化水素層からの三ふつ化水
素の抽出率は、抽剤中の三ふつ化ほう素の濃度、抽出温
度および抽出圧力および抽剤の炭化水素層に対する重量
比などによつて異るが、通1常は60%以上である。
In this way, in the present invention, the extraction rate of hydrogen trifluoride from the hydrocarbon layer depends on the concentration of boron trifluoride in the extractant, the extraction temperature and pressure, and the weight ratio of the extractant to the hydrocarbon layer. Although it varies depending on the situation, it is usually 60% or more.

本発明によつて、炭化水素の異性化反応生成液からの炭
化水素層に含まれている三ふつ化ほう素を極めて効率よ
くしかも容易に回収できる。
According to the present invention, boron trifluoride contained in a hydrocarbon layer from a hydrocarbon isomerization reaction product liquid can be recovered very efficiently and easily.

さらに、この回収された三ふつ化ほう素を異性化反応に
再使用する際には、圧縮機または液化装置の省略乃至は
圧縮または液化のための動力の節減が可能となる。次に
、実施例により本発明をさらに具体的に説明する。
Furthermore, when the recovered boron trifluoride is reused in the isomerization reaction, it is possible to omit a compressor or liquefaction device or to save power for compression or liquefaction. Next, the present invention will be explained in more detail with reference to Examples.

実施例1 45重量部のn−ペンタン、45重量部のn−ヘキサン
、10重量部のシクロヘキサン、0.1重量部の2,2
,4−トリメチルペンタンから成る異性化原料2147
を、330rのふつ化水素と189yの三ふつ化ほう素
とを用い、反応温度50℃、圧力30kg/CrAGで
異性化させて得られた反応生成液を50℃で3分間静置
して0.57重量%のふつ化水素と6、85重量%の三
ふつ化ほう素を含む炭化水素層を得た。
Example 1 45 parts by weight of n-pentane, 45 parts by weight of n-hexane, 10 parts by weight of cyclohexane, 0.1 parts by weight of 2,2
, 4-trimethylpentane isomerization raw material 2147
was isomerized using 330r hydrogen fluoride and 189y boron trifluoride at a reaction temperature of 50°C and a pressure of 30kg/CrAG, and the resulting reaction product liquid was allowed to stand at 50°C for 3 minutes. A hydrocarbon layer containing .57% by weight of hydrogen fluoride and 6.85% by weight of boron trifluoride was obtained.

この炭化水素層627と、2wt%の三ふつ化ほう素を
含む液状ふつ化水素132yとを50℃、圧力30kg
/CdGで10分間攪拌混合して抽出した。抽出後の炭
化水素層中の三ふつ化ほう素の濃度は1.32重量%に
減少していた。実施例2 実施例1と同じ組成の原料を用いて圧力、および温度を
変えて実施例1と同様にして異性化反応を行なつて得ら
れた反応生成液を反応温度で3分間静置して炭化水素層
を得た。
This hydrocarbon layer 627 and liquid hydrogen fluoride 132y containing 2 wt% boron trifluoride were heated at 50°C and under a pressure of 30 kg.
/CdG for 10 minutes with stirring. The concentration of boron trifluoride in the hydrocarbon layer after extraction had decreased to 1.32% by weight. Example 2 An isomerization reaction was carried out in the same manner as in Example 1 using raw materials having the same composition as in Example 1, changing the pressure and temperature, and the resulting reaction product liquid was allowed to stand at the reaction temperature for 3 minutes. A hydrocarbon layer was obtained.

この炭化水素層と液状ふつ化水素とを10分間攪拌混合
して抽出した。抽出後の炭化水素層の三ふつ化ほう素濃
度は第1表のようであつた。また、反応条件および抽出
条件などを第1表に示す。実施例3 抽剤として1.4wt%の三ふつ化はう素と2.1wt
%のm−キシレンとを含む液状ふつ化水素を使用したほ
かは実施例2の実験應1と同様に行なつたところ、抽出
後の炭化水素層の三ふつ化はう素濃度は2.4wt%で
ゐつた。
This hydrocarbon layer and liquid hydrogen fluoride were stirred and mixed for 10 minutes to extract. The concentration of boron trifluoride in the hydrocarbon layer after extraction was as shown in Table 1. Further, reaction conditions, extraction conditions, etc. are shown in Table 1. Example 3 1.4wt% borosulfide and 2.1wt as extractants
The same procedure as in Experiment 1 of Example 2 was carried out except that liquid hydrogen fluoride containing % m-xylene was used, and the concentration of borofluoride trifluoride in the hydrocarbon layer after extraction was 2.4 wt. It was in %.

実施例4 実施例1と同様な条件で異性化を行なつて得られた異性
化反応生成液を50℃で3分間静置して炭化水素層を得
た。
Example 4 An isomerization reaction product liquid obtained by performing isomerization under the same conditions as in Example 1 was allowed to stand at 50° C. for 3 minutes to obtain a hydrocarbon layer.

この炭化水素層を実段数5段の回転多孔板式抽出塔の下
部から連続的に供給し、0.2wt%の三ふつ化ほう素
を含む液状ふつ化水素を塔の上部から連続的に供給した
。炭化水素の滞留時間17.8分、抽出温度0℃、ふつ
化水素/塔に供給した炭化水素(重量比)=0.2、抽
出圧力40k9/CdGとした。抽出後の炭化水素層(
抽残液)の三ふつ化はう素濃度は6.85wt%から0
.9wt%に減少した。なお、この抽出塔はSUS3l
6L製であソー30〜20℃、10〜501Cg/Cd
Gの範囲で、通算342時間にわたつて各種の抽出実験
を行なつたが、平均腐食率は0.13mm/年と低かつ
た〇実施例5実施例1で使用した異性化反応器にふつ化
水素330y1三ふつ化ほう素1907および0.1w
t%の2,2,4−トリメチルペンタンを含むn−ペン
タン2107を仕込んで、反応温度50℃、圧力約30
k97/Cr!IGで65分間異性化反応を行なつた。
This hydrocarbon layer was continuously supplied from the lower part of a rotary perforated plate extraction column with 5 plates, and liquid hydrogen fluoride containing 0.2 wt% boron trifluoride was continuously supplied from the upper part of the column. . The residence time of hydrocarbons was 17.8 minutes, the extraction temperature was 0° C., the hydrogen fluoride/hydrocarbon supplied to the column (weight ratio) was 0.2, and the extraction pressure was 40k9/CdG. Hydrocarbon layer after extraction (
The concentration of boron trifluoride in the raffinate solution was 6.85 wt% to 0.
.. It decreased to 9wt%. Note that this extraction tower is made of SUS3L
6L made saw 30~20℃, 10~501Cg/Cd
Various extraction experiments were conducted for a total of 342 hours in the range of G, and the average corrosion rate was as low as 0.13 mm/year.Example 5 Hydrogen 330y1 Boron trifluoride 1907 and 0.1w
N-pentane 2107 containing t% of 2,2,4-trimethylpentane was charged, and the reaction temperature was 50°C and the pressure was about 30°C.
k97/Cr! The isomerization reaction was carried out using IG for 65 minutes.

反応終了後、50℃で3分間静置後、分離した炭化水素
層を少量サンプリングして組成分析を行なつた。n−ペ
ンタンのi−ペンタンの異性化率83.6%、三ふつ化
はう素の含有量は約67wt%であつた。実施例4と同
じ条件で炭化水素層に含まれる三ふつ化はう素の抽出を
行ない、この抽出液を実施例4で得られた抽出液とあわ
せた。
After the reaction was completed, the mixture was allowed to stand at 50° C. for 3 minutes, and a small amount of the separated hydrocarbon layer was sampled for compositional analysis. The isomerization rate of i-pentane from n-pentane was 83.6%, and the content of boron trifluoride was about 67% by weight. Boron trifluoride contained in the hydrocarbon layer was extracted under the same conditions as in Example 4, and this extract was combined with the extract obtained in Example 4.

この混合抽出液中のBF3濃度は23.4wt%であつ
た。抽出液全量を還流冷却器付の内容積200m1のオ
ートクレーブに移し、オートクレーブの内圧を351C
9//CF7lGに保ちながら147℃まで徐々に加熱
した。加熱により発生する三ふつ化ほう素は還流冷却器
の上部(0℃)から抜き出し、これを上記の異性化反応
器(50℃、異性化反応に使用した触媒層を含む)に供
給した。異性化反応器の圧力が30k9/CrAGに達
した時点で三ふつ化ほう素の供給を中止し反応器にn−
ペンタン(0.1w1%f)2,2,4−トリメチルペ
ンタンを含む)を2107をポンプで送入し、50℃、
30kg/CrAGで異性化反応を行なつた。65分反
応後のn−ペンタンの異性化率は83.0%であり、回
収BF3の使用による異性化率の低下は認められなかつ
た。
The BF3 concentration in this mixed extract was 23.4 wt%. Transfer the entire amount of the extract to an autoclave with an internal volume of 200 m1 equipped with a reflux condenser, and reduce the internal pressure of the autoclave to 351C.
The mixture was gradually heated to 147° C. while maintaining the temperature at 9//CF71G. Boron trifluoride generated by heating was extracted from the upper part of the reflux condenser (0°C) and supplied to the above-mentioned isomerization reactor (50°C, containing the catalyst layer used for the isomerization reaction). When the pressure in the isomerization reactor reaches 30k9/CrAG, the supply of boron trifluoride is stopped and n-
Pentane (0.1w1%f containing 2,2,4-trimethylpentane) was pumped into 2107 at 50°C.
The isomerization reaction was carried out at 30 kg/CrAG. The isomerization rate of n-pentane after 65 minutes of reaction was 83.0%, and no decrease in the isomerization rate was observed due to the use of recovered BF3.

実施例6 17。Example 6 17.

6wt%のエンド−トリシクロ〔5.2.1.02・6
〕デカンと82.4wt%のn−ペンタンから成る異性
化原料18607を、触媒として11407のふつ化水
素と2457の三ふつ化ほう素を用い、反応温度100
℃、圧力34kVF71Gで10分間異性化した後、こ
の反応生成液をそのまま10分間静置し1.11wt%
のふつ化水素および3.37wt%の三ふつ化ほう素を
含む炭化水素層と触媒層を得た。
6 wt% endo-tricyclo [5.2.1.02.6
] Isomerization raw material 18607 consisting of decane and 82.4 wt% n-pentane was used as a catalyst with hydrogen fluoride of 11407 and boron trifluoride of 2457 at a reaction temperature of 100%.
After isomerizing for 10 minutes at ℃ and pressure 34kVF71G, this reaction product solution was allowed to stand still for 10 minutes, resulting in a concentration of 1.11wt%.
A hydrocarbon layer and catalyst layer containing 3.37 wt % of boron trifluoride and 3.37 wt % of boron trifluoride were obtained.

この炭化水素層を使用し三ふつ化ほう素を含まない液状
ふつ化水素を抽剤として、抽出温度0℃、抽出圧力20
kVcdG.ぉよび抽剤/炭化水素(重量比)1の条件
で10分間抽出した。
Using this hydrocarbon layer, extracting liquid hydrogen fluoride that does not contain boron trifluoride at an extraction temperature of 0°C and an extraction pressure of 20°C.
kVcdG. Extraction was carried out for 10 minutes under conditions of extractant/hydrocarbon (weight ratio) of 1.

抽出後の炭化水素層に含まれる三ふつ化ほう素は0.0
6wt%であつた。
Boron trifluoride contained in the hydrocarbon layer after extraction is 0.0
It was 6 wt%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用したプロセスのフローシートで
ある。 2・・・・・・異性化反応器、4・・・・・・分離槽、
5・・・・・・ポンプ、7・・・・・・抽出塔、10・
・・・・・分離塔、12・・・・・・凝縮器、15・・
・・・・均圧管、17・・・・・・ふつ化水素蒸留塔。 20・・・・・・冷却器、21・・・・・・ポンプ、2
4・・・・・・ポンプ。
FIG. 1 is a flow sheet of a process to which the present invention is applied. 2...isomerization reactor, 4...separation tank,
5...Pump, 7...Extraction tower, 10.
... Separation column, 12 ... Condenser, 15 ...
... Pressure equalization tube, 17 ... Hydrogen fluoride distillation column. 20...Cooler, 21...Pump, 2
4...Pump.

Claims (1)

【特許請求の範囲】[Claims] 1 ふつ化水素および三ふつ化ほう素の存在下で炭化水
素を異性化して得られた反応生成液から分離したふつ化
水素および三ふつ化ほう素ならびに炭化水素を含有する
炭化水素層と、少くともふつ化水素を含有する液状抽剤
とを接触させて、前記の炭化水素層から三ふつ化ほう素
を抽出して抽出液を得、所望により該抽出液を異性化反
応に再使用することを特徴とする触媒の回収方法。
1 A hydrocarbon layer containing hydrogen fluoride and boron trifluoride and hydrocarbons separated from a reaction product liquid obtained by isomerizing hydrocarbons in the presence of hydrogen fluoride and boron trifluoride, and a small amount of Contact with a liquid extraction agent containing hydrogen fluoride to extract boron trifluoride from the hydrocarbon layer to obtain an extract, and if desired, reuse the extract for the isomerization reaction. A method for recovering a catalyst, characterized by:
JP54076454A 1979-06-18 1979-06-18 Catalyst recovery method Expired JPS5916493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076454A JPS5916493B2 (en) 1979-06-18 1979-06-18 Catalyst recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076454A JPS5916493B2 (en) 1979-06-18 1979-06-18 Catalyst recovery method

Publications (2)

Publication Number Publication Date
JPS55167045A JPS55167045A (en) 1980-12-26
JPS5916493B2 true JPS5916493B2 (en) 1984-04-16

Family

ID=13605590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076454A Expired JPS5916493B2 (en) 1979-06-18 1979-06-18 Catalyst recovery method

Country Status (1)

Country Link
JP (1) JPS5916493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692585B2 (en) * 1985-10-22 1994-11-16 軽質留分新用途開発技術研究組合 Hydrocarbon isomerization method
US7235509B2 (en) 2002-10-28 2007-06-26 Idemitsu Kosan Co., Ltd. Processes for the recovery and recycling of boron trifluoride or complexes thereof

Also Published As

Publication number Publication date
JPS55167045A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
US20060070919A1 (en) Process for separating oxygen-containing compounds contained in a hydrocarbon feed, employing an ionic liquid
US2581102A (en) Removal of oxygenated organic compounds from hydrocarbons
US2232761A (en) Process for the treatment of petroleum distillates
US2662843A (en) Shale oil refining
US2172146A (en) Manufacture of iso-butane
US2397945A (en) Polymerization of propylene
JPS5916493B2 (en) Catalyst recovery method
JPS60258289A (en) Natural gasoline quality improvement
US2396761A (en) Production op aromatic hydrocarbons
US3136825A (en) Process for disproportionation of isoparaffinic hydrocarbons
US2427009A (en) Catalytic cracking of hydrocarbons in the presence of hydrogen fluoride and boron fluoride
US2181642A (en) Polymerization of tertiary-base olefins
US2339786A (en) Refining of lubricating oils
US2282549A (en) Polymerization of hydrocarbon gases
US2540379A (en) Cracking with hydrofluoric acid catalyst
US2405660A (en) Method of producing toluene
US2717864A (en) Partial hydrogenation of feed oils employed in catalytic cracking to produce motor fuels
US1988479A (en) Process for treating olefines
WO2016160650A1 (en) Regeneration of carbenium pseudo ionic liquids
US2281257A (en) Treatment of cracking stocks
US4743360A (en) Process for removing basic nitrogen compounds from gas oils
US2605211A (en) Recovering antimony trichloride from hydrocarbon extract phase
US4169781A (en) Denitrification by furfural-ferric chloride extraction of coker oil
US2051612A (en) Method of treating oils
US2501023A (en) Hydrocarbon conversion with hydrogen fluoride in homogeneous phase