JPS59164928A - Temperature detector - Google Patents

Temperature detector

Info

Publication number
JPS59164928A
JPS59164928A JP4018083A JP4018083A JPS59164928A JP S59164928 A JPS59164928 A JP S59164928A JP 4018083 A JP4018083 A JP 4018083A JP 4018083 A JP4018083 A JP 4018083A JP S59164928 A JPS59164928 A JP S59164928A
Authority
JP
Japan
Prior art keywords
temp
electric field
electrodes
temperature
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4018083A
Other languages
Japanese (ja)
Inventor
Yoshio Kishimoto
岸本 良雄
Shinichi Endo
遠藤 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4018083A priority Critical patent/JPS59164928A/en
Publication of JPS59164928A publication Critical patent/JPS59164928A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a temp. detector used even under an electric field containing a DC component electric field, by providing a condenser to one of a pair of the electrodes of the temp. detector utilizing an ion conductive type high-molecular temp. sensor. CONSTITUTION:An I-shaped high-molecular temp. sensor is constituted as a temp. detecting wire obtained by successively forming an inner winding electrode 2, an ion conductive type high-molecular temp. sensor 3, an outer winding electrode 5 and an outer cover 6 on a core yarn 1 and a pair of electrodes are formed by the inner and outer winding electrodes 3, 4. This temp. detection wire can be shown as a variable resistor due to a temp. and, by connecting a condenser 7 to one end thereof in series, the carrier of the high-molecular temp. sensor is only charged and discharged to the condenser 7 even if a DC component is applied and only carrier movement corresponding to the charging and discharging amount of the condenser 7 is generated. By this mechanism, the temp. detector can be used even under an electric field containing a DC component electric field.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は面状採暖具、例えば電気毛布等の温度制御装置
に利用する温度検知器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a temperature sensor used in a temperature control device for a planar heating device, such as an electric blanket.

従来例の構成とその問題点 従来6、これらの温度制御装置に用いる温度センサーと
してはプラスチックサーミスタと呼ばれる高分子感温体
が用い・ちれていた。この高分子感温体には伝導メカニ
ズムによシイオン伝導形(以下工形と称す)、静電容量
形(以下C形と称す)、電子伝導形(以下E形と称す)
の3種に分けられる。実用面ではC形は誘電率の温度変
化を利用するのでナイロン系材料が選択され、吸湿性の
影響を受けやすいという欠点がある。E形は活発な研究
は行なわれているが、伝導メカニズム上で可撓性や信頼
性のあるものが乏しく実用化されている例は少ない。こ
れに対して工形の高分子感温体は諸特性も優れており、
非常に多く実用化されている。しかしながら、イオン伝
導性であるだめ直流成分電界により分極現象を示し、イ
ンビーダンスル温度特性に変化を生ずるので、直流成分
が存在する電界下では信頼性のある温度センサーになら
ないという欠点があシ、直流成分電界下では使用されて
いなかった。
Structure of Conventional Example and Its Problems In the past 6, a polymer thermosensitive body called a plastic thermistor was used as a temperature sensor for use in these temperature control devices. Depending on the conduction mechanism, this polymer temperature sensitive body has three types: ionic conduction type (hereinafter referred to as engineering type), capacitance type (hereinafter referred to as C type), and electronic conduction type (hereinafter referred to as E type).
It is divided into three types. In practical terms, nylon-based materials are selected for type C because they utilize changes in dielectric constant with temperature, and they have the disadvantage of being easily affected by hygroscopicity. Although active research is being conducted on the E-type, there are few examples of it being put into practical use due to the lack of flexibility and reliability in the conduction mechanism. On the other hand, Kogata's polymer thermosensitive body has excellent properties,
It has been put into practical use very often. However, since it is ion conductive, it exhibits a polarization phenomenon due to a DC component electric field, causing a change in impedance temperature characteristics, so it has the disadvantage that it cannot be a reliable temperature sensor under an electric field with a DC component. , it was not used under a DC component electric field.

発明の目的 本発明は直流成分電界を含む電界下、例えば矩形波、三
角波、正弦波等のパルス波形の電界及びこれ′らに直流
成分の重畳した電界下でも利用することができる温度検
知器を提供するものである。
Purpose of the Invention The present invention provides a temperature sensor that can be used under an electric field containing a DC component electric field, for example, an electric field with a pulse waveform such as a rectangular wave, a triangular wave, a sine wave, etc., and an electric field in which a DC component is superimposed on these electric fields. This is what we provide.

発明の構成 一対の電極間に、イオン伝導形高分子感温体を設け、前
記一対の電極のうち少なくとも一方に、コンデンサー若
しくはコンデンサーの等価回路を設けた。このコンデン
サー若しくはコンデンサーの等価回路は、前記イオン伝
導形高分子感温体の温度検出領域での最小インピーダン
スよシ低いインピーダンス値を有するようにした。
Structure of the Invention An ion-conducting polymer temperature sensitive body is provided between a pair of electrodes, and a capacitor or an equivalent circuit of a capacitor is provided on at least one of the pair of electrodes. This capacitor or an equivalent circuit of the capacitor was designed to have an impedance value lower than the minimum impedance in the temperature detection region of the ion-conducting polymer thermosensitive member.

この構成によって、直流成分電界におムてイオン伝導形
高分子感温体に分極現象が生じた場合にも、コンデンサ
ー若しくはコンデンサーの等価回路に充放電されること
になり、温度検出機能には影響を与えない。
With this configuration, even if a polarization phenomenon occurs in the ion-conducting polymer temperature sensor due to a DC component electric field, the capacitor or the equivalent circuit of the capacitor will be charged and discharged, which will affect the temperature detection function. not give.

実施例の説明 ■形高分子感温体の多くは第1図のように、芯糸(1)
上に内巻電極(2)、イオン伝導形高分子感温体(3へ
外巻電極(4〕、分離層(5)、外被(6)を順次形成
した温度検知線として構成される。内巻電極(2)及び
外巻電極(4)の両者によって一対の電極が形成されて
いる。この温度検知線は温度による可変抵抗体として表
わすことができ、一端にコンデンサー(7)を直列に接
続すると第2図(a)に示すようになる。
Explanation of Examples Most of the ■-shaped polymer thermosensors have a core thread (1) as shown in Figure 1.
It is constructed as a temperature sensing line in which an inner wound electrode (2), an ion-conducting polymeric temperature sensor (3), an outer wound electrode (4), a separation layer (5), and an outer cover (6) are formed on top of the wire in this order. A pair of electrodes is formed by both the inner-wound electrode (2) and the outer-wound electrode (4).This temperature detection line can be expressed as a temperature-dependent variable resistor, and a capacitor (7) is connected in series to one end. When connected, the result will be as shown in FIG. 2(a).

この場合、イオン云導形高分子感温体のキャリヤは直流
成分が印加されても、コンデンサー(7)K充放電され
るだけで、コンデンサー(7)の充電電荷量だけのキャ
リヤ移動しか生じない。このだめキャリヤイオンが電気
分解され、永続的に消費されることはない。第2図れ)
に示す回路は第2図(至)のような等価回路で表わすこ
とができる。使用するコア 7’ ン”j−−(7)の
容量Cは容量性リアクタンスXc使用温度域での最小イ
ンピーダンスよりできるだけ小さくなるよう設定した方
が温度検出感度が高い。
In this case, even if a DC component is applied to the carriers of the ion-conducting polymer temperature sensitive body, the capacitor (7) K is simply charged and discharged, and the carriers only move by the amount of charge in the capacitor (7). . These waste carrier ions are electrolyzed and are not permanently consumed. 2nd diagram)
The circuit shown in can be represented by an equivalent circuit as shown in FIG. Temperature detection sensitivity will be higher if the capacitance C of the core used (7) is set to be as small as possible than the minimum impedance in the operating temperature range of the capacitive reactance Xc.

又、■形高−分子感温体は体積抵抗率が高いため第1図
9ような二重巻線構造やサンドインチ構造等に構成され
た場合には電極面積Sが非常に大きく、なるので、一般
にインピーダンスを数MΩ以下にし′て使用する。それ
ゆえ他実施例として、電極表面に絶縁層を形成した場合
には、その厚さをひるコンデンサーを直列に形成するの
と同等になシ第2図(a)及び■)の回路と等価回路に
なる。
In addition, since the ■-type polymeric temperature sensitive body has a high volume resistivity, when it is configured with a double winding structure or a sandwich inch structure as shown in Fig. 1, the electrode area S becomes very large. Generally, the impedance is set to several MΩ or less. Therefore, as another example, if an insulating layer is formed on the surface of the electrode, its thickness can be reduced to the same level as forming a capacitor in series.Equivalent circuit to the circuit in Figure 2 (a) and (■) become.

次に本発明の実験結果を示す。Next, experimental results of the present invention will be shown.

実験結果1゜ 芯糸(1)にポリエステル、内巻電極(2)及び外巻電
極(4)にステンレス線、高分子感温体(3)に有機過
塩素酸塩含有のイオン伝導性ポリ塩化ビニル組成物を用
い、分離層(5)にポリエステルフィルム、外被(6)
に軟質ポリ塩化ビニルを用い、第1図の温度検知線とし
た。この温度検知線の特性は60Hzで第3図の(A)
に示すように表わされ、コンデンサー(7)を直列に接
続した場合の特性は(B)に余すグラフで表わされた。
Experimental results 1゜ Core yarn (1) is polyester, inner wound electrode (2) and outer wound electrode (4) are stainless steel wire, and polymeric temperature sensor (3) is ion conductive polychloride containing organic perchlorate. Using a vinyl composition, the separation layer (5) is a polyester film, the outer cover (6)
Soft polyvinyl chloride was used for the temperature detection line shown in Figure 1. The characteristic of this temperature detection line is (A) in Figure 3 at 60Hz.
The characteristics when the capacitor (7) is connected in series are shown in the graph shown in (B).

次に100VAC半波を印加して、80℃で2000時
間耐熱テストをし、 インピーダンス一温度特性(Z−
T特性)を測定し・だところ、第4図のようにZl−T
特性は、初期特性であるZo−T特性と比較しても変化
はほとんどなく、温度検知回路独でのAC全波印加での
耐熱テストの結果と同様であった。これに対しコンデン
サーなしでAC半波を印加すると、Z2=T特性は第4
図のように大きな経時変化を示した。但しこれ。
Next, we applied a 100VAC half-wave and conducted a heat resistance test at 80°C for 2000 hours to obtain the impedance-temperature characteristics (Z-
Then, as shown in Figure 4, Zl-T
There was almost no change in the characteristics when compared with the Zo-T characteristics, which were the initial characteristics, and the results were similar to the results of a heat resistance test using AC full wave application using the temperature detection circuit alone. On the other hand, when an AC half wave is applied without a capacitor, the Z2=T characteristic becomes the fourth
As shown in the figure, there was a large change over time. However, this.

らの実験では自己発熱による暴走現象を防ぐため10に
Ωの抵抗を直列に接続して耐熱テストをしだ。
In their experiments, they conducted a heat resistance test by connecting a 10Ω resistor in series to prevent runaway phenomena due to self-heating.

実験結果2゜ 実験結果lに示す電極材料としてアルミメッキ導線を用
い、表面を酸化処理してアルマイト層を形成したものを
用いて、実験結果1に示した手続と同様にその効果を検
討した。実験結果1と同様に良好な結果が得られた。
Experimental Results 2゜Experimental Results 1 Using aluminum-plated conductive wire as the electrode material, the surface of which was oxidized to form an alumite layer, the effect was investigated in the same manner as in the procedure shown in Experimental Results 1. Similar to Experimental Results 1, good results were obtained.

本発明の温度検知器は、第5図に示す温度制御装置に利
用す、ることかでき、直流あるいは交流の電源(9)よ
シパルス電源aωを構成し温度検知器(8)にパルスを
印加する。その温度信号電流を温度検知回路1Dに入力
し、サイリヌタをON−〇jF。してヒータ(12)を
制御する。
The temperature sensor of the present invention can be used in the temperature control device shown in FIG. do. Input the temperature signal current to the temperature detection circuit 1D and turn on the sirinuta. to control the heater (12).

又、第6図に示すように、温度検知線の一対の電極め一
方をヒータ(12)に兼用すれば、交流電源(■3)で
駆動する一線式温度制御装置に利用することもできる。
Furthermore, as shown in FIG. 6, if one of the pair of electrodes of the temperature detection line is also used as a heater (12), it can also be used in a one-line temperature control device driven by an AC power source (3).

発明の効果 本発明は、イオン伝導最高分子感温体を利用した温度検
知器の一対の電極の少なくとも一方に、コンデンサー若
しくはコンデンサーの等価回路を設けることによって、
従来は使用できなかった直流成分電界を含む電界下でも
使用することができる温度検知器を提供することができ
る。
Effects of the Invention The present invention provides a capacitor or an equivalent circuit of a capacitor on at least one of a pair of electrodes of a temperature sensor using an ion-conducting highest molecular temperature sensor.
It is possible to provide a temperature sensor that can be used even under an electric field including a DC component electric field, which could not be used conventionally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン伝導最高分子感温体を用いた温度検知線
の一実施例を示す斜視図、第2図(a)及び(1))は
本発明の温度検知器の等価回路、第3図は本発明及び従
来例の温度検知器のZ−T特性、第4図は耐熱テストに
よる温度検知線のZ、−T特性菱化を示す図、第5図は
本発明の温度検知器を駆動温度検知器の他実施例を示す
回路図である。 (2)・・・内巻電極、(3)・・・イオン伝導最高分
子感温体、(4)・・・外巻電極、(7)・・・コンデ
ンサー、(8)・・・温度検知器、u2I・・・ヒータ 代理人 弁理士人 島 −公 第1図 第3図 シL度T (’C) 第4図 s=度T (OC’)
FIG. 1 is a perspective view showing an example of a temperature detection line using an ion-conducting highest molecular temperature sensor, FIGS. 2(a) and (1)) are equivalent circuits of the temperature sensor of the present invention, The figure shows the Z-T characteristics of the temperature sensor of the present invention and the conventional example, Figure 4 shows the Z and -T characteristics of the temperature detection line obtained by the heat resistance test, and Figure 5 shows the temperature sensor of the present invention. FIG. 7 is a circuit diagram showing another embodiment of the driving temperature detector. (2)...Inner wound electrode, (3)...Ion conductive highest molecular temperature sensitive body, (4)...Outer wound electrode, (7)...Capacitor, (8)...Temperature detection U2I... Heater agent Patent attorney Island - Public Figure 1 Figure 3 SI L degree T ('C) Figure 4 s = degree T (OC')

Claims (3)

【特許請求の範囲】[Claims] (1)  一対の電極間にイオン伝導形高分子感温体を
設け、前記一対の電極の少なくとも一方に、前記イオン
伝導形高分子感温体の温度検出領域での最小インピーダ
ンスより低いインピーダンスのコンデンサー若しくはコ
ンデンサーの等価回路を設けた温度検知器。
(1) An ion conductive polymer temperature sensitive body is provided between a pair of electrodes, and a capacitor having an impedance lower than the minimum impedance in the temperature detection area of the ion conductive polymer temperature sensitive body is attached to at least one of the pair of electrodes. Or a temperature detector equipped with an equivalent circuit of a capacitor.
(2)  コンデンサーとして、一対の電極のうちの一
方を、絶縁被覆導体で構成してコンデンサーとした特許
請求の範囲第1項記載の温度検知器。
(2) The temperature sensor according to claim 1, wherein one of the pair of electrodes is made of an insulated conductor to serve as a capacitor.
(3)  一対の電極のうちの一方をヒータとした特許
請求の範囲第1項記載の温度検知器。
(3) The temperature sensor according to claim 1, wherein one of the pair of electrodes is a heater.
JP4018083A 1983-03-10 1983-03-10 Temperature detector Pending JPS59164928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4018083A JPS59164928A (en) 1983-03-10 1983-03-10 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4018083A JPS59164928A (en) 1983-03-10 1983-03-10 Temperature detector

Publications (1)

Publication Number Publication Date
JPS59164928A true JPS59164928A (en) 1984-09-18

Family

ID=12573577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4018083A Pending JPS59164928A (en) 1983-03-10 1983-03-10 Temperature detector

Country Status (1)

Country Link
JP (1) JPS59164928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534207A (en) * 1991-08-01 1993-02-09 Sharp Corp Temperature detecting apparatus for heat generating cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534207A (en) * 1991-08-01 1993-02-09 Sharp Corp Temperature detecting apparatus for heat generating cloth

Similar Documents

Publication Publication Date Title
US4849611A (en) Self-regulating heater employing reactive components
US8772679B2 (en) Method and system for controlling a heating element with temperature sensitive conductive layer
US4326414A (en) Humidity detecting apparatus
JPH0875575A (en) Piezoelectric sensor
JPS59164928A (en) Temperature detector
US4344062A (en) Humidity sensor element
CA1225720A (en) Infrared thermal detector
RU2096777C1 (en) Humidity transducer
JPS59206754A (en) Detecting element of organic molecule
US20230400360A1 (en) Electrical assembly with multi-zone temperature monitoring
US4210894A (en) Terminal unit for electrical circuit elements and sensing device employing said terminal unit
JPH075050A (en) Temperature sensor
JPH02201816A (en) Functional cable
JPH05226065A (en) Surface heating body
Ashok FIRE ALARM WITH SIREN SOUND
JPS6248173B2 (en)
JPS6325158A (en) Demist control for vehicle
JPH0218558B2 (en)
SU1003163A1 (en) Variable capacitor
JPH0547459A (en) Heat sensitive heater wire
Michel et al. Electrical properties of dry and wet polyglycine
JPS6341014B2 (en)
JP2959122B2 (en) Moisture sensitive element
JPH0743986Y2 (en) Sheet heating element
JPS61135087A (en) Temperature self controlled heater