JPS59164869A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59164869A
JPS59164869A JP58038292A JP3829283A JPS59164869A JP S59164869 A JPS59164869 A JP S59164869A JP 58038292 A JP58038292 A JP 58038292A JP 3829283 A JP3829283 A JP 3829283A JP S59164869 A JPS59164869 A JP S59164869A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
valve
operation valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038292A
Other languages
Japanese (ja)
Other versions
JPH0432309B2 (en
Inventor
俊介 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58038292A priority Critical patent/JPS59164869A/en
Publication of JPS59164869A publication Critical patent/JPS59164869A/en
Publication of JPH0432309B2 publication Critical patent/JPH0432309B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍装置に関する。[Detailed description of the invention] The present invention relates to a refrigeration system.

公知の冷凍装置においては、第1図系統図に示すように
、圧縮機1から吐出された冷媒は学外熱交換器2で凝縮
液化し、膨張弁3で断熱膨張し、源側操作弁4を通り、
室内熱交換器5で蒸発気化したのち、ガス側操作弁6を
通って圧縮機1に吸入され、その際膨張弁3は吸入管に
付設された感温筒7で冷媒温度を検出して冷媒の過熱度
を一定にするよう適正量の冷媒を冷凍回路中に流すよう
コントロールする。
In a known refrigeration system, as shown in the system diagram in FIG. street,
After evaporating and vaporizing in the indoor heat exchanger 5, the refrigerant is sucked into the compressor 1 through the gas side operation valve 6. At this time, the expansion valve 3 detects the refrigerant temperature with a temperature sensing tube 7 attached to the suction pipe and cools the refrigerant. Controls the flow of an appropriate amount of refrigerant into the refrigeration circuit to maintain a constant degree of superheating.

源側操作弁4は第2図縦断面図に示すように、入口管A
から流入した冷媒はポートEを通過したのち出口管Bよ
シ室内熱交換器5に流入するが、その際、コア13はボ
ディ14に螺合しているので六角穴Fにレンチを挿入し
回転させることでポートEの開閉が可能で、運転開始前
は左方にあって、ポートEを閉塞しており、運転開始に
際し1図示の位置に移動させポー゛トEを開とする。と
\で、カバー−17は冷媒の洩れ防止のために外管1o
とロー伺され、押え18はボディ14等を押えると\も
に外管10とロー伺けし冷媒が外周から洩れることを防
止する。
The source side operation valve 4 is connected to the inlet pipe A as shown in the vertical cross-sectional view of FIG.
After passing through port E, the refrigerant flows into the indoor heat exchanger 5 through the outlet pipe B. At this time, since the core 13 is screwed into the body 14, insert a wrench into the hexagonal hole F and rotate it. Port E can be opened and closed by moving it. Before the start of operation, it is on the left and closes port E. When starting operation, it is moved to the position shown in the figure 1 to open port E. and \, the cover-17 is attached to the outer pipe 1o to prevent refrigerant leakage.
When the presser foot 18 presses down the body 14 etc., the presser foot 18 also lowers the outer tube 10 and prevents the refrigerant from leaking from the outer periphery.

しかしながら、このような冷凍装置においては、源側操
作弁4.膨張:fP”r  ガス側操作弁6の3個の弁
と感温筒7の取付工数、接続工数、これらを設置するス
ペースが必要となり、このことが冷凍ユニットの小型化
およびコスト低減の障害となっている。
However, in such a refrigeration system, the source side operation valve 4. Expansion: fP”r The three valves of the gas side operation valve 6 and the temperature sensing cylinder 7 require man-hours to install, connect them, and space to install them, which is an obstacle to downsizing and cost reduction of the refrigeration unit. It has become.

本発明はこのような事情に鑑みて提案されたもので、液
側操作弁、膨張弁、ガス側操作弁および感温筒を一体化
することにより小型化およびコスト低減を図る冷凍装置
を提供することを目自勺とする。
The present invention has been proposed in view of the above circumstances, and provides a refrigeration system that achieves miniaturization and cost reduction by integrating a liquid side operation valve, an expansion valve, a gas side operation valve, and a temperature sensing tube. I take that as a priority.

そのために本発明は弁本体内に仕切板により区画形成さ
れ/ζ第1および第2の室と、上記第1の室に設けられ
利用側熱交換器から圧縮機への冷媒流に曝され密封熱媒
により伸縮する伸縮電相と、上記第2の室に設けられ熱
源側熱交換器から上記利用側熱交換器への冷媒流を流過
する可変オリフィスと、上記仕切板を貫設して設けられ
上記伸縮部材の伸縮に応じて上記可変オリフィスの断1
m積を変化する連動機構とよりなる複合操作弁を具えた
ことを特徴とする。
To this end, the present invention provides a valve main body that is partitioned by a partition plate/ζ first and second chambers, and provided in the first chamber and exposed to the refrigerant flow from the utilization side heat exchanger to the compressor and sealed. A telescoping electrical phase that expands and contracts with a heating medium, a variable orifice provided in the second chamber and through which a refrigerant flow passes from the heat source side heat exchanger to the user side heat exchanger, and a variable orifice provided through the partition plate. The variable orifice is cut 1 according to the expansion and contraction of the expandable member.
The present invention is characterized in that it is equipped with a compound operation valve consisting of an interlocking mechanism that changes the m product.

本発明の実施例を図面について説明すると、第3図°は
その複合操作弁を示す縦断面図、第4図は第3図の複合
操作弁の変形例を見えた実施例の系統図、第5図は本発
明をヒートポンプ式空調機に適用した実施例を示す系統
図、第6図は第4図の複合操作弁の変形例を示す同じく
縦断面図である。
Embodiments of the present invention will be explained with reference to the drawings. FIG. 3 is a vertical sectional view showing the compound operation valve, FIG. 4 is a system diagram of the embodiment showing a modification of the compound operation valve of FIG. 3, and FIG. FIG. 5 is a system diagram showing an embodiment in which the present invention is applied to a heat pump type air conditioner, and FIG. 6 is a longitudinal sectional view showing a modification of the composite operation valve shown in FIG. 4.

上図において、第1〜2図と同一の記号はそれぞれ第1
〜2図と同一の部材を示し、9は円筒状の弁本体で、後
記する仕切板23によυ右室および左室に仕切られ、右
室には入口管Aおよび出口管Bが連通し、左室には入口
管Cおよび出口管りが連通ツーる。12Aおよび12B
はそれぞれ右室および左室に設けられポー)HおよびL
を有するポート板、13Aおよび13Bはそれぞれ右室
および左室のボディ14Aおよび14Bに螺合されポー
)HおよびLを開閉するコア、16Aおよび1GBはコ
ア13.Aおよび13’Bをそれτれボディ14. A
および14. Bに対しシールするOリング、21は熱
媒が封入されたベローズで、その左端は複数のロッド2
0によりポート板12Bに固着されている。22は仕切
板23に穿設されたオリフィスGを制菌するノズル板2
4をベローズ21の右端に連結する複数のロッド、25
はノズル板24とポート板12Aとの間に弾装されたス
プリングである。。
In the above diagram, the same symbols as in Figures 1 and 2 are number 1, respectively.
2 shows the same members as in Figure 2, and 9 is a cylindrical valve body, which is partitioned into the right ventricle and left ventricle by a partition plate 23 to be described later, and the right ventricle is communicated with an inlet pipe A and an outlet pipe B. , an inlet tube C and an outlet tube communicate with the left ventricle. 12A and 12B
are located in the right and left ventricles, respectively) H and L
The port plates 13A and 13B are threaded onto the bodies 14A and 14B of the right and left ventricles, respectively, and the cores 16A and 1GB are threaded onto the bodies 14A and 14B of the right and left ventricles to open and close the ports H and L, respectively. A and 13'B as body 14. A
and 14. O-ring 21 seals against B, and 21 is a bellows filled with a heating medium, and its left end is connected to a plurality of rods 2.
0 is fixed to the port plate 12B. 22 is a nozzle plate 2 that sterilizes the orifice G formed in the partition plate 23.
4 to the right end of the bellows 21, 25
is a spring loaded between the nozzle plate 24 and the port plate 12A. .

このような装置において、第1図の鎖線枠Pに示す」:
うに、入口管A、Cおよび出口管13、Dはそれぞれ同
図の管路A、CおよびB。
In such a device, as shown in the dashed line frame P in FIG.
Inlet pipes A, C and outlet pipes 13, D correspond to pipes A, C and B, respectively, in the figure.

Dに接続されるので、室内熱交換器5で蒸発気化した冷
媒は入口管CよりボートL、出ロ管りを通って圧縮機1
に吸入される。その際ポー )Lを通った冷媒はベロー
ズ21を加熱又は冷却するのであるが、ベローズ21中
には熱媒が封入されており、室内の冷房負荷が大きい場
合は室内熱交換器5で冷媒は十二分に過熱されるとと\
なり、いわゆる過熱置火の状態で室Nに冷媒が戻るので
、ベローズ21も過熱され伸長する。
Since the refrigerant is evaporated in the indoor heat exchanger 5, it passes from the inlet pipe C to the boat L and the outlet pipe to the compressor 1.
is inhaled. At this time, the refrigerant that has passed through the po If it gets overheated enough\
Since the refrigerant returns to the chamber N in a so-called overheated state, the bellows 21 is also overheated and expands.

こメで、ベローズ21の左端はロッド20を介してポー
トL側に固定されているので、ベローズ21は右方への
み伸長し、スプリング25に抗してノズル板24をロッ
ド22を介して右方に押すことになる。
Here, since the left end of the bellows 21 is fixed to the port L side via the rod 20, the bellows 21 extends only to the right and moves the nozzle plate 24 to the right via the rod 22 against the spring 25. It will push you in the opposite direction.

一方、圧縮機1から吐出した冷媒は室外熱交換器2で凝
縮液化し、入ロ管AJ:、、!7仕切板23のオリフィ
スGを通りポートHを経て出口管Bを通り室内側熱交換
器5に入シ、その際、オリフィスGにより通路が狭めら
れる結果冷媒は断熱膨張して低圧低温となる。
On the other hand, the refrigerant discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 2, and the inlet pipe AJ:...! 7 The refrigerant passes through the orifice G of the partition plate 23, passes through the port H, passes through the outlet pipe B, and enters the indoor heat exchanger 5. At this time, the passage is narrowed by the orifice G, and as a result, the refrigerant expands adiabatically and becomes low pressure and low temperature.

このとき前記したように、室内側負荷の大きい場合は、
ノズル板24が右方に押されることからオリフィスGの
断面積は広く々シその抵抗が減ることから冷媒は多く流
れるようになり、冷媒が多く室内熱交換器5に供給され
ると、室内側熱交換器5において冷媒が過熱されること
がなくなり、室Nの冷媒温度が下がり、ベローズ21は
左方に縮み結果としてノズル板2/Iも左動してオリフ
ィスGの断面積は小さくなる。
At this time, as mentioned above, if the indoor load is large,
Since the nozzle plate 24 is pushed to the right, the cross-sectional area of the orifice G is widened, and as the resistance is reduced, more refrigerant flows, and when a large amount of refrigerant is supplied to the indoor heat exchanger 5, The refrigerant is no longer overheated in the heat exchanger 5, the refrigerant temperature in the chamber N decreases, the bellows 21 contracts to the left, and as a result, the nozzle plate 2/I also moves to the left, and the cross-sectional area of the orifice G becomes smaller.

オリフィスGが小さくなれば、抵抗が増えることからオ
リフィスGを通る冷媒循環−量は減少し、再度冷媒は過
熱し、このノズル板2/Iの変動中が順次小さくなシ、
やがて適正なところでバランスする。
If the orifice G becomes smaller, the resistance increases, so the amount of refrigerant circulated through the orifice G decreases, and the refrigerant becomes overheated again, and the fluctuation of the nozzle plate 2/I becomes smaller and smaller.
Eventually, the balance will be at the right place.

上記は室内側負荷が大きくて冷媒が過熱され、ベローズ
21か加熱される場合について述べたが室内冷房負荷が
小さい場合においても同様で、冷媒は飽和温度のまメ室
Nに流入するので、ベローズ21は冷却され収縮するこ
とによりスプリング25によりノズル板24が左動する
ことでオリフィスGの断面積は狭くな9、冷媒は抵抗が
増えることがら冷媒流量は減少し、室内熱交換器5で過
熱するようになシ、やがて適正なところでバランスし、
この場合も通常2,3回の過熱、冷却を繰シ返したのち
安定する。
The above describes the case where the indoor cooling load is large and the refrigerant is superheated and the bellows 21 is heated, but the same applies when the indoor cooling load is small, and the refrigerant flows into the chamber N at the saturation temperature, so the bellows When 21 is cooled and contracts, the nozzle plate 24 moves to the left by the spring 25, which narrows the cross-sectional area of the orifice G9.The resistance of the refrigerant increases, so the refrigerant flow rate decreases, causing it to overheat in the indoor heat exchanger 5. Eventually, the balance will be at the right place,
In this case as well, it usually stabilizes after repeating heating and cooling two or three times.

こ\で、入ロ管へ、C2出口管B、 D、押tl’8A
、18Bはいずれも弁本体9にロー付は等で気密に接続
されるが、普通入口管Cおよび出口管Bは弁本体9と\
もに鍛造等で一体的に成形され、先端部はそれぞれユニ
オンとして形成される。
Now, go to the inlet pipe, C2 outlet pipe B, D, press tl'8A
, 18B are all airtightly connected to the valve body 9 with brazing or the like, but normally the inlet pipe C and the outlet pipe B are connected to the valve body 9.
Both are integrally formed by forging, etc., and the tips are each formed as a union.

0リング16Aおよび1.6Bはそれぞれ第2図の0リ
ング16と同様に、運搬時等に冷媒か外部に洩れること
を防止するためにコアー13Aおよび13Bをボディ1
/IAおよび14Bに対してシールするもので、冷凍装
置の運転のために必須のものではないから、コアー13
A、13Bおよび0リング16A。
0-rings 16A and 1.6B are similar to the 0-rings 16 in FIG.
/IA and 14B and is not essential for the operation of the refrigeration system, so the core 13
A, 13B and O-ring 16A.

16’Bはこれを省略することもでき、その際は、ボデ
ィ14A、14Bも不要となり押え18A、18Bはそ
れぞれめくら板となる。
16'B can be omitted, and in that case, the bodies 14A and 14B are also unnecessary, and the pressers 18A and 18B each become a blind plate.

第4図に示すガス側操作弁101はこのようにコアー1
3Bを省略したもので、同図ではガス側操作弁1o’l
と圧縮機1との間に逆止弁100を挿入している。
The gas side operation valve 101 shown in FIG.
3B is omitted, and the gas side operation valve 1o'l is shown in the same figure.
A check valve 100 is inserted between the compressor 1 and the compressor 1.

本発明は、第5図に示すように、ヒートポンプ式空調装
置にもこれを適用することができ、こ\で、1011は
四方弁、103は暖房用キャピラリ、102は冷房用バ
イパス回路の逆止弁で、暖房運転時は膨張弁3は開とな
る。
The present invention can also be applied to a heat pump type air conditioner, as shown in FIG. The expansion valve 3 is opened during heating operation.

さらに、第3図に示した複合操作弁においては、第6図
に示すように、ベローズ210代わりにダイアフラム1
05を採用してもよく、このような複合操作弁によれば
、源側操作弁、ガス側操作弁、感温筒および膨張弁の作
用効果をも行なうので、組立工数、ロー伺は工数1部品
価格、所要スペース等の大巾な減少が1丁能となる。
Furthermore, in the compound operation valve shown in FIG. 3, as shown in FIG.
05 may be adopted. According to such a composite operation valve, the operation and effect of the source side operation valve, gas side operation valve, temperature sensing cylinder, and expansion valve are also performed, so the assembly man-hours and the lowering distance are reduced to 1 man-hour. Significant reductions in parts prices, required space, etc. will result in a single unit.

要するに本発明によれば、弁本体内に仕切板により区画
形成され/ζ第1および第2の室と、」二記第1の室に
設けられ利用側熱交換器から圧縮機への冷媒流に曝され
密封熱媒により伸縮する伸縮部(2と、上記第2の室に
設けられ熱源側熱交換器から上記利用側熱交換器への冷
媒流を流過する可変オリフィスと、上記仕切板を貫設し
て設けられ上記伸縮部材の伸縮に応じて可変オリフィス
の断面、債を変化する連動機構とよシなる複合操作弁を
具えたことにより、小型化およびコスト低減を図る冷凍
装置を得るから、本発明は産業上極めて有益なものであ
る。
In short, according to the present invention, the valve body is partitioned by a partition plate, and the first and second chambers are provided in the first chamber and the refrigerant flow from the utilization side heat exchanger to the compressor is provided. a variable orifice provided in the second chamber that allows the refrigerant to flow from the heat source side heat exchanger to the usage side heat exchanger, and the partition plate. A refrigeration system that achieves miniaturization and cost reduction is obtained by providing a complex operation valve similar to an interlocking mechanism that is provided through the telescopic member and changes the cross section and bond of the variable orifice according to the expansion and contraction of the telescopic member. Therefore, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の冷凍装置を示す系統図、第2図は第1図
の源側操作弁を示す縦断面図、第3図は本発明に係る複
合操作弁の一例を示す縦断面図、   −一   〜 
7 −−噸七→→ト第4図は第3図の複合操作弁の変形
例を具えた実施例の系統izl、第5図は本発明をヒー
トポンプ式空調機に適用した実施例を示す系統図、第6
図は第4図の複合操作弁の変形例を示す同じく縦断面図
である。 1・・圧縮機、2・・室外熱交換器、5・・室内、熱交
換器、9・・弁本体、12A、1213−・ポート板、
13A、13B・・コア、1/iA、’14B・・ボデ
ィ、16A、16B・・0リング、18’A、18B・
・押え、20・・ロッド、21・・ベローズ、22・・
ロッド、23・・仕切板、24・・ノズル板、25・・
スプリング、100・・逆上弁、101・・複合操作弁
、102・・逆上弁、103・・暖房用キャピラリ、、
104・・四方弁、105・・ダイヤフラム、 A・・入口管、B・・出口管、C・・入口管、D・・出
口管、G・・オリフィス、H・・ポート、K・・六角穴
、L・・ポート、M・・六角穴、N・・室、P・・複合
操作弁、 復代理人 弁理士  塚 本 正 文
FIG. 1 is a system diagram showing a known refrigeration system, FIG. 2 is a longitudinal cross-sectional view showing the source-side operating valve of FIG. 1, and FIG. 3 is a longitudinal cross-sectional view showing an example of the composite operating valve according to the present invention. −1 ~
7 --噸7→→→Fig. 4 shows a system of an embodiment including a modification of the composite operation valve shown in Fig. 3, and Fig. 5 shows a system of an embodiment in which the present invention is applied to a heat pump type air conditioner. Figure, 6th
This figure is a longitudinal cross-sectional view showing a modification of the composite operation valve of FIG. 4. 1.Compressor, 2.Outdoor heat exchanger, 5.Indoor heat exchanger, 9.Valve body, 12A, 1213-.Port plate,
13A, 13B...core, 1/iA, '14B...body, 16A, 16B...0 ring, 18'A, 18B...
- Presser foot, 20... Rod, 21... Bellows, 22...
Rod, 23... Partition plate, 24... Nozzle plate, 25...
Spring, 100...Reversal valve, 101...Combined operation valve, 102...Reverse upward valve, 103...Heating capillary.
104... Four-way valve, 105... Diaphragm, A... Inlet pipe, B... Outlet pipe, C... Inlet pipe, D... Outlet pipe, G... Orifice, H... Port, K... Hexagonal hole. , L...Port, M...Hexagonal hole, N...Chamber, P...Combined operation valve, Sub-Agent and Patent Attorney Masafumi Tsukamoto

Claims (1)

【特許請求の範囲】[Claims] 弁本体内に仕切板により区画形成された第1および第2
の室と、上記第1の室に設けられ利用側熱交換器から圧
縮機への冷媒流に曝され密封熱媒により伸縮する伸縮部
材と2上記第2の室に設けられ熱源側熱交換器から上記
利用側熱交換器への冷媒流を流過する可変オリフィスと
、上記仕切板を貫設して設けられ上記伸縮部材の伸縮に
応じて上記可変オリフィスの断面積を変化する連動機構
とよりなる複合操作弁を具えたことを特徴とする冷凍装
置。
A first and a second partition formed by a partition plate within the valve body.
2. A retractable member provided in the first chamber and expanded and contracted by the sealed heat medium and exposed to the refrigerant flow from the utilization side heat exchanger to the compressor; and 2. A heat source side heat exchanger provided in the second chamber. a variable orifice through which a refrigerant flow passes from the to the user-side heat exchanger; and an interlocking mechanism that is provided through the partition plate and changes the cross-sectional area of the variable orifice in accordance with expansion and contraction of the expansion and contraction member. A refrigeration system characterized by being equipped with a composite operation valve.
JP58038292A 1983-03-10 1983-03-10 Refrigerator Granted JPS59164869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038292A JPS59164869A (en) 1983-03-10 1983-03-10 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038292A JPS59164869A (en) 1983-03-10 1983-03-10 Refrigerator

Publications (2)

Publication Number Publication Date
JPS59164869A true JPS59164869A (en) 1984-09-18
JPH0432309B2 JPH0432309B2 (en) 1992-05-28

Family

ID=12521226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038292A Granted JPS59164869A (en) 1983-03-10 1983-03-10 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59164869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708909B2 (en) 2018-04-27 2023-07-25 Hamilton Sundstrand Corporation Carbon seal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147353A (en) * 1976-06-02 1977-12-07 Hitachi Ltd Mounting device of expansion valve
JPS5617469U (en) * 1979-07-18 1981-02-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617469B2 (en) * 1973-01-19 1981-04-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147353A (en) * 1976-06-02 1977-12-07 Hitachi Ltd Mounting device of expansion valve
JPS5617469U (en) * 1979-07-18 1981-02-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708909B2 (en) 2018-04-27 2023-07-25 Hamilton Sundstrand Corporation Carbon seal

Also Published As

Publication number Publication date
JPH0432309B2 (en) 1992-05-28

Similar Documents

Publication Publication Date Title
KR100360006B1 (en) Transcritical vapor compression cycle
CA1284892C (en) Triple integrated heat pump circuit
JP4569508B2 (en) Expansion valves used in supercritical and refrigeration cycles
JP2008520945A (en) Refrigerant system with water heating
JP2008520943A (en) Heat pump system with auxiliary water heating
JPS645227B2 (en)
JP2008512639A (en) Hot gas bypass flow through a four-way backwash valve
JPH05223385A (en) Accumulation system of heat-pump and hot water
US2242334A (en) Refrigerating system
JP2006519350A (en) Refrigeration system with integrated bypass system
JP2672416B2 (en) Fluid flow rate measuring device
JPS59164869A (en) Refrigerator
US3264838A (en) Heat pump and charge modulating means
US3955374A (en) Refrigeration apparatus and method
JP2684824B2 (en) Separated heat pump type air conditioner
JPH0316513B2 (en)
JPS616566A (en) Heat pump device
JPS5829822Y2 (en) Split type air conditioner
JPS6055743B2 (en) Heat pump air conditioner
JPS6215739Y2 (en)
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPH0621727B2 (en) Air conditioner
JPS637314B2 (en)
JPS6343660B2 (en)
JP2000081251A (en) Heat pump apparatus