JPS5916423B2 - semiconductor storage device - Google Patents

semiconductor storage device

Info

Publication number
JPS5916423B2
JPS5916423B2 JP50019203A JP1920375A JPS5916423B2 JP S5916423 B2 JPS5916423 B2 JP S5916423B2 JP 50019203 A JP50019203 A JP 50019203A JP 1920375 A JP1920375 A JP 1920375A JP S5916423 B2 JPS5916423 B2 JP S5916423B2
Authority
JP
Japan
Prior art keywords
transistor
memory
conductivity type
gate electrode
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50019203A
Other languages
Japanese (ja)
Other versions
JPS5193686A (en
Inventor
俊男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50019203A priority Critical patent/JPS5916423B2/en
Publication of JPS5193686A publication Critical patent/JPS5193686A/ja
Publication of JPS5916423B2 publication Critical patent/JPS5916423B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は電気的に記憶情報を書込・消去することので
きる不揮発性記憶機能を有する半導体集積回路に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit having a nonvolatile memory function in which stored information can be electrically written and erased.

半導体集積回路構造で高密度記憶容量を実現するために
は選択蝕刻技術の向上、導電型領域の高精度形成技術と
共にマスク設計時のパターン配置と集積回路の特性に適
した物理現象の利用がある。
In order to realize high-density storage capacity in semiconductor integrated circuit structures, it is necessary to improve selective etching technology, high-precision formation technology for conductive type regions, and use physical phenomena suitable for pattern placement and integrated circuit characteristics during mask design. .

記憶装置として適用範囲の広い不揮発性記憶装置は、主
としてMIS型電界効果トランジスタ(MISトランジ
スタ)の絶縁ゲート膜中の浮遊ゲートや捕獲中心で正お
よび負の注入電荷を蓄積するが、この蓄積さわる電荷の
注入の制御のために、従来、メモリトランジスタと2コ
のデコード′ トランジスタをそなえ、且つ正負の電荷
注入を制御する情報線を設ける必要があわ、且つディジ
ット線間が絶縁分離されるため記憶セルの構造が複雑で
高集積密度が得られない欠点があつた。又、不揮発性記
憶装置の理想的な機能ばl ″および: ゛o″情報が
選択書込できるランダム・アクセス・メモリ(RAM)
の記憶機能を有することであり、且つ記憶情報を不揮発
に保持することにある。したがつてこの発明の目的は高
集積密度を有する不揮発性記憶装置を提供することにあ
る。フ 又、この発明の他の目的は高集積密度を有し且
つ被選択アドレスに対して情報゛1 ″のみならず情報
゛0″をも選択書込でき、RAM機能を備えた不揮発性
記憶装置を提供することにある。この発明によれば、行
列方向に配置されたメモヲ りセルが一導電型半導体基
体の一主表面に第一、第二第Ξの逆導電型領域を有し、
前記第一および第二の逆導電型領域間の表面に絶縁ゲー
ト膜を介して行毎に共通の行線に結合する制御ゲート電
極を有する駆動トランジスタ(デコードトランジ0 ス
メ)が形成され、且つ前記第二および第Ξの道連型領域
間の表面に絶縁ゲート膜と浮遊ゲート電極と該電極の被
覆絶縁膜とを順次被着して上面に他の制御ゲート電極を
設けた記憶トランジスタ(メモリトランジスタ)が形成
されている半導体i5装置において、前記第一および第
Ξの逆導電型領域が他のメモリセルとそれぞれ共通に接
続し、前記第二の逆導電型領域が前記半導体基体との間
に有するPN接合の前記浮遊ゲート電極下の一部に前記
基体に比して礒度の一導電型領域とのPN接合を有し、
且つ前記他の制御ゲート電極が同一列毎に列線に結合す
ることを特徴とする半導体装置が得られる。この半導伸
装置はメモリトランジスノの浮遊ゲートと制御ゲート電
極との間の被覆絶縁膜をチツ化シリコン、アルミナのよ
うな気相成長膜とすることにより被選択アドレスに情報
X1〃又はXO〃を書込み、且っ情報X1〃8′10″
又は情報ゞO″→Sll′へ書替えする不揮発性RAM
が得られる。この発明の半導体装置は第一及び第三の逆
導電型領域が隣接するメモリセル毎に共用されるため記
憶回路を集積化したときの集積度が高い利点を有し、情
報書込後に全ビツト消去して再書込可能なプログラマブ
ル・リード・オンリ・メモリ(PROM)もしくは被選
択アドレスに情報ゞ11′10″を書込可能な不揮発性
RAMとしての優れた記憶機能を有する。
A non-volatile memory device, which has a wide range of applications as a memory device, accumulates positive and negative injected charges mainly at the floating gate and trap center in the insulated gate film of an MIS field effect transistor (MIS transistor). Conventionally, in order to control the injection of digits, it was necessary to provide a memory transistor and two decode transistors, as well as an information line to control positive and negative charge injection, and because the digit lines were insulated and separated, the memory cell The disadvantage was that the structure was complex and high integration density could not be achieved. In addition, the ideal features of non-volatile storage devices are Random Access Memory (RAM) in which information can be selectively written.
The purpose of this is to have a storage function and to hold stored information in a non-volatile manner. It is therefore an object of the present invention to provide a non-volatile memory device with high integration density. Another object of the present invention is to provide a nonvolatile storage device having a high integration density, capable of selectively writing not only information "1" but also information "0" to a selected address, and equipped with a RAM function. Our goal is to provide the following. According to this invention, the memory cells arranged in the row and column direction have first and second opposite conductivity type regions on one main surface of a single conductivity type semiconductor substrate,
A drive transistor (decode transistor) having a control gate electrode coupled to a common row line for each row via an insulating gate film is formed on the surface between the first and second opposite conductivity type regions, and A memory transistor (memory transistor) in which an insulating gate film, a floating gate electrode, and a covering insulating film for the electrode are sequentially deposited on the surface between the second and Ξ chain-type regions, and another control gate electrode is provided on the upper surface. ), in which the first and Ξth opposite conductivity type regions are commonly connected to other memory cells, and the second opposite conductivity type region is connected to the semiconductor substrate. having a PN junction with a region of one conductivity type having a higher degree of conductivity than the base body in a part under the floating gate electrode,
In addition, a semiconductor device is obtained in which the other control gate electrodes are coupled to column lines for every same column. This semiconductor expansion device uses a vapor-phase growth film such as silicon oxide or alumina as the covering insulating film between the floating gate and control gate electrode of the memory transistor, so that information X1 or XO can be sent to the selected address. and information X1〃8'10''
Or non-volatile RAM that rewrites information from O'' to Sll'
is obtained. The semiconductor device of the present invention has the advantage of a high degree of integration when the memory circuit is integrated because the first and third opposite conductivity type regions are shared by adjacent memory cells. It has an excellent storage function as a programmable read-only memory (PROM) that can be erased and rewritten, or a nonvolatile RAM that can write information 11'10'' to a selected address.

次にこの発明の特徴をより良く理解するため、この発明
の実施例につき図を用いて証明する。
Next, in order to better understand the features of this invention, examples of this invention will be explained using figures.

第1図はこの発明の一実施例の回路図の一部を示し、行
方向に伸びる行線Xi,Xi+1,Xi+2と列方向に
伸びる列線Yj,Yj+1との交点となるアドレスにそ
れぞれNチヤンネル型メモリトランジスタQrrl,N
チヤンネル型デコードトランジスノQ,訃よびダイオー
ドDiから成るメモリセルを備えている。メモリトラン
ジス1Qmのゲート電極は列方向に伸びる列線Yj,Y
j+1VC各列毎に共通結合し、デコードトランジス3
tQdのゲート電極は行方向に伸びる行線Xi,Xi+
1,Xi+2に行毎に共通接続する。ダイオードD1は
メモリトランジスノの浮遊ゲート下のP型シリコン基体
表面で各トランジスタQm,Q,を結合するN電領域と
基体に比して高濃度のP型領域との接触によるPN接合
であね、このP型領域はトランジスタQnl,Qdの基
体領域と共通の基体端子SBに導出される。各トランジ
スタQm,Qdの他のN型領域は他のアドレスのメモリ
セルと共に共通の出力線D,ll)にそれぞれ導出され
る。第2図は第1図の実施例の一ダlの動作電圧波形を
示す。この図に選択された行線Xへの印加電圧Vx卦よ
び選択された列線Yへの印加電圧Vyに時刻Tl,t2
,・・・,T3に同期信号を与え、各時刻に卦ける端子
Dから端子Dへ流れる出力電流IDT5を示す。試料へ
の電圧印加は後述する基体電極に−10Vの基体電圧を
与え、出力端子Dの電圧V。をそれぞれ30Vの直流電
位を与えて行なわれる。他の出力端子Dは書込動作で開
放、読出動作0vとする。時刻t1〜T2に選択110
″書込を行い、被選アドレスに伸びる行列線にそれぞれ
尖頭値35V,10Vのパルス電圧が与えられると、デ
コードトランジス1Qdが導通してダイオートD1に約
20Vアアバランシエ降服電圧を超える電圧が与えらへ
アバランシ…降服点附近から正のゲート電界に誘引さ
れた高エネルギーの電子が浮遊ゲートを負電荷蓄積状態
とする。時刻T3〜T4にこの情報は電圧Vェ,Vyを
+5Vに駆することにより読み出され出力にSO″読出
電流1D′T5を与える。更に、時刻T5〜T6で電圧
Vx,VyVCそれぞれ35V,−10Vの電圧信号を
与えると、ダイオードが再びアバランシエ降服し、この
条件では負のゲート電界の効果でメモリトランジスタの
浮遊ゲートは正電荷蓄積状態となる。時刻T7〜T8の
読出動作で再び+5Vの電圧Vx,Vyが被選択行列線
に与えられると、端子D,Dに111″読出電流が得ら
れる。第3図に第1図の実施例の部分的平面図を示す。
FIG. 1 shows a part of a circuit diagram of an embodiment of the present invention, in which N channels are set at the intersections of row lines Xi, Xi+1, Xi+2 extending in the row direction and column lines Yj, Yj+1 extending in the column direction. type memory transistor Qrrl,N
It has a memory cell consisting of a channel type decoding transistor Q, a transistor and a diode Di. The gate electrode of the memory transistor 1Qm is connected to the column lines Yj, Y extending in the column direction.
j+1 VC are commonly connected for each column and decode transistor 3
The gate electrode of tQd is connected to the row lines Xi, Xi+ extending in the row direction.
1 and Xi+2 for each row. The diode D1 is a PN junction formed by the contact between the N-type region connecting each transistor Qm, Q, and the P-type region having a higher concentration than the base on the surface of the P-type silicon substrate under the floating gate of the memory transistor. , this P-type region is led out to a base terminal SB common to the base regions of transistors Qnl and Qd. The other N-type regions of each transistor Qm, Qd are respectively led out to a common output line D, ll) along with memory cells at other addresses. FIG. 2 shows the operating voltage waveform of the first embodiment of FIG. In this figure, the applied voltage Vx to the selected row line X and the applied voltage Vy to the selected column line Y are at times Tl and t2.
, . . . , a synchronizing signal is given to T3, and the output current IDT5 flowing from terminal D to terminal D at each time is shown. Voltage is applied to the sample by applying a base voltage of -10V to the base electrode, which will be described later, and applying a voltage of V at the output terminal D. are performed by applying a DC potential of 30V to each. The other output terminal D is open in a write operation and is set to 0V in a read operation. Select 110 from time t1 to T2
``When writing is performed and pulse voltages of peak values 35V and 10V are applied to the matrix lines extending to the selected address, respectively, the decode transistor 1Qd becomes conductive and a voltage exceeding about 20V avalanche breakdown voltage is applied to the diode D1. Avalanche...High-energy electrons attracted by the positive gate electric field near the breakdown point put the floating gate in a negative charge accumulation state.At times T3-T4, this information is transferred by driving the voltages Ve and Vy to +5V. A SO'' read current 1D'T5 is applied to the read output. Furthermore, when voltage signals of 35V and -10V are applied to voltages Vx and VyVC at times T5 and T6, respectively, the diode undergoes avalanche surrender again, and under this condition, the floating gate of the memory transistor is in a positive charge accumulation state due to the effect of the negative gate electric field. becomes. When the voltages Vx and Vy of +5V are again applied to the selected matrix lines in the read operation from time T7 to T8, a read current of 111'' is obtained at the terminals D and D. FIG. 3 shows the part of the embodiment shown in FIG. A top view is shown.

又、この平面のa−a″線、b−b′線での断面図を第
4図卦よび第5図に示す。これらの図に示す如くこの実
施例は比抵抗4Ω−Mf)P型シリコン単結晶基体1の
一表面の活性領域に表面湊度10結〜1021(−m−
3のN型領域2,3,4を有し、N型領域2,3の間の
基体表面に約1000Af)S,O2膜5を介して多結
晶シリコンの行線X,+1が伸びている。この行線Xi
+1はこの部分の活性領域でデコードトランジスノのゲ
ート電極である。N型領域3,4の間の基体表面には約
300AのS,O2膜6を介して多結晶シリコンの浮遊
ゲートFGが設けられ、これらの多結晶シリコンの上面
に約2000Aのシリコン窒化膜7を介してアルミニウ
ムの列Yjが伸びてメモリトランジスタを形成している
。このメモリトランジスタとデコードトランジスタを結
合するN型領域3の浮遊ゲートFG直下の一部には、表
面濃度6×1016〜1018cm−3のP型領域8と
の接合が設けられている。第6図に示す如く、第3図卜
第5図の実施例に示したメモリセルは、出力線となる二
本のN型領域D,T5の間にそれぞれ制御ゲート電極が
行列線X1+1,Y,で駆動されるデコ一.ド卦よびメ
モリトランジスタQd,Qmを含んでいる。
Further, cross-sectional views of this plane taken along lines a-a'' and b-b' are shown in Figures 4 and 5.As shown in these figures, this embodiment has a resistivity of 4Ω-Mf) P type. The active region on one surface of the silicon single crystal substrate 1 has a surface depth of 10 to 1021 (-m-
3 N-type regions 2, 3, and 4, and a polycrystalline silicon row line X, +1 extends to the substrate surface between the N-type regions 2 and 3 via a S, O2 film 5 of approximately 1000 Af). . This row line Xi
+1 is the active region of this part and is the gate electrode of the decode transistor. A floating gate FG of polycrystalline silicon is provided on the substrate surface between the N-type regions 3 and 4 via an S, O2 film 6 of approximately 300 Å, and a silicon nitride film 7 of approximately 2000 Å is provided on the upper surface of these polycrystalline silicon. An aluminum column Yj extends through it to form a memory transistor. A junction with a P-type region 8 having a surface concentration of 6.times.10@16 to 10@18 cm@-3 is provided in a portion of the N-type region 3, which couples the memory transistor and the decode transistor, directly below the floating gate FG. As shown in FIG. 6, the memory cell shown in the embodiment of FIG. 3 to FIG. , Deco-1 driven by . It includes a card and memory transistors Qd and Qm.

又、メモリトランジスタは、メモリセル内のN型領域と
基体SBとの間に10〜22Vの逆耐圧を有するダイオ
ードDiを有する。第7図は第6図のメモリセルを基体
電位−10V一方の出力線bの電位を0vに固定し、他
方の出力線D卦よび行線X1+1に共通に駆動信号V,
を1秒間与え、同時に列線Y,に駆動信号Vgを与えた
ときのメモリトランジスタのゲート閾値Vtの変化を示
す。
The memory transistor also includes a diode Di having a reverse breakdown voltage of 10 to 22 V between the N-type region within the memory cell and the substrate SB. In FIG. 7, the memory cell in FIG. 6 is fixed at a base potential of -10V, and the potential of one output line b is fixed at 0V, and a drive signal V,
It shows the change in the gate threshold value Vt of the memory transistor when the drive signal Vg is applied to the column line Y for 1 second and the drive signal Vg is applied to the column line Y at the same time.

メモリトランジスタは、列線Y,の信号Vgが0vであ
るときは情報ゞOよびゞ1″のいずれのゲート閾値V,
も変化せず、信号Vgが正電圧で駆動されるとダイオー
ドのアバランシエ降服後にゲート閾値が増大する。又、
信号Vgが負電圧で駆動されると情報ゞ0″Vc相当す
るゲート閾値を有するときにはゲート閾値は急峻に下降
して情報ゞ1″に近ずく。上述の実施例によれば、行方
向に隣接する各メモリセルのN型領域D又はDは常に共
有され、互いにメモリセル間の絶縁分離を要しないため
、この半導体記憶集積回路は2トランジスノ/ビツト構
成であるにも拘らずきわめて高密度の記憶回路を成し、
且つ被選択ビツトへの情報111″およびゞ0″の選択
書込を行うことの一できる機納的進歩を有する。
When the signal Vg of the column line Y is 0V, the memory transistor has the gate threshold value V,
does not change, and when the signal Vg is driven with a positive voltage, the gate threshold increases after the avalanche breakdown of the diode. or,
When the signal Vg is driven with a negative voltage and has a gate threshold corresponding to the information 0''Vc, the gate threshold drops sharply and approaches the information 1''. According to the above-described embodiment, the N-type regions D or D of each memory cell adjacent in the row direction are always shared, and there is no need for insulation separation between the memory cells, so that this semiconductor memory integrated circuit has two transistors/bit. Despite its configuration, it forms an extremely high-density memory circuit,
Moreover, it has the advantage of being able to selectively write information 111'' and 0'' to selected bits.

尚、この情報ゞ1″訃よび1ゞO″の書込時にはメモリ
トランジスタのゲート電圧を正とするため、好ましくは
イオンドリフト特性を防ぐことのできるシリコン窒化膜
又はアルミナ膜のような気相成長膜を浮遊ゲートと列線
Y,との間に設ける。これらの気相成長膜は誘電率が高
く且つ導電率が多結晶シリコンの熱酸化膜に比して低い
ため浮遊ゲートと基体間のS,O2膜に有効にゲート電
界を使給して動作特性を向上すると共に動作信頼性を高
める。又、浮遊ゲートおよび行線にはモリプデン、ノン
グステンのような他の金属材料を用いることができる。
第8図はこの発明の他の実施例のメモリセルの平面図で
ある。
In addition, in order to make the gate voltage of the memory transistor positive when writing this information 1" and 1", it is preferable to use a vapor phase grown film such as a silicon nitride film or alumina film that can prevent ion drift characteristics. A membrane is provided between the floating gate and the column line Y. These vapor-phase grown films have a high dielectric constant and a low conductivity compared to thermal oxide films of polycrystalline silicon, so the gate electric field can be effectively applied to the S, O2 film between the floating gate and the substrate to improve the operating characteristics. and improve operational reliability. Also, other metal materials such as molybdenum and non-ungsten can be used for the floating gates and row lines.
FIG. 8 is a plan view of a memory cell according to another embodiment of the invention.

この実施例はN型領域のD−b間に浮遊ゲートFGと行
線Xで挟まれたN型領域FJがメモリトランジスタ0m
から離れた部分でP型領域Pと低耐圧ダイオードを形成
する。このダイオードは浮遊ゲート直下に形成されるた
め効果Vc卦いて前実施側と同一であり、トランジスタ
としての動作領域から離れるためN型領域FGの電位で
確実にアバランシ…降服する。第9図はこの発明の更に
他の実施例のメモリセルの平面図で、メモリトランジス
タQmのチヤンネル長さ方向に横切つてP型領域Pを備
え、N型領域DG卦よびDに対してPN接合を形成する
In this embodiment, the N-type region FJ sandwiched between the floating gate FG and the row line X between D-b of the N-type region has a memory transistor of 0 m
A low breakdown voltage diode is formed with the P-type region P at a portion away from the P-type region P. Since this diode is formed directly under the floating gate, the effect Vc is the same as that of the previous implementation, and since it is away from the operating region as a transistor, it reliably avalanches and falls at the potential of the N-type region FG. FIG. 9 is a plan view of a memory cell according to still another embodiment of the present invention, which includes a P-type region P across the channel length direction of the memory transistor Qm, and a P-type region P for the N-type regions DG and D. Form a junction.

PN接合は第2図に示した電圧操作では常に出力線側の
N型領域′DVC比して中間のN型領域FJの電位が高
くなるため、回路動作としての支障はない。この実施例
ではトランジスタのチヤンネル長を短縮するときにパタ
ーン精度・余裕度の高密度集積回路が得られる。
In the PN junction, when the voltage is operated as shown in FIG. 2, the potential of the intermediate N-type region FJ is always higher than that of the N-type region 'DVC on the output line side, so there is no problem in circuit operation. In this embodiment, a high-density integrated circuit with high pattern accuracy and margin can be obtained when the channel length of the transistor is shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回答図、第2図は第1図
の実施例の電圧波形図、第3図は、第1図の実施例の平
面図、第4図は第3図のa−a″線の断面図、第5図は
第3図のb−b″線の断面図、第6図は第3図のメモリ
セル部の等価回路図、第7図は第6図の動作特性図、第
8図はこの発明の他の実施例の平面図、第9図はこの発
明の更に他の実施例の平面図である。
FIG. 1 is a response diagram of an embodiment of the present invention, FIG. 2 is a voltage waveform diagram of the embodiment of FIG. 1, FIG. 3 is a plan view of the embodiment of FIG. 1, and FIG. 4 is a diagram of the voltage waveform of the embodiment of FIG. 5 is a sectional view taken along line bb'' in FIG. 3, FIG. 6 is an equivalent circuit diagram of the memory cell section in FIG. 3, and FIG. 8 is a plan view of another embodiment of the invention, and FIG. 9 is a plan view of still another embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 複数のメモリセルがマトリクス状に配置されてなる
半導体記憶装置において、該メモリセルは一導電型基板
に形成された二つの逆導電型領域を各々ソース、ドレイ
ンとし該ソース、ドレイン間の前記一導電型基板上に第
1の絶縁膜が設けられ、該第1の絶縁膜上に浮遊ゲート
電極が設けられ、該浮遊ゲート電極上に第2の絶縁膜が
設けられ、該第2の絶縁膜上に制御ゲート電極が設けら
れた構造の絶縁ゲート型電界効果トランジスタを含み前
記ソースもしくは前記ドレインと前記一導電型基板との
間の前記浮遊ゲート電極下の一部に前記一導電型基板に
比して高濃度の一導電型領域が設けられ、前記第2の絶
縁膜はチッ化シリコンもしくはアルミナを含むことを特
徴とする半導体記憶装置。
1. In a semiconductor memory device in which a plurality of memory cells are arranged in a matrix, each of the memory cells has two opposite conductivity type regions formed on a substrate of one conductivity type as a source and a drain, respectively, and the region between the source and the drain. A first insulating film is provided on the conductive type substrate, a floating gate electrode is provided on the first insulating film, a second insulating film is provided on the floating gate electrode, and the second insulating film The field effect transistor includes an insulated gate field effect transistor having a structure in which a control gate electrode is provided thereon, and a portion below the floating gate electrode between the source or the drain and the one conductivity type substrate is compared to the one conductivity type substrate. 1. A semiconductor memory device, wherein a high concentration region of one conductivity type is provided, and the second insulating film contains silicon nitride or alumina.
JP50019203A 1975-02-14 1975-02-14 semiconductor storage device Expired JPS5916423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50019203A JPS5916423B2 (en) 1975-02-14 1975-02-14 semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50019203A JPS5916423B2 (en) 1975-02-14 1975-02-14 semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS5193686A JPS5193686A (en) 1976-08-17
JPS5916423B2 true JPS5916423B2 (en) 1984-04-16

Family

ID=11992786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50019203A Expired JPS5916423B2 (en) 1975-02-14 1975-02-14 semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS5916423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342099A (en) * 1979-06-18 1982-07-27 Texas Instruments Incorporated Electrically erasable programmable MNOS read only memory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123244A (en) * 1973-03-16 1974-11-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123244A (en) * 1973-03-16 1974-11-26

Also Published As

Publication number Publication date
JPS5193686A (en) 1976-08-17

Similar Documents

Publication Publication Date Title
US4233526A (en) Semiconductor memory device having multi-gate transistors
US7582926B2 (en) Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
KR100355662B1 (en) Semiconductor Non-volatile Memory/Array and Method of Operating the same
US4017888A (en) Non-volatile metal nitride oxide semiconductor device
US4334292A (en) Low voltage electrically erasable programmable read only memory
JP4463334B2 (en) Single layer gate nonvolatile memory device
EP0042964B1 (en) Memory matrix using one-transistor floating gate mos cells
US7679963B2 (en) Integrated circuit having a drive circuit
US4425631A (en) Non-volatile programmable integrated semiconductor memory cell
KR100255893B1 (en) Field effect transistor and non-volatile memory device
JPH09510039A (en) Semiconductor memory having nonvolatile memory transistor
JPS5958695A (en) Permanent type memory
US4532535A (en) Electrically reprogrammable non volatile memory cell floating gate EEPROM with tunneling to substrate region
US9287284B2 (en) Semiconductor field-effect transistor, memory cell and memory device
JPS6225460A (en) Electrically alterable non-volatile memory and manufacture thereof
JPS5811105B2 (en) semiconductor memory
EP0198040A1 (en) Nonvolatile memory cell.
KR960012167B1 (en) Non-volatile semiconductor memory device
US4486859A (en) Electrically alterable read-only storage cell and method of operating same
JP3920550B2 (en) Nonvolatile semiconductor memory device
EP0055803B1 (en) Semiconductor memory
US3641512A (en) Integrated mnos memory organization
JPS5916423B2 (en) semiconductor storage device
US3908182A (en) Non-volatile memory cell
JPS6343902B2 (en)