JPS59163549A - Automatic analysis of electron-ray diffraction figure - Google Patents

Automatic analysis of electron-ray diffraction figure

Info

Publication number
JPS59163549A
JPS59163549A JP58038623A JP3862383A JPS59163549A JP S59163549 A JPS59163549 A JP S59163549A JP 58038623 A JP58038623 A JP 58038623A JP 3862383 A JP3862383 A JP 3862383A JP S59163549 A JPS59163549 A JP S59163549A
Authority
JP
Japan
Prior art keywords
value
diffraction
coordinates
data
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038623A
Other languages
Japanese (ja)
Other versions
JPH0522174B2 (en
Inventor
Moriyasu Tokiwai
常盤井 守泰
Sakuyoshi Moriguchi
森口 作美
Takao Shinkawa
隆朗 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Central Research Institute of Electric Power Industry
Original Assignee
Jeol Ltd
Central Research Institute of Electric Power Industry
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Central Research Institute of Electric Power Industry, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58038623A priority Critical patent/JPS59163549A/en
Publication of JPS59163549A publication Critical patent/JPS59163549A/en
Publication of JPH0522174B2 publication Critical patent/JPH0522174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To carry out automatically on-line the identification of a sample from an electron-ray diffraction figure obtd. by an electron microscope or the like, by obtaining distances from a central spot to a point on which the intensity distribution of a picture element on the line passing through the central spot becomes maximum, determining the lattice-lattice distance value of the sample, and checking them with the data of various substances. CONSTITUTION:The intensity of a picture element corresponding to the coordinates of (x), (y) is taken as Uxy and the coordinates (Uo, Vo) of a central spot are determined by obtaining the coordinate when each SIGMAUxy on (x), (y) becomes maximum. As to the intensity distribution of the picture element on the straight line passing through the central spot, the intensity becomes maximum at the point corresponding to diffraction rings. The distances from the central spot to each maximum point and the radii of respective diffraction rings are required. The coordinates (u, v), the distances Rs and (d)-value Ds of the spots are required, and the radii and (d)-value Dr of the rings are obtd. The data stored on an outer storage device 7 are read, and checked with the (d)-value data of samples by an electronic computer 4.

Description

【発明の詳細な説明】 「産業上の利用分野1 本発明は電子顕微鏡等によって151られる電子線回折
像から試料の同定をΔンラインで自動的に行4I:う方
法に関Jる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for automatically identifying a sample on a Δn-line from an electron beam diffraction image obtained by an electron microscope or the like.

[従来技術] 電子顕微鏡を用いて、)ム過1z:モード又は走査透過
像モードで、試料の回折像を踊影し、この回折像を分析
して試料の同定や指数{vl【j或いは試わ1中の結晶
の方位の測定を行なっCいるが、従来の方法においr+
よ、仝で手作業で行なわざるを冑なかった、。
[Prior art] Using an electron microscope, a diffraction image of a sample is captured in the 1z: mode or scanning transmission image mode, and this diffraction image is analyzed to identify the sample or to determine the index {vl[j or The orientation of the crystals in the glass 1 was measured, but the conventional method
Well, I had no choice but to do it manually.

即ら、1;L来にJ3いては、まず回折像をIiii影
し、この像を現像し、次にネカ上で回折像の刈払を測1
ヒして結晶の格子面間隔であるd{li′1の川みを求
め、《二の寄られたd値の組みを、種/マの物質に夕・
jリ−るd {11’iを記録してい6カードと照合し
てd値の組みが最も一致覆るカードを選びだし、ムエ(
利の同定を行ない、更に選ばれたカードに記入されてい
る指政表(h,に、l)を利用して回折像の指数f」り
を行なっ一Cいる。
That is, when J3 is set from 1;
Then, find the value of d{li'1, which is the lattice spacing of the crystal.
j Leeru d {11'i is recorded and compared with 6 cards, select the card with the most matching set of d values, and play Mue (
The index of the diffraction image is calculated by using the control chart (h, ni, l) written on the selected card.

しかしながら、このような従来の方法は作業に知識と紅
験を要すと共に、快適でない暗冨作業を伴なう−し、長
時間を要すという欠j’ijjがある。
However, such conventional methods require knowledge and experience, involve uncomfortable dark work, and take a long time.

[発明の目的1 本発明は、このような従来の欠点を解決してオンライン
で自動的に回折像を分析して、試わlの同定等を行ない
1′7る電子線回折像の分析方法を提供りることを目的
としている。
[Objective of the Invention 1] The present invention solves such conventional drawbacks and provides a method for analyzing an electron beam diffraction image by automatically analyzing a diffraction image online and identifying a sample. It is intended to provide.

[発明の構成] 本発明は電子線回折1象を電気信号に変換し、座標x、
yに対応する画素の強度をUXVとづるとき、る直線上
にある画素の強度分布が極大と4+:る点と該中心スポ
ットとの距離を求めることにより試才ミ1の格子面四隅
iii′iを求め、請求ぬられた試41 o)格子面間
隔値の組みを種々の物質の格子面間隔値を表ねずデータ
と照合覆ることにより、試別の)L′iJ定を行なうこ
とを特徴としでいる。
[Structure of the Invention] The present invention converts one electron beam diffraction image into an electrical signal, and converts one electron diffraction image into an electric signal,
When the intensity of the pixel corresponding to y is expressed as UXV, the intensity distribution of the pixels on the straight line is the maximum.By finding the distance between the point and the center spot, the four corners of the lattice plane iii' o) By comparing and overwriting the set of lattice spacing values with the data that does not represent the lattice spacing values of various materials, it is possible to perform a trial) L'iJ determination. It is a characteristic feature.

「発明の作用」 以下本発明において基本となっている、考えを7+g明
づる。
"Action of the Invention" Below, the basic idea of the present invention will be explained in 7+g.

回折像を二次元的に分布1−る画素に変換した場合、座
標x、yに対応する画素の強度をUxy、回折リングの
中心となるスポットの座標を(uO2Vo)とすると、
中心スポットは複数の回折リン標IJQ 、VQにおい
て最大となるは−づ゛である。そ心スポットの座標が求
められた段階−(゛、この中心スポットを通る直線上(
こおりる画素の強度分布を調べると、回折リングに対応
ザる点においては、強度が極大となつCいるはずである
。そこで、中心スポツ1〜から各極大点までの距離を求
めれば、各回折リングの半径を求めることかでさ″る。
When the diffraction image is converted into pixels with a two-dimensional distribution of 1-, let the intensity of the pixel corresponding to the coordinates x and y be Uxy, and the coordinates of the spot at the center of the diffraction ring be (uO2Vo),
The central spot is the one that is maximum in the plurality of diffraction phosphor marks IJQ and VQ. The stage where the coordinates of the central spot have been determined - (゛, on the straight line passing through this central spot (
When examining the intensity distribution of the falling pixels, the intensity should be at a maximum at the point corresponding to the diffraction ring. Therefore, if the distance from the center spot 1 to each maximum point is determined, the radius of each diffraction ring can be determined.

「実施例」 本発明は、このJ、うな考えにLlつくものであるが、
実施例を分り易くりるために予め以下の点について予め
説明する。
"Example" The present invention is based on this idea, but
In order to make the embodiment easier to understand, the following points will be explained in advance.

回折像には、周知のように各々第1図(a)。As is well known, each diffraction image is shown in FIG. 1(a).

(b)、(c)に示Jように、比較的大きな結晶から回
折された電子線に基づくスポラミル状の回折像のみから
成るもの、粉末状の結晶から回折された電子線に基づく
リング状の回折像からのみ成るもの、両者が混在してい
るものの3種がある。そしく、手作業で分析を行なう際
にb、スポッ1〜どリングに夕・1しては別時の処理を
行なう必要があるが、手作業の場合には直感(′容゛易
に判断でさ・るご3者の区別を、自動的刊つAンライン
で分析を行イすうためには、あまり複♀1[な情報処J
■lをづること41< 、?X!械的に判別し胃ること
が必沫である。スポッ1〜のみ、リングのみ、両者ン昆
右の各」場合で1よ、仝像面に占める明るさの犬イする
部分(■11ら、ス、Iζッ1へ或い、はリングに対応
したγil!分)の比率は5−“/、j−るノJめ、回
IJr像を溝ノ戊づろ内素の明るさの度シシ介イfi 
(画素の検出ゲ))麿ととゐ出Jtlる((の分(l+
 ) i51、スポッ1〜のみ、リングのIノ2両省/
ノX11?白しノ゛こ↓跨白(゛(ま、第2図におい(
、点線イ、一点鎖線1−1.二点g4’J線ハ(承り−
J、うな明瞭な違いがある13但し、第2図にA3い−
C1横軸は強度Iを、縦軸は1シ故1−1 (1)を示
し−(おり、実線で示され(いるのは、バックグシ・ラ
ンド成分である。そこで、この麿数分イ1」の違いを、
例えば通常、分散を求めるのに用いられる以下の式 %式%(1) で与えられる値σを算出し、この値がスポツl−、リン
グ、両者温存の各場合に対応し−U 11y、られた領
域のどこに入るかにj、す、回折像の種別を判別づ−る
ようにし−Cいる。但し第1式におい(、Iは以下の式
によって与えられる加重平均である0、1=(Σl−1
(1) I l) / (ΣI−1(I ) )・・・
(2)エ                 エ第3図
は本発明を実施するための装置の(既略を示づためのb
ので、図中1は゛電子顕微鏡であり1、・1は電子計イ
);(である。電子計’;’X 謬4 J、り電了顕(
欺鏡1には電子顕微鏡1を透過像観察モードにしたり、
走合透過像観察士−1−にしたり(yるための1il陣
イハ弓が供給される。この電子顕微鏡1に(,11六過
像を電気信シシに変j襲づ−るための撮像ダ、買2か取
り(=j(、:Jられており、電子顕微鏡′Iか透過像
観察し一ドになった際に、この1iiQ像装置2に、1
、つ−(3!3られた画像に対応するアナログの時系列
信局(j、ΔD☆(久器3にj、リゾ゛ジタル斤に変1
矢dれ−(電了泪()慰4に供給される。又、電子顕微
鏡1が走査透過(象?市察モードになった際には、透過
電了検出器5が光軸上に挿入され、試料を電子線で走査
Iノだ際の)Δ過電子の検出信号がAD変換器6により
デジタル信局に変換されて電了泪算機4に供給される。
As shown in (b) and (c), one consists only of a sporamil-like diffraction image based on an electron beam diffracted from a relatively large crystal, and the other consists of a ring-shaped diffraction image based on an electron beam diffracted from a powdered crystal. There are three types: one consisting only of a diffraction image, and one consisting of a mixture of both. Therefore, when performing manual analysis, it is necessary to perform separate processes for spotting, spotting, and ringing, but in the case of manual analysis, intuition ('easy to judge') is necessary. In order to analyze the distinction between the three types in A-line, which is automatically published, it is necessary to use too many complex
■Spelling l41<,? X! It is essential to be able to distinguish it mechanically. In the case of 1 to 1, only the ring, or both, the part corresponding to the brightness occupying the image plane (■11 et al. The ratio of γil!min) is 5-"/,j-runoJ, and the time IJr image is changed to the degree of brightness of the groove inner element.
(Pixel detection game)) Maro and Toide Jtl (((l+
) i51, spot 1 ~ only, ring I no 2 ministry/
NoX11? White Shinoko ↓ straddles white (゛(Well, the second picture smells)
, dotted line A, dashed line 1-1. Two points g4' J line c (acceptance -
There is a clear difference between J and U.13However, in Figure 2 there is a clear difference between A3 and
The horizontal axis of C1 indicates the intensity I, and the vertical axis indicates 1-1 (1), which is indicated by a solid line. The difference between
For example, the value σ given by the following formula (1), which is usually used to find the variance, is calculated, and this value corresponds to the cases of spot l-, ring, and both cases. The type of diffraction image is determined depending on where the diffraction image falls within the area. However, in the first equation (, I is the weighted average given by the following equation 0, 1 = (Σl-1
(1) I l) / (ΣI-1(I))...
(2) d.
Therefore, in the figure, 1 is an electron microscope, and 1 is an electronic meter.
For the deceptive mirror 1, set the electron microscope 1 to transmission image observation mode,
An electron microscope 1 is supplied with a 1-il-line bow for transmissive image observation. Da, buy 2 or take (=j(,:J), and when the electron microscope 'I or transmission image observation becomes one
, Tsu-(3! Analog time series signal corresponding to the 3 images (j, ΔD☆(kuki 3 j,
When the electron microscope 1 is in the scanning transmission mode, the transmission radiation detector 5 is inserted on the optical axis. A detection signal of Δ excess electrons (when the sample is scanned with an electron beam) is converted into a digital signal by an AD converter 6 and is supplied to an electric power calculator 4.

電子計則Iは1最像装置2又は透過電子検出器j5より
供給される画像信号A″J、試片31を同定した結果や
、検索用の各種物質に対りるd値の組みについ−Cのデ
ータ等を記憶−する外部記憶駅間7に接続されでいる。
The electronic measurement rule I is based on the image signal A''J supplied from the imager 2 or the transmission electron detector j5, the results of identifying the sample 31, and the set of d values for various substances for search. It is connected to an external storage station 7 for storing data, etc. of C.

又、電子計算機1には回折像モニター用のCRT 8や
、キーボード9.コンソール用のCRT 10が接続さ
れている。
The electronic computer 1 also includes a CRT 8 for monitoring a diffraction image and a keyboard 9. A CRT 10 for console is connected.

このJ、うな’rM成の装置を用いて、ます、操作化(
31キーボード9により電子計0賎4に指令を与えて、
例えば、試料の透過像モー1−にお(プる回JJ〒1ら
(が撮像装置2に投影されるようにする。ぞこC、ギー
小−ド9に」、り電子計算機4に測定の開始を指令覆る
と、電子計算機1は第4図に示づ流れ図に従って分析作
業を進め(行く。
Using this J, Una'rM device, we will be able to manipulate it (
31 Give a command to the electronic meter 4 using the keyboard 9,
For example, set the transmission image mode 1 of the sample to be projected onto the imaging device 2. When the command is given to start the computer 1, the computer 1 proceeds with the analysis work according to the flowchart shown in FIG.

即ち、まず11i像装置2によってこの撮像装置の画面
」ニに投影された回折像をAD変換器3にj、ってデジ
タル信局に変換し−で電子計算1幾4に取り込み、電子
語算様4内の記憶部に512x  !1i12個の画素
データとして記憶リ−る(ステップA)13次に、電子
計算機4によりこの記憶された画像データをi売み出し
′C1この画像の回折像が各々第1図(a )(b)、
(c)に示づようなスポットのみから成るものか、リン
グのみから成る−6のカーそれとb両者が混在している
のかを判定Jる(ステップ13)。この判定は以下のよ
うに行なう1、第5図に示t J、うに、画像の組(1
1!にX座標及び座標をどり、X座標が×、7月・j、
El 7J弓!(ある画素の強度をUXyで表わすもの
とづ−るど、全tjxyのうら強iU Iである画素の
個数を各1の(!!’−1について口赦しく゛強度■に
ついての反故t+ < 1 )を算出りる。次に1−1
 (1)の値を用い−C第(2)式で表わされる加重平
均簑幹出づ−る。そこで、この加重平均のい出値を用い
て、第(1)式で表わされる分散σを算出する。更にこ
の算出されたびが88..000以下である(ケース1
)か、  105,0OOLJ上である(り=−ス2)
か、 88,000と 105 、000との間である
(ケース3)かを判別する。但し、この場合、全画素数
は512x 512であり、UXVの明る8(強度)の
階調(よ255にとられCいる。そしで、l)−ス1で
あれば、回折像はスポラ1〜のみから成り、ケース2ひ
あれば回折像はリングのみから成り、ツノーース3ひあ
れば、回折像にはスポットどリングが共に含まれ(いる
ものと判定づる(ステップB)。
That is, first, the diffraction image projected onto the screen of this imaging device by the 11i imager 2 is converted into a digital signal by the AD converter 3, and taken into the electronic calculator 1 and 4 by the electronic converter 3. 512x in the storage section of Mr. 4! 1i Store and read the stored image data as 12 pixel data (step A) 13 Next, the electronic computer 4 outputs the stored image data 'C1 The diffraction images of this image are respectively shown in FIGS. ),
It is determined whether the car consists of only spots as shown in (c), or whether there is a mixture of -6 car consisting of only rings and b (step 13). This determination is performed as follows.1. As shown in FIG.
1! , the X coordinate is x, July j,
El 7J bow! (Assuming that the intensity of a certain pixel is expressed by UXy, the number of pixels whose intensity is iU I on the back side of all tjxy is expressed as 1 (!!' - 1, but the error t+ < 1 for intensity ■) ).Next, 1-1
Using the value of (1), a weighted average summary expressed by the -C equation (2) is obtained. Therefore, the variance σ expressed by equation (1) is calculated using the output value of this weighted average. Furthermore, this calculated time is 88. .. 000 or less (Case 1
) or is above 105,0OOLJ (ris=-s2)
or between 88,000 and 105,000 (Case 3). However, in this case, the total number of pixels is 512 x 512, and the gradation of UXV brightness 8 (intensity) is taken as C (Y255).So, if l) - S1, the diffraction image is spora1 .

ぞこで、この判定によ−)で例え(、J、回折(tIが
スポラj・のみから成るものとηると、り′84図にお
(−]るスーツツブCに移イ1し、全く回折を受(づり
゛に直進した電子線のスポラ1〜ぐある中心スポラhの
座(票(up、vo)と他の回折スポラ1〜の斤(?、
j (Ll 。
Now, based on this judgment, we can use the example (, J, diffraction (tI consists only of spora j) and η, then we can move to the suit block C shown in Figure 1'84 (-). There is a central spora h (up, vo) of the electron beam that has undergone no diffraction (up, vo) of the electron beam that has gone straight and the other diffraction spora 1 (?,
j (Ll.

V)とを求め、更に中心スポラ1〜ど谷回折スボッ1へ
、しての距m Rs及び各回折スポラI〜に夕・1応!
jる(1(1白D Sを求夕)る〈ス−1−・ンノ’C
)。このスー1゛ンfC4,L訂1111には第6図の
流れ図に示’lI−J、うに、ま・j゛、LJxy&−
一定強IαJ、り小さいものく黒レベル)と一定強jσ
以−1のもの(白レベル)に分り(−所謂21Lj化処
jinを行ないくステップC−1)、−椀りの白レベル
画素集団のうち、最大の6のを中心スポラ(・と見’:
’J: L <、この中心スポラ1〜の座iM(uo。
V), and further calculate the distance m Rs from the center spora 1 to the valley diffraction sub-bottom 1 and the distance m Rs and each diffraction spora I ~ 1!
juru (1 (1 white DS)
). This Sue 1゛fC4,L edition 1111 is shown in the flowchart of Figure 6.
constant strength IαJ, small black level) and constant strength jσ
The following is divided into 1 (white level) (step C-1 in which the so-called 21Lj conversion process is performed), and the maximum 6 of the white level pixel groups in the bowl are treated as central spora (.) :
'J: L <, this central spora 1~ locus iM(uo.

Vo)を求めるくステップC−2)。(fl L、白レ
ベルの一塊りのある画素集団の座標(U、V)は以下の
演算により求める。
Step C-2). (fl L, the coordinates (U, V) of a group of pixels with a white level are determined by the following calculation.

u = (umax+umin) /2−(3−1>v
  =  (vmax 十 vmin)  /  2−
  (3−2)ここで、umax、 uminは第5図
に示覆ように各々この画素集団の最大X座標値及び最小
X座標i9”HC゛あり、■座標についても同様である
。従っ−CUQは最大の画素集団のX座標の最大値と最
小値の平均であり、vo−t)同様である3、続いて、
他の塊りの画素についてもその座標を求め、各回折スポ
ラ1−の座標(u 、 v )を求める(ステップC−
4)。
u = (umax+umin) /2-(3-1>v
= (vmax 10 vmin) / 2-
(3-2) Here, as shown in FIG. 5, umax and umin are the maximum X coordinate value and the minimum X coordinate i9"HC" of this pixel group, respectively, and the same is true for the ■ coordinate.Therefore, -CUQ is the average of the maximum and minimum values of the X coordinates of the largest pixel group, and vo-t) is the same as 3, followed by
The coordinates of the pixels of other clusters are also determined, and the coordinates (u, v) of each diffraction spora 1- are determined (step C-
4).

次に中心スポラ]〜(uo、Vo)から各スポラ1へ(
u、v)までの距!i1. Rsを以ドの計算を行4」
一つことにより求める。
Next, from the center spora] ~ (uo, Vo) to each spora 1 (
Distance to u, v)! i1. Calculate Rs by 4.
Ask for one thing.

Rs −(u −110) 2−1− (V−\’o)
2=・(/l)この際互いに例えば5%以内のノ介いし
かない複数の距離舶データは木来同−値どなるはずのし
のか、種々の誤差の介入ににり巽41つた1直となった
と考えられるので、このようl’L Wj K!!の距
ERA(jll’jの平均値を用いC一つの距離11(
lデータを求める1、そごC1求められた距離値R3に
基づいて結晶の格子面間隔値であるd Ii自D Sを
求める(ステップC−5)。このd値は以下の一般式に
より求める。
Rs -(u -110) 2-1- (V-\'o)
2=・(/l) In this case, for example, multiple distance ship data whose distances are within 5% of each other, what should be the same value for Kiri? It is thought that this is the case, so l'L Wj K! ! Using the average value of distance ERA (jll'j), C one distance 11 (
1. Determine l data 1. Sogo C1 Based on the determined distance value R3, the lattice spacing value of the crystal, dIi, is determined (step C-5). This d value is determined by the following general formula.

d−(1−・λ>/R・・・(5) 但し、上式においてRは中心スポッl〜と回折スポット
(又は回折リング)まで・の距離であり、(L・λ)は
カメラ定数である。カメラ定数は装置の状態によつ(変
化Jるため、格子101間隔が既知である金の蒸着粒子
等を用いて測定したデータを用いて軸止したものを用い
る。
d-(1-・λ>/R...(5) However, in the above equation, R is the distance between the center spot l~ and the diffraction spot (or diffraction ring), and (L・λ) is the camera constant Since the camera constants vary depending on the state of the apparatus, those fixed using data measured using vapor-deposited gold particles or the like whose lattice 101 spacing is known are used.

次にリングのみから成ると判定された場合に゛ついて説
明ターる1、この場合には第4図に示り」、うにステッ
プ1〕に移行し、リングの半径Rr及びd111′l[
)rを求める3、このステップ〔〕を更に詳刑0に示し
たちのが第7図である。いま、第8図に示d−J、うな
画像を処■IJる場合を例にとると、電子針幹(代4に
43いて、各画素の座標Xに対してΣUXVをt)出し
くこの操作を画像のX軸への射影操作どJζぶものとす
る)、同様に各画素の座標yに34’シ’Uもとなり、
中心スポットの位置にdづいて最大となる。
Next, when it is determined that the ring consists only of rings, the process moves to step 1], and the ring radius Rr and d111'l[
) Find r3. This step [ ] is further shown in detail in Figure 7. Now, taking as an example the case of processing the d-J and U-shaped images shown in Fig. 8, the electronic needle stem (43 in section 4, ΣUXV for each pixel coordinate X) is output. Similarly, the coordinate y of each pixel is 34'S'U,
It becomes maximum based on the position of the center spot d.

そこで、曲線A、Bにおいて、値が最大となる×座標と
y座標を求めれば、これが中心スポットの座標(uo、
Vo)である。このようにして中心スポッ1〜の)・1
り標(Ljo、V’o)を求め(ステップi−) −2
)だ後、中心スポツF−の位置を通りX軸に平行な第8
図においてl 、 m ’r示づ線分とY軸に平イ1な
線分1)、S上の画素のjilii U XVを読み出
す。
Therefore, if we find the x and y coordinates of curves A and B that have the maximum values, these will be the coordinates of the center spot (uo,
Vo). In this way, the center spot 1~)・1
Find the reference mark (Ljo, V'o) (step i-) -2
), the eighth point parallel to the X axis passes through the center spot F-.
In the figure, the line segments 1) and 1) parallel to the Y-axis and the line segments 1) and 1), indicated by m'r, and the pixels on S are read out.

これら各線分上の画素の値を、中心スポツ1〜に向う向
きに座標軸の向きを揃え(し1示りると、各々第9図の
(a )、  (b >、  (c )、  <(+ 
) C示りJ、うにHいに略相似形をして+3つ、いず
れも回折リングの位置に極大を右している。そこで、電
子計停機において第9図<a >、  (+1 >、 
 (c )。
The values of the pixels on each of these line segments are aligned with the coordinate axes facing toward the center spot 1~ (as shown in Figure 9), respectively (a), (b>, (c), <( +
) Indicated by J, sea urchin, and H, there are +3, which have a maximum at the position of the diffraction ring. Therefore, in the case of electronically scheduled stoppage, Fig. 9 <a>, (+1>,
(c).

(d )に示した強度を足し合せて、第9図(e )に
示Jような結果を得る演尊を行ない、先に求めた中心ス
ポッ1〜の座標とこの第9図<e >に示(J値が極大
となる座標との距離を求めれば、これ(こより各リング
半径(でrが高石♂麻に求められる。21コ径Rrが求
められると、ステラICの場合と同様に前記(5)式を
用いてd値を求める。
By adding up the intensities shown in (d), perform a performance to obtain the result shown in Fig. 9 (e), and use the coordinates of the center spot 1 ~ obtained earlier and this Fig. 9 <e>. If we calculate the distance from the coordinate where the J value is maximum, then we can calculate r for each ring radius (from this). 21 Once the ring radius Rr is calculated, we can calculate the distance from the coordinate where the J value is maximum. The d value is determined using equation (5).

次に第4図にお()るステップBにおいて、スポッ1−
とリングが共に存在していると判定された場合を説明り
−る。このように判定されると、第4図に(13けるス
テップ1三に移行゛づる。スフーツブI己は詳細には第
10図の流れ図に示rJものであり、即1,5、より゛
ス′jツブ1)−1におりる場合と全く同様に前述した
X軸への射影操作とYIIIlllへの射影操作を打入
とりるyを求めて中心スポットのJj)) J票(U、
)。
Next, in step B shown in Figure 4(), spot 1-
A case will be explained in which it is determined that both a ring and a ring exist. When the determination is made in this way, the process moves to step 13 in FIG. 4 (step 13). 'j 1) In exactly the same way as in the case of -1, enter the projection operation to the X axis and the projection operation to YIIIll to find y of the center spot Jj)) J vote (U,
).

Voンどりる(ステップ[−−1)。1.−りこの)易
含回折像にはスポット状の6のら含まれ−(いるため。
Vondoriru (step [--1). 1. This is because Riko's easy-to-contain diffraction image contains six spots.

X #+及びY軸への射影強度に1.Lu、’ 11図
のJ、うにスポッ1〜に基づく極大部Gが生じるが、ス
ポットの占める面積はリングの面積に比較し−C小さい
ため、極大部Gが座標(uo、Vo)を求める際に陣害
になることはない。次に画像の2値化を行4rい(ステ
ップE−3)、この2値化された画像情報に従って同−
画像内にLi2(りるスポットとリングの弁別を行なう
(ステップF−4)。即ら、−15νりの画素集団につ
い−(前記第(4)式に従つCその座標(U、\l)を
求める。画素集団がリングならば、その座標は最初に求
めた中心スポットの座標(Llo、Vo)と同一か、或
いはこの座標を中心とする極く小さい半径r’Qの円内
に位置している(まずCある。そこで、求められた各画
素集団に対してその座標がこの円内に入るか否かを判定
し、この円内に入る〜b j)はリングと見なして、ス
ポッ[〜として分析処理する対象から除外する。リング
をスポッ)〜どじで混同して処理するど、小さ4f距汀
IRsを右りる多数の回折スポッ[−が(f在刀るーこ
とになり、前記第(5)式にJ、り多数の人さイ’; 
flllを右づるd値が存在するというl;つたブr析
結采を准さ、そのため試オ81の正しい判定が(θ<’
L り’tKる、。
1 for the intensity projected onto the X #+ and Y axes. Lu, ' J in Figure 11, a local maximum G based on the sea urchin spot 1 ~ occurs, but since the area occupied by the spot is -C smaller than the area of the ring, the local maximum G is There will be no harm to the camp. Next, the image is binarized in line 4r (step E-3), and the image is binarized according to this binarized image information.
Li2(R) spot and ring are discriminated in the image (step F-4). That is, for a pixel group of -15ν, the coordinates (U, \l ).If the pixel group is a ring, its coordinates are either the same as the coordinates (Llo, Vo) of the center spot found first, or it is located within a circle with an extremely small radius r'Q centered on these coordinates. (First, there is C. Then, for each pixel group found, it is determined whether the coordinates fall within this circle, and those that fall within this circle ~ b j) are regarded as rings, and the spot [Exclude from analysis processing as ~.If you mix up the ring with ~ and process it, many diffraction spots with small 4f distance IRs [- will become (f), In the above formula (5), there is a large number of people.
We have concluded that there exists a d value that makes the value right for flll, and therefore the correct judgment of trial 81 is (θ<'
L ri'tKru.

このようにしてリングを除外した、各スポッ]・(こ対
応Jる画素集団の座標:を求めた後は、中心スポソトの
座標(uo、vo)は既に求められ一ン]いろため、f
fj 61’lに示したステップC=−3からC−5よ
C・ど仝く同様の処理を行ない、各スポツ1〜のlj離
[り[゛どdIIl、Iを求める(スーアップ[−5)
。次(こ第7図(こ示した流れ図にd3りるステップD
−3からスラップD −5ff:でと全く同様の処理を
行4I゛うことにより、各リングの半径1(1゛ど(1
(+(、i D r召・求める1、 (二の」、う(こして、スデップC又(、L[[こよつ
で5スポツトの座標(u 、 v’) 、距離RS及び
d饋1〕Sが求められたら、これらデータを各々電了計
詩1幾4の記憶部の記憶領域F〕XY、R8及σDS+
ご記憶゛する。同様にステップD又は「に、j、)でリ
ングの半径)又1゛及びd値Drが求められたら、各々
記憶領域RR及びD Rに記憶づる。そこで、次【こ第
4図に示づステップ「を行ない、外部記憶)h買7に記
憶され“Cいる多数の各4・[物質のd lil′iの
絹みを表わ覆データを読み出し、電子計算機4にあい(
既に求められ〕こ試料のd埴データど照合Jる。こ、の
場合、外部記憶装置には第12図(a )に示すように
物買勿にその名称、属する結晶系+aO+110 、 
COで表わされる(8予定故と共に複数のd値データ(
1,、d2.・・・(I n及び各d値の指Cり(h、
に、l)+、(11,に、l)2.・・・(11゜l(
、l ) nを記憶した原波検索データを記憶している
が、この原波検索データからは効率長く物質の同定はで
きないため、このデータを第12図(b)に示1−よう
にd値を中心にし’CYl(rべかえて効率良く同定の
ための検索を行<lい得るようにし−Cいる。即ち、こ
の並l\変えた被検索データは、原波検索データに含ま
れている仝物質のd値データを、例えば最も小さいもの
から)1「1に並べ、各11伯に対してこの値を有する
物質名に対1i15づるア1−レスを記憶するようにし
たものである1、電子詣り)ぬ4により、測定によって
既に求めたd値デークとこの被検索データとを照合し、
各d値に対して該溝刃る物質名を拾い挙げて行き、最ら
多くの回数挙げられた物質名が正しい名称−c′ある品
然性か高いため、この名称を第13図(a )に示づよ
うにCRTIOに表示する。この同定結果は第13図(
a )のように最も多く挙げられた結晶島だ(プを表示
づるようにしても良いが、第13図(b)に示すJ、う
に挙げられた結晶島の全てをその挙げられた回数の%と
共に表示りるようにし℃も良い。
After finding the coordinates of each pixel group excluding the ring in this way, the coordinates (uo, vo) of the center spot have already been found, and f
fj Steps C=-3 to C-5 shown in 61'l C. Perform similar processing to find lj distance [[dIIl, I] for each spot 1~ (sup[- 5)
. Next (Step D in Figure 7)
-3 to slap D -5ff: By performing exactly the same process as in line 4I, the radius of each ring is 1 (1
(+(, i Dr call/search 1, (second), u(thus, sdep C(, L ] When S is obtained, these data are stored in the storage area F of the memory section of Denryo Kei 1 and 4, respectively.] XY, R8 and σDS+
I remember it. Similarly, when the ring radius) or 1゛ and d value Dr are determined in step D or ``, j,'', they are stored in the storage areas RR and DR, respectively. Perform the step ``external storage)'' and read out the data stored in the computer 7 and store it in the computer 4 (
[Already found] Check the data of this sample. In this case, the external storage device contains the name of the item, the crystal system to which it belongs +aO+110, as shown in Figure 12(a).
It is expressed as CO (8 expected reasons and multiple d value data (
1,,d2. ...(I n and each d value finger C (h,
ni, l)+, (11, ni, l)2. ...(11゜l(
, l) The original wave search data in which n is stored is stored, but since it is not possible to efficiently identify substances for a long time from this source wave search data, this data is d as shown in Figure 12 (b). In other words, the search for identification is carried out efficiently with the value as the center. In other words, this rearranged searched data is The d-value data of the other substances in the list are arranged in the order of 1 (for example, from the smallest one), and for each of the 11 numbers, the name of the substance that has this value is stored with an address corresponding to 1i15. 1. Compare this searched data with the d-value data already obtained by measurement according to 4.
For each d value, pick up the name of the substance that cuts the groove, and the name of the substance that has been mentioned the most times is the correct name -c'. ) as shown on the CRTIO. This identification result is shown in Figure 13 (
(a) is the crystalline island that was cited the most (although it may be possible to display the crystalline islands that were cited most often, J shown in Figure 13 (b) The temperature should be displayed along with the percentage.

このようにして第4図にJ3いてステップ「で示刀訊オ
′」の同定が終了づるど、この同定された試わ1の各回
折スポッ1〜あるいはリングについ−C面指数の指数イ
q(1,1と結晶方位の弾出が行なわれ6(ステップG
)。この面指数の指数付Cノは電子1:1時機1にJ、
っ(外部記憶装置に記憶されCいる原肢倹索デークを読
み出して、該当(j−る物質のd (i(jど指数どの
関係を記録しているデータを検索りることにJ、り行4
fう。)4、結晶力位のみ1枠も指数f・」()られた
データを阜(こ逆格了ベク1〜ルのiif’ l’77
を電子計C1”34におい−C行なうことにJ、−〕−
(自動的にiライ−1い、寄られた結束をCI’< T
 10 ’、Qに表示づる。
In this way, when the identification of the step ``Identification is completed'' at J3 in FIG. (Step G
). The indexed C of this surface index is J at electron 1:1 time 1,
(J reads out the original limb search data stored in the external storage device and searches for data that records the relationship between d (i (j) and index of the corresponding (j) substance. row 4
F. ) 4. Only one frame of the crystal strength is also the index f・().
I decided to carry out the electronic meter C1"34 smell-C, -]-
(Automatically i-1, the gathered unity is CI'< T
10', shown in Q.

尚、本発明は」−述した実施例に限定されることなく幾
多の変形か可能である。例えば、」上述した実施例にに
3いて【よ、回折(へ(を構成覆る各両県に、13(ノ
る検出強庶のY実数分イ11を表わ’?l量を算出りる
ため、所謂分散を算出するための式とFIj形の式を用
いたが、他の式によっ(算出しても良<32例えば、第
1式の(I−r)を3乗したJ(を用いでも良いし、第
2図に示した度数分布を表ゎり曲線をスムーズイングし
た後、曲線の傾き4C71出して、この傾きの値にJ、
り回折像がスポッ1〜から成るがリングから成るかを判
定り−るようにしてb良い、4[効果] 上述したJ、うに本発明によれば、自動的に各回折リン
グの半径を求め−C1この半径伯に基づいて被検索デー
タを検索づ一イ)ことにJ、すΔンシインC゛試料を分
析することができる。従っ−C1分析のための知識や粁
験が無くても、又快適でない暗全作業をづることなしに
、試J31の分析を)、jj I+/間(行なうことパ
できる。
Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, in the above-mentioned embodiment, for each prefecture that covers the diffraction and the diffraction, calculate the quantity Therefore, we used a formula for calculating the so-called variance and a formula in FIj format, but it is also possible to calculate it using other formulas. Alternatively, after smoothing the curve representing the frequency distribution shown in Figure 2, calculate the slope of the curve 4C71, and use J,
4 [Effect] According to the present invention, the radius of each diffraction ring can be automatically determined. -C1 Based on this radius, the data to be searched can be retrieved.In particular, the sample can be analyzed. Therefore, even if you have no knowledge or experience for C1 analysis, and without having to do uncomfortable mental work, you can perform the analysis of Exam J31).

【図面の簡単な説明】 第1図は回折像がスポッI−状C゛ある場合、リング状
である揚台、スボン1〜どリングヵ貢昆在しでいる場合
゛を比較して示ずlこめの図、u]2図は回折像がスポ
ッ1へ状、リング状2両古が混在の各場合にお(Jる画
素の検出強磨の度数弁箱を比較して承りだめの図、第3
図(まオ(発明を実施づるための′fr !函゛の−1
911を示づための図、身)4図は試わ1を自動的に1
1−1定jJるための処理の流れの仝休を示(Jための
図、第50白、Llllii′索の座標と白レベルの画
素集団のPjり漂を説明づるための図、第(3121は
回折像がスポット状(ある場合にd値を」(めるための
流れ図、第7図は回Jfr mrかリング状(゛ある場
合に(1111′iを求めく)ための流れ図、第8図(
,1画素のnl影操作ににつ(157られる弾痕を説明
覆るための図、第9図1jl中心スボツ1〜からリング
までの距離を求める処理を説明覆るだめの図、7110
図は回折像がスポッ)〜とリングから成る場合にd l
i+を求める1こめの処理の流れを説明づるための図、
第11図は回折12;がスポッ(−とリングから成る場
合の射影強1哀を例示づるための図、第12図は原波検
索データとji被検索データから作られた被検索データ
を説明りる7゛こめの図、第13図は分析結果のCR王
にd31プロ表示例を示ヅための図である。 1:電子顕微鏡、2:搬像装置、3:AD変換器、/′
l:電了削算機、5:透過電子検出器、6:AD変換器
、7:外部記憶装置、8:モニター用CRT、9:キー
ボード、10 : −1ンンール用OR,T。 特許出願人 財団法人 電力中央1ill究所 代表者 成fLl  ?i’1 IE1本電子株式会幻 代表者 1))l添 −大 代理人 弁理士 月島 胚治 第1図 第3図 第4図 第5図 騙in 第C図
[Brief explanation of the drawings] Figure 1 shows a comparison between a case where the diffraction image is spot I-shaped and a case where the diffraction image is ring-shaped. Fig. 2 is a comparison of the detection power valve box of the pixel of J, where the diffraction image is a mixture of spot 1 and ring 2. Third
Figure (Mao ('fr! box for implementing the invention -1
Diagram to show 911, body) 4 diagram automatically tries 1 to 1
1-1 shows a break in the processing flow for constant j 3121 is a flowchart for determining the d value when the diffraction image is spot-like. Figure 8 (
, 1 pixel nl shadow operation (157 Diagram for explaining the bullet hole created, Figure 9 1jl Explaining the process of calculating the distance from center slot 1 ~ to the ring Diagram for covering, 7110
The figure shows the case where the diffraction image consists of spots and rings.
A diagram to explain the flow of the first step of calculating i+,
Fig. 11 is a diagram for illustrating the projection intensity when the diffraction 12; consists of spots (- and rings), and Fig. 12 explains the searched data created from the original wave search data and the ji searched data. Figure 13 is a diagram to show an example of the d31 pro display of the analysis results on CR King. 1: Electron microscope, 2: Image carrier, 3: AD converter, /'
1: Electron calculator, 5: Transmission electron detector, 6: AD converter, 7: External storage device, 8: CRT for monitor, 9: Keyboard, 10: OR, T for -1 channel. Patent applicant Foundation Electric Power Central 1ill Research Institute Representative SeifLl? i'1 IE1 Honden Electronics Co., Ltd. Phantom Representative 1)) l Attachment - Grand Agent Patent Attorney Keiji Tsukishima Figure 1 Figure 3 Figure 4 Figure 5 Deception Figure C

Claims (1)

【特許請求の範囲】 電子線回折像を電気化8に変換し、坤・樅:×、yに’
i(l IIi:りる画諧の強電をり、Jxyとづると
ぎ、ΣUxy及びΣUxVh′X最大になる+1 Q及
びvoを求め−(中× 心スボツ[−の斤標とし、中心スポッ[−を通る直線上
にある両テ(の強1衰分布が極太となる貞ど該中心スボ
ツーへどの距vllIを求めることにより試料の侶子面
間隔値を求め、請求められた試オ′31の格子面間1f
i、・)値の組みを種々の物質の格子面間隔1+l!I
を表わすデータと照合することにより、試わ1の同定を
イ)イ1゛うことを特徴どソる電子線回折像の自動分析
プラ法。
[Claims] Converting the electron beam diffraction image to electrification 8, converting the electron beam diffraction image to gon/moki: x, y'
i (l IIi: Take the strong electric current of Ruru's drawing scale, Jxy and Tsutsugi, ΣUxy and ΣUxVh'X are maximized +1 Find Q and vo - (center By determining the distance vllI to the center surface where the strong one-decay distribution of both surfaces is extremely thick on a straight line passing through 1f between lattice planes
i, ·) value set for the lattice spacing of various materials 1+l! I
A method for automatic analysis of electron diffraction images characterized in that it attempts to identify (1) (1) by comparing it with data representing (1)
JP58038623A 1983-03-09 1983-03-09 Automatic analysis of electron-ray diffraction figure Granted JPS59163549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038623A JPS59163549A (en) 1983-03-09 1983-03-09 Automatic analysis of electron-ray diffraction figure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038623A JPS59163549A (en) 1983-03-09 1983-03-09 Automatic analysis of electron-ray diffraction figure

Publications (2)

Publication Number Publication Date
JPS59163549A true JPS59163549A (en) 1984-09-14
JPH0522174B2 JPH0522174B2 (en) 1993-03-26

Family

ID=12530362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038623A Granted JPS59163549A (en) 1983-03-09 1983-03-09 Automatic analysis of electron-ray diffraction figure

Country Status (1)

Country Link
JP (1) JPS59163549A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148799B2 (en) * 2003-03-04 2008-09-10 京セラ株式会社 Electron diffraction pattern analysis method and analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838622A (en) * 1981-04-20 1983-03-07 Keiichiro Yamazaki Method for connecting hollow vertical frame and cross frame in handrail or the like
JPS5838624A (en) * 1981-09-01 1983-03-07 Yamada Dobby Co Ltd Clutch device of transfer feed device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838622A (en) * 1981-04-20 1983-03-07 Keiichiro Yamazaki Method for connecting hollow vertical frame and cross frame in handrail or the like
JPS5838624A (en) * 1981-09-01 1983-03-07 Yamada Dobby Co Ltd Clutch device of transfer feed device

Also Published As

Publication number Publication date
JPH0522174B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US4724543A (en) Method and apparatus for automatic digital image analysis
US7292718B2 (en) Color space transformations for use in identifying objects of interest in biological specimens
US4484081A (en) Defect analysis system
Kaczmarek et al. Techniques of image analysis for quantitative immunohistochemistry
WO2021139258A1 (en) Image recognition based cell recognition and counting method and apparatus, and computer device
JPH02171866A (en) Method and apparatus for evaluating cell image
CA1175555A (en) Defect analysis system
JPH0521180B2 (en)
Lassen Automated determination of crystal orientations from electron backscattering patterns
Virani et al. A CCD study of the environment of Seyfert galaxies. III. Host galaxies and the nearby environments
JPH09140397A (en) Identification for identifying number of colonies shown by one sequence domain and colony counting apparatus using the same
JP3608106B2 (en) Degradation evaluation system for steel surface using image processing
Lucas et al. Could precise and replicable manipulations of suspect-filler similarity optimize eyewitness identification performance?
JPS59163549A (en) Automatic analysis of electron-ray diffraction figure
Kovalova et al. Possibilities of automated image processing at optical capillaroscopy
JOHNSON et al. Metaphase spread detection and focus using closed circuit television
JPS59163550A (en) Automatic analysis of electron-ray diffraction figure
US20210012509A1 (en) Image processing method and computer-readable recording medium having recorded thereon image processing program
US20110022972A1 (en) Method and System for Facilitating Interactive Review of Data
CN113569645A (en) Track generation method, device and system based on image detection
JPH0126292B2 (en)
JP2847665B2 (en) Automatic inspection method for non-metallic inclusions using color images
JPH09245166A (en) Pattern matching device
MacGillivray et al. Archived data and catalogues from COSMOS scans
Snyder et al. Quality metrics of digitally derived imagery and their relation to interpreter performance: III. Subjective scaling of hard-copy digital imagery