JPS59163352A - Production of serine - Google Patents
Production of serineInfo
- Publication number
- JPS59163352A JPS59163352A JP58036614A JP3661483A JPS59163352A JP S59163352 A JPS59163352 A JP S59163352A JP 58036614 A JP58036614 A JP 58036614A JP 3661483 A JP3661483 A JP 3661483A JP S59163352 A JPS59163352 A JP S59163352A
- Authority
- JP
- Japan
- Prior art keywords
- quaternary ammonium
- ion
- reaction
- serine
- formaldehyde
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、グリシンとポルムアルデヒドからセリンを製
造する方法の改良に関する。さらに詳しくは、′グリシ
ン鋼とポルムアルデヒドを反応させてセリンを製造する
に際して、反応を第四級アンモニウムイオンの存在下に
行なうことを特徴とするセリンの製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing serine from glycine and pormaldehyde. More specifically, the present invention relates to a method for producing serine which is characterized in that when producing serine by reacting glycine steel with pormaldehyde, the reaction is carried out in the presence of quaternary ammonium ions.
セリンはアミノ酸の一種であり、従来、セリンの合成に
関しては多くの方法が知られているが、中でもグリシン
鋼とホルムアルデヒドを塩基性水溶液中で反応せしめる
方法は公知である(特公昭34−2964 )。しかし
ながら、グリシン鋼を用いる方法はセリンの収率が低く
、まだ実用化されていない。Serine is a type of amino acid, and many methods have been known for synthesizing serine, among which a method in which glycine steel and formaldehyde are reacted in a basic aqueous solution is known (Japanese Patent Publication No. 34-2964). . However, the method using glycine steel has a low yield of serine and has not been put into practical use yet.
本発明者らは、この反応に関して、セリンΩ収率を向上
せしめるこ、とを目的として、種々の検討を行なった結
果、反応を第四級アンモニラ文イオンの存在下で行なう
とセリンの収率を向上させることができることを見出し
た。The present inventors have conducted various studies regarding this reaction with the aim of improving the serine Ω yield, and have found that the serine yield increases when the reaction is carried out in the presence of quaternary ammonium ions. found that it is possible to improve
本発明の方法において、反応を第四級アンモニウムイオ
ンの存在下に行なう。第四級アンモニウムイオンの存在
下とは反応中、反応液中に第四級アンモニウムイオンが
存在することを言い、第四級アンモニウムイオンは第四
級アンモニウム塩または第四級アンモニウム水酸化物を
反応液中に添加することによってできる。反応液中の第
四級アンモニウム塩または第四級アンモ゛ニウム水酸化
物の濃度に関しては特に制限はないが、好ましくは、0
01〜1%である。使用される第四級アンモニウムイオ
ンはアルキル基、と(にメチル、エチル、n−プロピル
および/またはn−ブチル等の低級アルギル基を含むも
のが好ましい。たとえば、テトラメチルアンモニウムイ
オン、テトラエチルアンモニウムイオン、テトラn−プ
ロピルアンモニウムイオン、2テトラn−ブチルアンモ
ニウムイオン、トリメチルエチルアンモニウムイオン、
ジメチルジエチルアンモニウムイオン、メチルトリエチ
ルアンモニウムイオン、トリメチルn−プロピルアンモ
ニウムイオン、トリメチルn−ブチルアンモニウムイオ
ン、トリエチルn−プロピルアンモニウムイオン、トリ
エチルn−ブチルアンモニウムイオン等である。In the method of the invention, the reaction is carried out in the presence of quaternary ammonium ions. The presence of quaternary ammonium ions means that quaternary ammonium ions are present in the reaction solution during the reaction, and quaternary ammonium ions react with quaternary ammonium salts or quaternary ammonium hydroxides. This can be done by adding it to the liquid. There is no particular restriction on the concentration of quaternary ammonium salt or quaternary ammonium hydroxide in the reaction solution, but it is preferably 0.
01-1%. The quaternary ammonium ion used preferably contains an alkyl group and a lower argyl group such as methyl, ethyl, n-propyl and/or n-butyl. For example, tetramethylammonium ion, tetraethylammonium ion, Tetra n-propylammonium ion, 2tetra n-butylammonium ion, trimethylethylammonium ion,
These include dimethyldiethylammonium ion, methyltriethylammonium ion, trimethyl n-propylammonium ion, trimethyl n-butylammonium ion, triethyl n-propylammonium ion, triethyl n-butylammonium ion, and the like.
本発明の方法にお、ける反応条件に関しては、第四級ア
ンモニウムイオンを反応液中に添加する以外は従来のグ
リシン鋼とホルムアルデヒドのべ応に準じる。たとえば
、この反応に用いられる触媒としては、苛性アルカリ、
炭酸アルカリなどの無機塩基類やピリジンなどの有機塩
基類などが使用できる。また、グリシン鋼に対し、ホル
ムアルデヒドの量は特に制限はないが、好ましくは01
〜10倍用いることができる。また、反応液を調製する
際に、あらかじめグリシンと銅塩からつくられたグリシ
ン鋼を用いても良いが、反応液中にグリシンと硫酸銅、
炭酸銅、塩基性炭酸銅なとの銅塩を別々に加えても良い
。また、この反応溶媒として、水、メタノールなどが用
いられる。反応温度は60〜150℃で、反応時間は0
.5〜5時間である。また、反応中鍋イオンの還元を防
止するために反応液中に酸素を供給することもできる。The reaction conditions in the method of the present invention are similar to the conventional reaction between glycine steel and formaldehyde, except that quaternary ammonium ions are added to the reaction solution. For example, the catalysts used for this reaction include caustic alkali,
Inorganic bases such as alkali carbonate and organic bases such as pyridine can be used. Further, for glycine steel, the amount of formaldehyde is not particularly limited, but preferably 0.1
~10 times more can be used. Furthermore, when preparing the reaction solution, glycine steel made from glycine and copper salt may be used in advance;
Copper salts such as copper carbonate and basic copper carbonate may be added separately. Moreover, water, methanol, etc. are used as this reaction solvent. The reaction temperature was 60-150℃, and the reaction time was 0.
.. 5 to 5 hours. Additionally, oxygen can be supplied to the reaction solution to prevent reduction of pot ions during the reaction.
反応後、反応・液中の銅イオンは通常の方法通り、硫化
水素またはイオン交換樹脂を用いて除去し、銅イオン除
去液を濃縮して、濃縮液にアルコールな°どを加えてセ
リンを結晶として分離することができろ。以下、本発明
を実施例により説明する。After the reaction, copper ions in the reaction solution are removed using hydrogen sulfide or ion exchange resin as usual, the copper ion removal solution is concentrated, and alcohol is added to the concentrated solution to crystallize serine. It can be separated as The present invention will be explained below using examples.
実施例1
内容50−のハステロイC製のオートクレー・ブ中にグ
リシン鋼267.65%ホルマ゛リン172?、水酸化
カリウム112グ、水60−および10%テトラメチル
アンモニウムヒドロキシド水溶液1.01を加え、さら
に酸素50 Kg /cniを封じ込めた後、70°C
で1時間攪拌した。冷却後、この反応液に濃塩酸を加え
て酸性とした後、硫化ナトリウムを加えて銅イオンを硫
化銅として沈澱させ、これを戸別した。r液を液体クロ
マトグラフィにより測定した結果を表1に示す。Example 1 Glycine steel 267.65% formalin 172? , 112 g of potassium hydroxide, 60 g of water and 1.01 g of a 10% tetramethylammonium hydroxide aqueous solution were added, and after sealing in 50 Kg/cni of oxygen, the temperature was 70°C.
The mixture was stirred for 1 hour. After cooling, concentrated hydrochloric acid was added to the reaction solution to make it acidic, and then sodium sulfide was added to precipitate copper ions as copper sulfide, which was then distributed from house to house. Table 1 shows the results of measuring the r liquid by liquid chromatography.
実施例2〜8
実施例1の方法において、10%テトラメチルアンモニ
ウムヒドロキシド水溶液1,0りの代りに各種の第四級
アンモニウムイオン含有化合物01グを用い、その他は
実施例1と同様に実験を行った結果・を表1に示す。Examples 2 to 8 In the method of Example 1, various quaternary ammonium ion-containing compounds were used instead of the 10% tetramethylammonium hydroxide aqueous solution 1,0, and the experiment was carried out in the same manner as in Example 1. The results are shown in Table 1.
比較例1
実施例1の方法において、10%テトラメチルアンモニ
ウムヒドロキシド水溶液1D2を用いない結果を表1・
に示す。Comparative Example 1 The results of the method of Example 1 without using 10% tetramethylammonium hydroxide aqueous solution 1D2 are shown in Table 1.
Shown below.
Claims (1)
ドを反応させ、セリンを製造するに際し、第四級アンモ
ニウムイオンの共存下に反応させることを特徴とするセ
リンの製造法。 2)第四級アンモニウムイオンが第四級低級アルキルア
ンモニウムイオンである特許請求の範囲第1項記載の方
法。[Claims] 1) A method for producing serine, which comprises reacting green steel and formaldehyde in the presence of a salt catalyst to produce serine in the presence of quaternary ammonium ions. . 2) The method according to claim 1, wherein the quaternary ammonium ion is a quaternary lower alkyl ammonium ion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036614A JPS59163352A (en) | 1983-03-08 | 1983-03-08 | Production of serine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58036614A JPS59163352A (en) | 1983-03-08 | 1983-03-08 | Production of serine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59163352A true JPS59163352A (en) | 1984-09-14 |
Family
ID=12474677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58036614A Pending JPS59163352A (en) | 1983-03-08 | 1983-03-08 | Production of serine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59163352A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100647890B1 (en) | 2004-09-15 | 2006-11-23 | 동양제철화학 주식회사 | Process for preparing serine alkyl ester derivatives |
JP2007246481A (en) * | 2006-03-17 | 2007-09-27 | Japan Science & Technology Agency | Synthetic methods of serine, cystine, and alanine regio- and stereoselectively labeled with stable isotope |
JP2007320918A (en) * | 2006-06-01 | 2007-12-13 | Mitsuyoshi Akatsuka | Method for producing amino acid |
-
1983
- 1983-03-08 JP JP58036614A patent/JPS59163352A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100647890B1 (en) | 2004-09-15 | 2006-11-23 | 동양제철화학 주식회사 | Process for preparing serine alkyl ester derivatives |
JP2007246481A (en) * | 2006-03-17 | 2007-09-27 | Japan Science & Technology Agency | Synthetic methods of serine, cystine, and alanine regio- and stereoselectively labeled with stable isotope |
JP2007320918A (en) * | 2006-06-01 | 2007-12-13 | Mitsuyoshi Akatsuka | Method for producing amino acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0060595A3 (en) | Method for preparing l-carnitine | |
JP2004527577A5 (en) | ||
EP0087298B1 (en) | Process for producing benzaldehydes | |
JPS59163352A (en) | Production of serine | |
US4198526A (en) | Process for the manufacture of p-hydroxyphenyl acetic acid | |
EP0268710B1 (en) | Improved process for the preparation of codeine from morphine | |
GB1108975A (en) | New sulphonic acid and process for its production | |
JP2001510174A (en) | Process for preparing aminoarylacetylene | |
JP2002275132A (en) | Method for producing high purity quaternary ammonium inorganic acid salt | |
JP3882580B2 (en) | Method for producing vinyl sulfonic acid derivative | |
JP2000109462A (en) | Production of 8-benzylaminoquioline | |
JPH033653B2 (en) | ||
JPH09110756A (en) | Production of bisphenol-type dimethylol compound | |
JP3743867B2 (en) | Process for producing 2-fluorocyclopropanecarboxylic acids | |
US4673749A (en) | Process for producing an indoline | |
US4021437A (en) | 6-Ethylamino-2-picoline from 6-acetamido-2-picoline | |
JPH03118354A (en) | Production of aspartic acid 4-benzyl ester | |
EP0163506B1 (en) | Process for the preparation of a pyridil-propanoic acid | |
JPS6123176B2 (en) | ||
JPS60252453A (en) | Production of beta-chloroalanine | |
EP0101003B1 (en) | Process for preparing 4-oxo-4,5,6,7-tetrahydrobenzofuran derivative | |
JPS60218361A (en) | Preparation of serine | |
JPS604156A (en) | Production of serine | |
JPS6121224B2 (en) | ||
JPH0337540B2 (en) |