JPS5916327A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS5916327A
JPS5916327A JP57124480A JP12448082A JPS5916327A JP S5916327 A JPS5916327 A JP S5916327A JP 57124480 A JP57124480 A JP 57124480A JP 12448082 A JP12448082 A JP 12448082A JP S5916327 A JPS5916327 A JP S5916327A
Authority
JP
Japan
Prior art keywords
substrate
thin film
numeral
ultrasonic wave
wave oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57124480A
Other languages
Japanese (ja)
Other versions
JPH0429217B2 (en
Inventor
Hajime Ichiyanagi
一柳 肇
Nobuhiko Fujita
藤田 順彦
Hiroshi Kawai
弘 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57124480A priority Critical patent/JPS5916327A/en
Publication of JPS5916327A publication Critical patent/JPS5916327A/en
Publication of JPH0429217B2 publication Critical patent/JPH0429217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4415Acoustic wave CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To restrain the exfoliation of a thin film by forming the thin film while a substrate is oscillated with ultrasonic waves. CONSTITUTION:The numeral 1 represents a vacuum reaction chamber, and 2 a cathode, which is connected electrically to a high frequency RF power source (not illustrated) in a plasma CVD device. The numeral 3 represents an anode, which serves as a substrate holder, 4 a substrate, which is heated by a substrate heater 5. The numeral 6 represents a gas introducing tube, and 7 a vacuum exhaust tube, which is connected to a vacuum pump (not illustrated). The numeral 8 represents an ultrasonic wave oscillation device, which transmits oscillation to the substrate holder 3 and the substrate 4 by means of an ultrasonic wave oscillation transmitting device 9. The ultrasonic wave oscillation device 8 is so formed as not to transmit the heat from the heater 5, in the presence of a heat shielding plate 10.

Description

【発明の詳細な説明】 本発明は新規な薄膜の製造方法に関する。[Detailed description of the invention] The present invention relates to a novel method for manufacturing thin films.

従来より薄膜の製造方法にはPVD法(Physica
lVapor Deposition  −真空蒸着法
、イオンブレーティング法、スパッタリング法など)と
CVD法(Chemical Vapor Depos
ition  −常圧CVD法、減圧CVD法、プラズ
マCVD法、スプレー法など)がある。
Conventionally, the PVD method (Physica
Vapor Deposition - Vacuum evaporation method, ion blating method, sputtering method, etc.) and CVD method (Chemical Vapor Deposition method)
tion - normal pressure CVD method, low pressure CVD method, plasma CVD method, spray method, etc.).

この薄膜と基板との密着性を良くするために薄膜形成時
の基板温度を上げたり、蒸発粒子をイオン化し電気的に
加速して薄膜を形成したりする工夫がなされている。し
かし、薄膜はその材質、基板材料、用途などにより要求
される特性が異なるためその製造方法もおのずと限定さ
れ」二連のごとき工夫が生かされない場合が多い。
In order to improve the adhesion between the thin film and the substrate, efforts have been made to increase the temperature of the substrate during thin film formation, or to ionize and electrically accelerate evaporated particles to form a thin film. However, because the required properties of thin films vary depending on their material, substrate material, application, etc., the manufacturing methods are naturally limited, and the two-part method is often not effective.

アモルファスシリコンはクリーンエネルギーを利用する
太陽電池用低コスト薄膜半導体材料として注目を集めて
いる。しかし、アモルファスシリコン膜を形成後、時間
経過に従い膜が基板から剥離するという問題がある。ア
モルファスシリコン膜はシラン(SiH4)をグロー放
電分解するいわゆるプラズマCVD法などで製造される
。アモルファスシリコン膜中には多量の水素などが含ま
れており、この水素などが太陽電池などの電子デバイス
に使用できるアモルファスシリコンにしている。
Amorphous silicon is attracting attention as a low-cost thin film semiconductor material for solar cells that utilize clean energy. However, there is a problem in that after the amorphous silicon film is formed, the film peels off from the substrate over time. The amorphous silicon film is manufactured by a so-called plasma CVD method in which silane (SiH4) is decomposed by glow discharge. Amorphous silicon films contain large amounts of hydrogen, which makes amorphous silicon suitable for use in electronic devices such as solar cells.

ところが膜と基板との密着性を上げるために基板温度を
」二げると膜中に混入する水素量が少なくなり膜の特性
が悪くなるため基板温度を」二げる方法本発明は基板を
超音波振動させながら薄膜を形成することにより上述の
ような剥離の問題を解消するものである。以下実施例に
従い詳細に説明する。
However, if the substrate temperature is lowered in order to increase the adhesion between the film and the substrate, the amount of hydrogen mixed into the film will decrease and the properties of the film will deteriorate. By forming a thin film while applying ultrasonic vibration, the problem of peeling as described above is solved. The following will be described in detail according to examples.

第1図は本発明の薄膜製造を実施するのに使用するプラ
ズマCVD装置の一例を示す断面図である。1は真空反
応室、2はカソードで高周波(RF )電源(図示せず
)に電気的に接続されている。3はアノードで基板ホル
ダを兼ねている。4.は基板で、基板加熱ヒーター5に
より加熱される。6はガス導入管、7は真空排気管で真
空ポンプ(図示せず)に接続される。8は超音波振動装
置で超音波振動伝達装置9により基板ホルダ3および基
板4に振動を伝える。超音波振動装置8は熱遮蔽板IO
によりヒーター5からの熱が伝わらないようにしである
FIG. 1 is a sectional view showing an example of a plasma CVD apparatus used to carry out the thin film production of the present invention. 1 is a vacuum reaction chamber, and 2 is a cathode which is electrically connected to a radio frequency (RF) power source (not shown). 3 is an anode which also serves as a substrate holder. 4. is a substrate, which is heated by a substrate heating heater 5. 6 is a gas introduction pipe, and 7 is a vacuum exhaust pipe connected to a vacuum pump (not shown). Reference numeral 8 denotes an ultrasonic vibration device that transmits vibrations to the substrate holder 3 and the substrate 4 using an ultrasonic vibration transmission device 9. The ultrasonic vibration device 8 is a heat shield plate IO
This prevents heat from the heater 5 from being transmitted.

第1図に示すプラズマCVD装置で以下に述べる製造条
件でアモルファスシリコンを製造し、基板に超音波振動
を加えない従来法と成膜後1週間の剥離状態を比較した
。製造条件は原料ガス:SiH+、ガス流量: 50S
CCM、ガス圧カニ05Torr、RF電カニ 20W
、基板温度:250°C1超音波振動周波数:50kH
z、超音波振動周波数0.5μm、基板材質ニステンレ
ス鋼(鏡面研摩)、基板寸法: 50X50X0.5胴
、アモルファスシリコンの厚み: l pmとした。
Amorphous silicon was manufactured using the plasma CVD apparatus shown in FIG. 1 under the manufacturing conditions described below, and the peeling state one week after film formation was compared with a conventional method in which no ultrasonic vibration was applied to the substrate. Manufacturing conditions are raw material gas: SiH+, gas flow rate: 50S
CCM, gas pressure crab 05Torr, RF electric crab 20W
, Substrate temperature: 250°C1 Ultrasonic vibration frequency: 50kHz
z, ultrasonic vibration frequency: 0.5 μm, substrate material: stainless steel (mirror polished), substrate dimensions: 50×50×0.5 body, thickness of amorphous silicon: 1 pm.

従来法の超音波振動を加えない場合、10枚の基板の内
8枚が基板の1部で剥離を起した。本発叫用製造方法で
作成したアモルファスシリコンは口1枚中1枚も剥離現
象を起さなかった。
When ultrasonic vibration was not applied in the conventional method, 8 out of 10 substrates peeled off at a portion of the substrate. None of the amorphous silicones produced by this method for producing a sound caused any peeling phenomenon.

lJ上詳細に説明したごとく本発明によれば薄膜の剥離
現象をおさえることができる。基板の超音波振動周波数
は1OkHz以下の周波数では余り効果がなかった。ま
た振動振幅は0.01μm以下では効果が少なかった。
As described in detail above, according to the present invention, the phenomenon of thin film peeling can be suppressed. The ultrasonic vibration frequency of the substrate was not very effective at frequencies below 1 kHz. Moreover, the effect was small when the vibration amplitude was 0.01 μm or less.

以上の説明はアモルファスシリコン膜をプラズマCVD
法で製造する場合について説明したが他の薄膜であって
も、また他の製造方法であっても同様の効果があること
は明らかである。
The above explanation is based on plasma CVD process of amorphous silicon film.
Although the case where the thin film is manufactured by a method has been described, it is clear that the same effect can be obtained even if other thin films are used or other manufacturing methods are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜製造に用0るプラズマCVD装置
の一例を示す断面図である。 l:反応室、2;カソード、3−アノード、4一基板、
5−ヒーター、6−ガス導入管、7:排気管、8;超音
波振動装置、−9−振動伝達装置、lO:熱遮蔽板 特許出願人 工業技術院長  石 坂 誠 − ′XJ1図
FIG. 1 is a sectional view showing an example of a plasma CVD apparatus used for manufacturing the thin film of the present invention. 1: reaction chamber, 2: cathode, 3: anode, 4: substrate,
5-Heater, 6-Gas introduction pipe, 7: Exhaust pipe, 8: Ultrasonic vibration device, -9-Vibration transmission device, lO: Heat shielding plate Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - 'XJ1 Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)基板を超音波振動させ橙から薄膜を基板上に形式
することを特徴とする薄膜の製造方法。
(1) A method for producing a thin film, which comprises forming a thin film from orange on a substrate by ultrasonically vibrating the substrate.
(2) 薄膜がアモルファスシリコンであることを特徴
とする特許請求の範囲第1項記載の薄膜の製造方法。
(2) The method for manufacturing a thin film according to claim 1, wherein the thin film is made of amorphous silicon.
JP57124480A 1982-07-19 1982-07-19 Manufacture of thin film Granted JPS5916327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124480A JPS5916327A (en) 1982-07-19 1982-07-19 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124480A JPS5916327A (en) 1982-07-19 1982-07-19 Manufacture of thin film

Publications (2)

Publication Number Publication Date
JPS5916327A true JPS5916327A (en) 1984-01-27
JPH0429217B2 JPH0429217B2 (en) 1992-05-18

Family

ID=14886557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124480A Granted JPS5916327A (en) 1982-07-19 1982-07-19 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS5916327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330509A (en) * 1998-05-07 1999-11-30 Honda Motor Co Ltd Cbd film forming device
US6174651B1 (en) 1999-01-14 2001-01-16 Steag Rtp Systems, Inc. Method for depositing atomized materials onto a substrate utilizing light exposure for heating
US6569249B1 (en) 2000-04-18 2003-05-27 Clemson University Process for forming layers on substrates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113243A (en) * 1978-02-24 1979-09-04 Toshiba Corp Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113243A (en) * 1978-02-24 1979-09-04 Toshiba Corp Production of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330509A (en) * 1998-05-07 1999-11-30 Honda Motor Co Ltd Cbd film forming device
US6174651B1 (en) 1999-01-14 2001-01-16 Steag Rtp Systems, Inc. Method for depositing atomized materials onto a substrate utilizing light exposure for heating
US6569249B1 (en) 2000-04-18 2003-05-27 Clemson University Process for forming layers on substrates

Also Published As

Publication number Publication date
JPH0429217B2 (en) 1992-05-18

Similar Documents

Publication Publication Date Title
EP0026604B1 (en) A method of vapour phase growth and apparatus therefor
US5569502A (en) Film formation apparatus and method for forming a film
JPS5940227B2 (en) Reactive sputtering method
JPS6342115A (en) Manufacture of film
JPS5916327A (en) Manufacture of thin film
JPH07142400A (en) Plasma treating method and its apparatus
JP3162781B2 (en) Method for forming semiconductor thin film and apparatus for forming this film
JP7033999B2 (en) Boron-based film film forming method and film forming equipment
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS62262418A (en) Plasma cvd equipment
JP2002327276A (en) Method and device for uniformizing high frequency plasma over large area in plasma cvd apparatus
JP3615919B2 (en) Plasma CVD equipment
JPH04355970A (en) Manufacture of solar cell
JP2561129B2 (en) Thin film forming equipment
JPS6140770Y2 (en)
JP3226796B2 (en) Method for producing gallium nitride thin film
JP2001077094A (en) Plasma processing device
JPH0249386B2 (en) PURAZUMACVD SOCHI
JPS58127331A (en) Plasma chemical vapor growth apparatus
JPS62177910A (en) Method and apparatus for forming deposited film
JP2551028Y2 (en) Photovoltaic device manufacturing equipment
JPS60175413A (en) Plasma cvd equipment
JPH02236279A (en) Device for forming thin amorphous silicon film
JPS61189629A (en) Formation of deposited film