JPS5916296B2 - Fluid pressure regulating valve device - Google Patents

Fluid pressure regulating valve device

Info

Publication number
JPS5916296B2
JPS5916296B2 JP3384075A JP3384075A JPS5916296B2 JP S5916296 B2 JPS5916296 B2 JP S5916296B2 JP 3384075 A JP3384075 A JP 3384075A JP 3384075 A JP3384075 A JP 3384075A JP S5916296 B2 JPS5916296 B2 JP S5916296B2
Authority
JP
Japan
Prior art keywords
valve
pressure
wall surface
flow path
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3384075A
Other languages
Japanese (ja)
Other versions
JPS51108328A (en
Inventor
修一 中村
正志 末包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3384075A priority Critical patent/JPS5916296B2/en
Publication of JPS51108328A publication Critical patent/JPS51108328A/en
Publication of JPS5916296B2 publication Critical patent/JPS5916296B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は、例えばガス導管のような流体供給路の途中に
介装することにより、その上流側の如何に拘わらず下流
側の圧力を常時定められた値に保持させ、以つて、常に
安全圧力下での流体供給を可能にすべく構成してある流
体圧力調整弁9 装置、より詳しくは、流体供給路の途
中に介装される本体ケースの内部に、その下流側流路内
の二次側圧力の変動に応じて自動開閉作動する弁を内装
し、もつて、前記二次側圧力が常に一定に保持されるよ
うに構成してある流体圧力調整弁装置に5 関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention allows the pressure on the downstream side to be maintained at a predetermined value at all times regardless of the location on the upstream side by interposing it in the middle of a fluid supply path such as a gas conduit. , the fluid pressure regulating valve 9 device is configured to always enable fluid supply under safe pressure. A fluid pressure regulating valve device is equipped with a valve that automatically opens and closes in response to fluctuations in the secondary pressure in a side flow path, and is configured so that the secondary pressure is always maintained constant. 5 related.

この種の流体圧力調整弁装置としては、第1図で示すよ
うな複座弁式のものが従来から多く用いられている。
As this type of fluid pressure regulating valve device, a double-seat valve type as shown in FIG. 1 has been widely used.

これは、下流側流路05b内の圧力(以下二次圧と称す
る)P2が低下した場合、その”0 下流側流路05b
に接続した調整管08により補助圧力調整器09(パイ
ロットガバナと称されるもの)が作用し、上流側流路0
5a内の圧力(以下一次圧と称する)P1が管010、
011を経て、ダイヤフラム下室012に送り込まれる
こと’5 によりダイヤフラム013が押し上げられ、
これに接続の弁棒014を介して上下二つの弁01、0
1’が開動し、以つて、上流側から下流側への流量を増
して二次圧P2を所定値に保つように働き、逆に二次圧
P2が所定値よりも上昇した場合は、j0パイロットガ
バナ09の作用にて管011、08を通じてダイヤフラ
ム下室012の駆動圧が抜け、スプリング015の弾性
力によりダイヤフラム旧3が押し下げられて弁01、0
1’が閉動し、以つて、上流側から下流側への流量を減
じて二次圧P2をゞ5 所定値に保つように働く。また
、下流側での流体使用が停止された場合、弁01、01
’はともに調整器本体O2の弁座016、016’に押
し付けられて流体供給を停止するいわゆる締切り状態と
なる。このような複座弁式のものは、殊に、大口径の流
体供給路における圧力調整弁装置として非常に多く使用
されている。
This means that when the pressure (hereinafter referred to as secondary pressure) P2 in the downstream flow path 05b decreases, its "0"
An auxiliary pressure regulator 09 (referred to as a pilot governor) acts through a regulating pipe 08 connected to the upstream flow path 0.
5a (hereinafter referred to as primary pressure) P1 is the pipe 010,
011 and into the diaphragm lower chamber 012, the diaphragm 013 is pushed up.
Two upper and lower valves 01 and 0 are connected to this via the valve stem 014.
1' opens and works to increase the flow rate from the upstream side to the downstream side and keep the secondary pressure P2 at a predetermined value. Conversely, if the secondary pressure P2 rises above the predetermined value, j0 The driving pressure in the diaphragm lower chamber 012 is released through the pipes 011 and 08 by the action of the pilot governor 09, and the diaphragm old 3 is pushed down by the elastic force of the spring 015, opening the valves 01 and 0.
1' closes, thereby reducing the flow rate from the upstream side to the downstream side and working to maintain the secondary pressure P2 at a predetermined value. In addition, when fluid use on the downstream side is stopped, valves 01 and 01
' are both pressed against the valve seats 016, 016' of the regulator main body O2, resulting in a so-called shut-off state in which fluid supply is stopped. Such double-seat valve types are widely used, especially as pressure regulating valve devices in large-diameter fluid supply channels.

それは、第2図の圧力バランス状態図で示すように、弁
旧には、一次圧P,が上向きに加わると共に二次圧P2
が下向きに加わり、一方、弁0Vには、二次圧P2が上
向きに加わると共に一次圧P1が下向きに加わり、各弁
01,0V間において相殺されて動作負荷がゼロ又はほ
ぼゼロの状態にあるため、所期の弁動作が非常に円滑に
なり、圧力調整機能に優れた効果が発揮されるからであ
る。かかる複座弁式によれば、上記のように、一次圧P
1および二次圧P2に影響されない優れた動作特性を有
する一方、締切り性能の面で次のような欠点がある。
As shown in the pressure balance state diagram in Fig. 2, the primary pressure P is applied upward to the old valve, and the secondary pressure P2 is applied upward.
is applied downward, and on the other hand, secondary pressure P2 is applied upward to valve 0V, and primary pressure P1 is applied downward, and each valve 01 and 0V cancel each other out, so that the operating load is zero or almost zero. This is because the intended valve operation becomes extremely smooth and an excellent effect on the pressure regulation function is exhibited. According to such a two-seat valve type, as described above, the primary pressure P
Although it has excellent operating characteristics that are not affected by the primary and secondary pressures P2, it has the following drawbacks in terms of shutoff performance.

即ち、締切り状態においては、前記両弁01,0Vを弁
座016,016′に同時にかつ同一の押付け力にて接
当させねばならないが、このような高精度な組付けなら
びに調整は技術的に非常に難かしい。特に、締切り時に
弁座016,016′に密着するように両弁01,0V
に嵌着してある弾性シール材017,017′の応力緩
和は一様なものでなく、長期間使用しているうちには、
両弁01,0Vの弁座016,016′への接当タイミ
ングにズレを生じたり、接当力に差異を生ずることは避
け難い。これによつて、締切り性能が短期間のうちに、
劣化してしまう欠点があつた。そこで、このような複座
弁式のもつ欠点を解消するために、単弁式のものが種々
、考えられている。第3図に示すものは、その一例であ
つて、弁10を、その開動方向側に位置する上部空間0
4を常に二次圧P2と同圧にバランスさせるための連通
路019を有する円柱状のものに構成するとともに、そ
の弁01の上部空間04に一次圧P1が洩れないように
、その外周壁01aには調整器本体ケース02の内周壁
面に密着するリングパツキン018が嵌着されている。
That is, in the closed state, both valves 01 and 0V must be brought into contact with the valve seats 016 and 016' at the same time and with the same pressing force, but such high-precision assembly and adjustment is technically difficult. Very difficult. In particular, both valves 01 and 0V are set so that they come into close contact with the valve seats 016 and 016' at the time of shut-off.
The stress relaxation of the elastic sealing materials 017 and 017' fitted to the
It is unavoidable that the timing of the contact between the valves 01 and 0V against the valve seats 016 and 016' will be different, and that there will be a difference in the contact force. As a result, the deadline performance can be improved in a short period of time.
There was a drawback that it deteriorated. Therefore, in order to overcome the drawbacks of the double-seat valve type, various single-valve type valves have been considered. The one shown in FIG.
4 is configured in a cylindrical shape having a communication passage 019 for always balancing the same pressure as the secondary pressure P2, and the outer peripheral wall 01a is configured to prevent the primary pressure P1 from leaking into the upper space 04 of the valve 01. A ring packing 018 is fitted into the adjuster main body case 02 so as to be in close contact with the inner circumferential wall surface of the adjuster main body case 02.

しかし、この単弁式のものでは、前記リングパツキン0
18による摩擦抵抗が相当大きく、これが弁の動作負荷
となるため、所期の弁動作に大なる駆動力を必要とし、
応答性の悪いものである。
However, in this single valve type, the ring seal 0
The frictional resistance caused by 18 is quite large, and this becomes an operating load for the valve, so a large driving force is required for the intended valve operation.
It has poor responsiveness.

また、上記したもののほかに、この種の単弁式には種々
の構造のものが開発されているが、何れのものも、上記
のような欠点をもつか、若しくは、締切り性能、調整の
困難さといつた欠点を有するものであつた。本発明は、
かかる従来実情に鑑みてなされたものであつて、その目
的は、複座弁式におけるような調整の困難さが無い単弁
式を採用しながらも、その単弁式故に必然的に生じると
ころの一次圧の影響による動作性能の低下を改善するこ
と、より具体的には、一次圧を利用することにより締切
り性能の向上を図り乍ら、弁動作時には一次圧による影
響の少ない状態で円滑な動作性能を発揮することができ
、しかも、摩耗などに対する締切り性能の補償のための
調整も簡単で、取扱い上、頗る有利な流体圧力調整弁装
置を提供せんとすることにある。
In addition to the above, various structures have been developed for this type of single valve type, but all of them have the drawbacks mentioned above, or have problems with shutoff performance, difficulty in adjustment, etc. It had some disadvantages. The present invention
This was done in view of the conventional situation, and the purpose was to adopt a single valve type that does not have the difficulty of adjustment like a double seat valve type, but to reduce the primary pressure that inevitably occurs due to the single valve type. More specifically, we aim to improve shutoff performance by utilizing primary pressure, while ensuring smooth operation performance with less influence from primary pressure during valve operation. It is an object of the present invention to provide a fluid pressure regulating valve device which is easy to adjust to compensate for the shutoff performance against wear and the like, and which is extremely advantageous in terms of handling.

上記目的を達成するためになされた本発明による流体圧
力調整弁装置の特徴は、冒頭に記載した基本的構成を有
するものにおいて、前記弁を、その開動方向側に位置す
る上部空間と下流側流路との連通路となり得る内部空間
を有する円筒状のものに構成すると共に、その円筒状弁
の内部空間内には前記二次側圧力の変動に応じて前記上
部空間と下流側流路5bとを連通させる状態と連通させ
ない状態とに自動開閉作動する内弁を内装し、かつ、そ
の内弁を前記弁の開閉作動時には常に開動姿勢に保持さ
れるように構成し、更に、前記円筒状弁の外周壁面と前
記本体ケースの内周壁面との間の全周囲に亘つて環状間
隙を設けて、前記上流側流路と前記上部空間とを常時連
通させると共に、前記弁の外周壁面を常時前記本体ケー
スの内周壁面に対して非接触状態となるように構成して
ある、という点に存する。
A feature of the fluid pressure regulating valve device according to the present invention, which has been made to achieve the above object, is that in the device having the basic configuration described at the beginning, the valve is connected to an upper space located on the opening direction side and a downstream flow direction. The cylindrical valve has a cylindrical shape having an internal space that can serve as a communication path with the flow path, and the upper space and the downstream flow path 5b are connected to each other in the internal space of the cylindrical valve according to fluctuations in the secondary pressure. an internal valve that automatically opens and closes between a communicating state and a non-communicating state, and the internal valve is configured to be always held in an open position when the valve is opened and closed, and the cylindrical valve An annular gap is provided around the entire circumference between the outer circumferential wall surface of the valve and the inner circumferential wall surface of the main body case, so that the upstream flow path and the upper space are always communicated, and the outer circumferential wall surface of the valve is always connected to the upper space. The main feature lies in that it is configured to be in a non-contact state with the inner circumferential wall surface of the main body case.

上記特徴構成により発揮される作用ならびに効果は次の
通りである。
The functions and effects exhibited by the above characteristic configuration are as follows.

即ち、弁の完全閉止時においては、内弁が閉止状態とな
るので、弁外周壁面と本体ケース内周壁面との間の環状
間隙を介して上流側流路と弁の上部空間とだけが連通す
ることとなつて、その上部空間が一次圧と同圧になるた
め、その一次圧を弁の閉止力として利用することができ
るので、締切り性能を著しく向上させることができるも
のであり乍ら、所期の圧力調整のための弁作動時には、
前記内弁が開動されて弁上部空間と下流側流路とが連通
することとなつて、その上部空間内の圧力はほぼ二次圧
とバランスするため、一次圧による負荷影響をなくする
又は非常に少なくすることができる。
That is, when the valve is completely closed, the inner valve is in a closed state, so only the upstream flow path and the upper space of the valve communicate through the annular gap between the outer circumferential wall of the valve and the inner circumferential wall of the main body case. As a result, the upper space has the same pressure as the primary pressure, so the primary pressure can be used as the closing force of the valve, so the shutoff performance can be significantly improved. When operating the valve to adjust the desired pressure,
When the inner valve is opened and the upper space of the valve communicates with the downstream flow path, the pressure in the upper space is almost balanced with the secondary pressure, so the load effect due to the primary pressure is eliminated or the can be reduced to

又、弁の外周壁面と本体ケース内周壁面との間にその全
周に亘つて環状間隙を設けることにより、つまり、弁の
外周壁面を常時前記本体ケースの内周壁面に対して非接
触状態となるように設けてあるから、弁作動時において
、その外周壁面と本体ケース内周壁面との間の摩擦抵抗
が全く発生しないため、極めて円滑な作動性能が得られ
ると共に応答性に優れた圧力調整機能を発揮し得るもの
にできたのである。その上、基本的には単弁式の構成を
有しているため、前述した複座弁式のものにおけるよう
な微妙な調整を要しないので、取扱い上も非常に有利な
ものにできたのである。以下、本発明の一実施例を第4
図および第5図に基いて詳述する。尚、この説明におい
て、パイロツトガバナ9、管11,8,10,11、ダ
イヤフラム13、スプリング15など第1図において仮
想線Aで囲んだ各構成部材は当然に有するものであるか
ら、第4図および第5図においてはこれらを省略するも
のとする。例えばガス導管のような流体供給路5の途中
に介装される本体ケース2の内部に、その下流側流路5
b内の二次側圧力P2の変動に応動するダイヤフラム1
3に接続の弁棒14を介して本体ケース2に対して上下
に移動することにより自動開閉作動する弁1を、その開
動方向側(上方側)に位置する上部空間4と下流側流路
5bとの連通路となり得る内部空間1bを有する円筒状
のものに構成すると共に、その円筒状弁1の内部空間1
b内には、前記二次側圧力P2の変動に応じて前記上部
空間4と下流側流路5bとを連通させる状態と連通させ
ない状態とに切換えるように、連通孔19に対して自動
開閉作動する内弁6を内装し、かつ、その内弁6を前記
弁1の開閉作動時には常に開動姿勢に保持されるように
圧縮スプリング7で上方に付勢し、更に、前記円筒状弁
1の外周壁面と前記本体ケース2の内周壁面との間の全
周囲に亘つて環状間隙3を設けて、前記上流側流路5a
と前記上部空間4とを常時連通させると共に、前記弁1
の外周壁面を常時前記本体ケース2の内周壁面に対して
非接触状態となるように構成してある。
Furthermore, by providing an annular gap along the entire circumference between the outer circumferential wall surface of the valve and the inner circumferential wall surface of the main body case, the outer circumferential wall surface of the valve is always kept in a non-contact state with the inner circumferential wall surface of the main body case. When the valve is operated, there is no frictional resistance between the outer circumferential wall and the inner circumferential wall of the main body case, resulting in extremely smooth operating performance and pressure control with excellent responsiveness. This made it possible to perform adjustment functions. Furthermore, since it basically has a single-valve configuration, it does not require the delicate adjustments that are required for the double-seat valve type mentioned above, making it extremely advantageous in terms of handling. . Hereinafter, one embodiment of the present invention will be described in the fourth embodiment.
This will be explained in detail based on the figure and FIG. In addition, in this explanation, each component surrounded by an imaginary line A in FIG. 1, such as the pilot governor 9, pipes 11, 8, 10, 11, diaphragm 13, and spring 15, is included as a matter of course, so FIG. And these are omitted in FIG. For example, a flow path 5 on the downstream side of the fluid supply path 5 such as a gas conduit is installed inside the main body case 2 interposed in the middle of the fluid supply path 5.
diaphragm 1 that responds to fluctuations in the secondary pressure P2 in b
A valve 1 that automatically opens and closes by moving up and down with respect to the main body case 2 via a valve stem 14 connected to The internal space 1b of the cylindrical valve 1 is configured to have a cylindrical shape having an internal space 1b that can serve as a communication path with the cylindrical valve 1.
In b, there is an automatic opening/closing operation for the communication hole 19 so as to switch between communicating and not communicating the upper space 4 and the downstream flow path 5b according to fluctuations in the secondary pressure P2. An inner valve 6 is installed inside, and the inner valve 6 is urged upward by a compression spring 7 so that it is always held in an open position when the valve 1 is opened or closed, and the outer periphery of the cylindrical valve 1 is biased upwardly by a compression spring 7. An annular gap 3 is provided around the entire circumference between the wall surface and the inner circumferential wall surface of the main body case 2, and the upstream flow path 5a
and the upper space 4 are always communicated, and the valve 1
The outer circumferential wall surface of the main body case 2 is configured to be in a non-contact state with the inner circumferential wall surface of the main body case 2 at all times.

上記構成からなる流体圧力調整弁装置においては、弁1
が開いている時には、流体の大部分は上流側から弁1を
経て下流側へ流れるが、一部の流体が環状間隙3から弁
上部空間4に流れ込んだのち、弁1の内部空間1bおよ
び連通孔19を経て下流側に流れるので、弁上部空間4
は二次圧P2とほぼ同圧の状態に保持されている。した
がつて、弁1には不均等な力が加わらない。そして、二
次圧P2が規定値よりも上昇すると、弁1は閉止方向に
作動するが、この弁1が閉止するのは、第5図で示すよ
うに、先ず弁1が弁座16に接して流体流れの大半を遮
断し、更に、二次圧P2の上昇につれて、スプリング7
に打ち勝つて内弁6が閉まり、完全な閉止状態となる。
そして、上部空間4は次第に圧力上昇して一次圧P1と
等しい圧力まで上昇し、これが弁1を閉止する力として
作用するため、締切り性能は著しく向上する。次に、二
次圧P2が下降すると、ダイヤフラム13に接続の弁棒
14が上昇し、先ず内弁6を開放する。このとき、内弁
6には一次圧P,が多少、不均等に加わつているが、面
積が極めて小さいため、その不均等な力は小さく、弁作
動状態に影響を与えるほどではない。この内弁6が開く
と、上部空間4の圧力は弁1の内部空間1bおよび連通
孔19を通じて下流側に流れ、二次圧にほぼ等しくなな
るため、弁1の圧力不均等はなくなり、その動作がスム
ーズなものとなる。
In the fluid pressure regulating valve device having the above configuration, the valve 1
When the is open, most of the fluid flows from the upstream side through the valve 1 to the downstream side, but some fluid flows from the annular gap 3 into the valve upper space 4 and then flows into the internal space 1b of the valve 1 and the communication Since it flows downstream through the hole 19, the valve upper space 4
is maintained at approximately the same pressure as the secondary pressure P2. Therefore, no uneven forces are applied to the valve 1. When the secondary pressure P2 rises above the specified value, the valve 1 operates in the closing direction, but the reason why the valve 1 closes is because the valve 1 first contacts the valve seat 16, as shown in FIG. Most of the fluid flow is cut off, and as the secondary pressure P2 increases, the spring 7
The inner valve 6 overcomes this and closes, becoming completely closed.
Then, the pressure in the upper space 4 gradually increases to a pressure equal to the primary pressure P1, which acts as a force to close the valve 1, so that the shutoff performance is significantly improved. Next, when the secondary pressure P2 falls, the valve rod 14 connected to the diaphragm 13 rises, first opening the inner valve 6. At this time, the primary pressure P is applied to the inner valve 6 somewhat unevenly, but since the area is extremely small, the uneven force is small and does not affect the valve operating state. When the inner valve 6 opens, the pressure in the upper space 4 flows downstream through the inner space 1b of the valve 1 and the communication hole 19, and becomes almost equal to the secondary pressure, so that the pressure imbalance in the valve 1 disappears. The operation becomes smooth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複座弁式圧力調整弁装置を示す断面図、
第2図は第1図のものの圧力バランスの状態図、第3図
はシリンダー型単弁式圧力調整弁装置を示す要部の断面
図である。 そして、第4図および第5図は本発明に係る流体圧力調
整弁装置の実施例を示し、夫々、作動状態を説明するた
めの要部断面図である。1・・・・・・弁、1b・・・
・・・内部空間、2・・・・・・本体ケース、3・・・
・・・環状間隙、4・・・・・・上部空間、5・・・・
・・流体供給路、5a・・・・・上流側流路、5b・・
・・・・下流側流路、P1・・・・・・一次側圧力、P
2・・・・・・二次側圧力、6・・−・・内弁。
Figure 1 is a sectional view showing a conventional double-seat pressure regulating valve device;
FIG. 2 is a state diagram of the pressure balance of the one shown in FIG. 1, and FIG. 3 is a sectional view of the main part showing the cylinder type single valve type pressure regulating valve device. FIGS. 4 and 5 show an embodiment of the fluid pressure regulating valve device according to the present invention, and each is a sectional view of a main part for explaining the operating state. 1...Valve, 1b...
...Internal space, 2...Main case, 3...
... Annular gap, 4 ... Upper space, 5 ...
...Fluid supply path, 5a...Upstream flow path, 5b...
...Downstream flow path, P1...Primary side pressure, P
2...Secondary side pressure, 6...Inner valve.

Claims (1)

【特許請求の範囲】[Claims] 1 流体供給路5の途中に介装される本体ケース2の内
部に、その下流側流路5b内の二次側圧力P_2の変動
に応じて自動開閉作動する弁1を内装し、もつて、前記
二次側圧力P_2が常に一定に保持されるように構成し
てある流体圧力調整弁装置において、前記弁1を、その
開動方向側に位置する上部空間4と下流側流路5bとの
連通路となり得る内部空間1bを有する円筒状のものに
構成すると共に、その円筒状弁1の内部空間1b内には
前記二次側圧力P_2の変動に応じて前記上部空間4と
下流側流路5bとを連通させる状態と連通させない状態
とに自動開閉作動する内弁6を内装し、かつ、その内弁
6を前記弁1の開閉作動時には常に開動姿勢に保持され
るように構成し、更に、前記円筒状弁1の外周壁面と前
記本体ケース2の内周壁面との間の全周囲に亘つて環状
間隙3を設けて、前記上流側流路5aと前記上部空間4
とを常時連通させると共に、前記弁1の外周壁面を常時
前記本体ケース2の内周壁面に対して非接触状態となる
ように構成してあることを特徴とする流体圧力調整弁装
置。
1. A valve 1 that automatically opens and closes in response to fluctuations in the secondary pressure P_2 in the downstream flow path 5b is installed inside the main body case 2 interposed in the middle of the fluid supply path 5, and In a fluid pressure regulating valve device configured such that the secondary side pressure P_2 is always kept constant, the valve 1 is connected to the upper space 4 located on the opening direction side and the downstream flow path 5b. The cylindrical valve 1 is configured to have a cylindrical shape having an internal space 1b that can serve as a passage, and in the internal space 1b of the cylindrical valve 1, the upper space 4 and the downstream flow path 5b are arranged according to fluctuations in the secondary side pressure P_2. an internal valve 6 that automatically opens and closes between a communicating state and a non-communicating state, and the internal valve 6 is configured to be always held in an open position when the valve 1 is opened and closed, and further, An annular gap 3 is provided around the entire circumference between the outer circumferential wall surface of the cylindrical valve 1 and the inner circumferential wall surface of the main body case 2, and the upstream flow path 5a and the upper space 4 are
A fluid pressure regulating valve device characterized in that the valve 1 is always in communication with the valve 1 and the outer peripheral wall surface of the valve 1 is always in a non-contact state with the inner peripheral wall surface of the main body case 2.
JP3384075A 1975-03-20 1975-03-20 Fluid pressure regulating valve device Expired JPS5916296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3384075A JPS5916296B2 (en) 1975-03-20 1975-03-20 Fluid pressure regulating valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3384075A JPS5916296B2 (en) 1975-03-20 1975-03-20 Fluid pressure regulating valve device

Publications (2)

Publication Number Publication Date
JPS51108328A JPS51108328A (en) 1976-09-25
JPS5916296B2 true JPS5916296B2 (en) 1984-04-14

Family

ID=12397674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3384075A Expired JPS5916296B2 (en) 1975-03-20 1975-03-20 Fluid pressure regulating valve device

Country Status (1)

Country Link
JP (1) JPS5916296B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108514U (en) * 1982-01-18 1983-07-23 大阪瓦斯株式会社 governor
JPS6028238U (en) * 1983-08-03 1985-02-26 自動車機器株式会社 Slide type exhaust brake device
NO172410C (en) * 1991-04-04 1993-07-14 Covent As FLUID MEDIUM FLUID VALVE VALVE
JP5567571B2 (en) * 2008-09-02 2014-08-06 エマーソン プロセス マネージメント レギュレーター テクノロジーズ インコーポレイテッド Fluid flow control member used with a valve
JP5704656B2 (en) * 2012-06-18 2015-04-22 リンナイ株式会社 Flow control valve

Also Published As

Publication number Publication date
JPS51108328A (en) 1976-09-25

Similar Documents

Publication Publication Date Title
US3601157A (en) Pressure balanced valve
US2087037A (en) Valve
JPH0428922B2 (en)
US4482127A (en) Valve structure
US2412490A (en) Fluid control valve
US2663121A (en) Combination pressure reducing regulator and relief valve
US2448429A (en) Pressure relief valve
US2304323A (en) Pressure operated throttling valve
US2700983A (en) Fluid pressure regulator
US3572359A (en) Pressure responsive valve
JPS5916296B2 (en) Fluid pressure regulating valve device
US3620501A (en) Nonchattering pressure relief valve
US3575213A (en) Control valves with balanced action
US3958600A (en) Combined starting and rapid shut-off mechanism for steam and gas turbines
US2687743A (en) Pressure reducing valve with overpressure release
US3945395A (en) Vent and relief valve
US2920859A (en) Balanced valve means
US3756264A (en) Pressure control devices for fluid flow systems
US2631606A (en) Pressure regulator
US3193247A (en) Sequentially seated valve
US2923316A (en) Regulating valve
US3540690A (en) Valve construction
US3032056A (en) Regulating valve
US991230A (en) Overbalanced fluid-pressure valve.
US2993507A (en) Pressure regulator