JPS59162898A - Method and apparatus for determination of solute using immobilized enzyme - Google Patents

Method and apparatus for determination of solute using immobilized enzyme

Info

Publication number
JPS59162898A
JPS59162898A JP58037399A JP3739983A JPS59162898A JP S59162898 A JPS59162898 A JP S59162898A JP 58037399 A JP58037399 A JP 58037399A JP 3739983 A JP3739983 A JP 3739983A JP S59162898 A JPS59162898 A JP S59162898A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
measuring
immobilized
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58037399A
Other languages
Japanese (ja)
Other versions
JPH0459876B2 (en
Inventor
Teruaki Kobayashi
映章 小林
Kenji Yasuda
健二 保田
Daizo Tokinaga
時永 大三
Akiko Katori
香取 暁子
Kichiji Karasawa
唐沢 吉治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58037399A priority Critical patent/JPS59162898A/en
Priority to DE19833347104 priority patent/DE3347104C2/en
Publication of JPS59162898A publication Critical patent/JPS59162898A/en
Publication of JPH0459876B2 publication Critical patent/JPH0459876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes

Abstract

PURPOSE:To prevent the deactivation of enzyme with heavy metal (e.g. Ag) in an analyzer utilizing an SH enzyme, by contacting the immobilized enzyme constantly with a low molecular SH compound during the pause of the measurement. CONSTITUTION:The cell 19 is furnished with an enzyme electrode (having an enzyme membrane immobilized with an enzyme such as urease, as a sensitive membrane), a reference electrode 2 and an earth electrode 3 in the flow path in the order. The specimen supplied from the injector 18 is carried by the carrier buffer liquid 15 and transferred to the cell 19 through the thin tube 14 and the feed pump 17. A signal corresponding to the concentration of the material (e.g. urea) to be determined is generated by the electrode, and is transferred via the preamplifier 20 and recorded with the recorder 21. The carrier buffer solution in the above process is the one containing about 0.1-100mM of a compound containing SH group (e.g. mercaptoethanol, glutathion, etc.).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は溶液中に溶存する物質を酵素電極又は酵素全固
定化したリアクタにより測定する方法に係り、特に8H
酵素を用いた酵素電極又はリアクタによシ血液等の体液
中圧溶存する物質を測定するのに好適な測定方法及び測
定装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for measuring substances dissolved in a solution using an enzyme electrode or a reactor in which an enzyme is completely immobilized.
The present invention relates to a measuring method and a measuring device suitable for measuring substances dissolved in body fluids such as blood using enzyme electrodes or reactors using enzymes.

〔従来技術〕[Prior art]

基質(測定対象物質)に対する反応特異性の高い酵素を
固定化した酵素膜とイオン電極等とを組合せた酵素電極
は10数年前に開発され(G、G。
Enzyme electrodes, which combine enzyme membranes with immobilized enzymes with high reaction specificity to substrates (substances to be measured) and ion electrodes, were developed over 10 years ago (G, G).

Quilbault、 Handbook  of  
EnZymaticMethode  of  Ana
lysis、Marcel  Dekker。
Quilbault, Handbook of
EnZymaticMethod of Ana
lysis, Marcel Dekker.

NeW ’York  (1976)、近年その一部が
実用段階に達した。しかしなお寿命が短い等の問題点が
依然として残されている。特に触媒作用にSH基を必要
とするSH酵累は微量の重金属によって容易に失活する
。一般にキレート化合物ヲ切りやすい金xiaエチレン
ジアミン四酢酸等により除去出来るが、銀のような一部
イオンは、それらによる除去が困難で、酵素電極の短寿
命化の原因物質となっている。
NeW 'York (1976), some of which have recently reached the practical stage. However, problems such as short life still remain. In particular, SH enzymes that require SH groups for catalytic action are easily deactivated by trace amounts of heavy metals. In general, chelate compounds can be easily removed using gold, ethylenediaminetetraacetic acid, etc., but some ions, such as silver, are difficult to remove and are responsible for shortening the life of enzyme electrodes.

〔発明の目的〕[Purpose of the invention]

本発明の目的はSH酵素?用いた酵素電極又は酵素を固
定化したリアクタの重金属による失活を防ぎ、上記酵素
電極等の寿命を改善することを目的とする。
Is the purpose of the present invention an SH enzyme? The purpose is to prevent the enzyme electrode used or the reactor in which the enzyme is immobilized from being inactivated by heavy metals, and to improve the lifespan of the enzyme electrode and the like.

〔発明の概要〕[Summary of the invention]

SH酵索(E−8Hで示す)、すなわち酵素活性に8H
基が関与する酵素に例えば−御の重金属イオン(M+で
示す)が作用すると、次式で示すように、酵素に重金属
イオンが容易に結合する。
SH enzyme cord (denoted as E-8H), i.e. 8H for enzyme activity
For example, when a negative heavy metal ion (denoted by M+) acts on an enzyme in which the group is involved, the heavy metal ion easily binds to the enzyme as shown in the following formula.

M++E−8H4E−8M+H” 上式のSH基が触媒作用に関与している場合には、上記
の反応により酵素の活性が失われる。
M++E-8H4E-8M+H'' If the SH group in the above formula is involved in catalytic action, the activity of the enzyme is lost due to the above reaction.

一方、M+に対する反応特異性が高い別のSH基を有す
る化合物(R−8Hで示す)がM+と接触すると、次式
のように同様の反応が起こり、そのため、SH酵累の活
性が界なわれることがない。
On the other hand, when a compound having another SH group (denoted by R-8H) with high reaction specificity for M+ comes into contact with M+, a similar reaction occurs as shown in the following formula, and therefore the activity of the SH enzyme is Never get caught.

さらに、上記M+と結合して失活した酵素にR−8H’
に接触させることにより、次式に示されるように酵素活
性を復活させることが可能である。
Furthermore, R-8H' is added to the enzyme that has been inactivated by binding to M+.
By contacting with , it is possible to restore the enzyme activity as shown in the following formula.

E−8M+R−8H−+E−8H+R−8M以下本発明
を固定化ウレアーゼ酵素電極を用いた血中尿素窒素の測
定を例にとって説明する。
E-8M+R-8H-+E-8H+R-8M The present invention will be explained below by taking as an example the measurement of blood urea nitrogen using an immobilized urease enzyme electrode.

第1図は本実施例で用いた測定系の電極部分の模式図で
ある。図において、1は酵素電極、2は参照電極、3は
アース電極、4は固定化ウレアーゼ膜、5はアンモニウ
ム選択透過膜、6及び7はイオン透過膜、8.9及び1
0はAg−AgCt電極、11.12及び13は電解質
液、14は細管、15は緩衝液、16は緩衝液の流れの
方向を示す矢印である。
FIG. 1 is a schematic diagram of the electrode portion of the measurement system used in this example. In the figure, 1 is an enzyme electrode, 2 is a reference electrode, 3 is a ground electrode, 4 is an immobilized urease membrane, 5 is an ammonium selectively permeable membrane, 6 and 7 are ion permeable membranes, 8.9 and 1
0 is an Ag-AgCt electrode, 11, 12 and 13 are electrolyte solutions, 14 is a capillary, 15 is a buffer solution, and 16 is an arrow indicating the flow direction of the buffer solution.

さて、細管14に緩衝液をキャリアとして血液等の試料
を少量(例えばlOμt)流すと、試料中に含まれる尿
素は酵素電極の固定化ウレアーゼ膜に接したさいに加水
分解され、アンモニウムイオンが生じる。アンモニウム
イオンはアンモニウム選択透過膜の膜電位を変化させ、
その結果、酵素電極と参照電極の間に試料中の尿素濃度
に依存した電位変化が生じる。
Now, when a small amount (for example, 10 μt) of a sample such as blood is flowed through the thin tube 14 using a buffer solution as a carrier, the urea contained in the sample is hydrolyzed when it comes into contact with the immobilized urease membrane of the enzyme electrode, producing ammonium ions. . Ammonium ions change the membrane potential of the ammonium permselective membrane,
As a result, a potential change occurs between the enzyme electrode and the reference electrode depending on the urea concentration in the sample.

通常この種の測定において、電位をとシ出す電極として
Ag−AgCt電極が最も安定性に優れていることが知
られている。hgctの水に対する溶解度は小さい(溶
解度積1.7 X 10−” (・25c))が、微量
のAg+は電解質液11〜13中に常に存在し、またア
ンモニウムイオンによりさらにAgCtの一部は錯塩(
例えば[Ag (NH3)t 〕”cz)として溶解す
る。
Generally, in this type of measurement, it is known that an Ag-AgCt electrode has the best stability as an electrode for emitting a potential. Although the solubility of hgct in water is small (solubility product 1.7 (
For example, it is dissolved as [Ag (NH3)t ]"cz).

アンモニウム選択透過膜5は親水性に欠けるため、電解
質液11中に溶存するAg +は膜を通して外部に出難
いと考えられるが、微量のAg+は透過する。電解質液
12及び13中に溶存するAg4′はイオン透過膜6及
び7全通して容易に外部に拡散してくる。
Since the ammonium permselective membrane 5 lacks hydrophilicity, it is thought that Ag + dissolved in the electrolyte solution 11 is difficult to exit through the membrane, but a trace amount of Ag + does permeate. Ag4' dissolved in the electrolyte solutions 12 and 13 passes through the ion permeable membranes 6 and 7 and easily diffuses to the outside.

本測定系においては、緩衝液15が流れている限り電極
2及び3に由来するAg+は流去し、酵素膜4に捕捉さ
れにくいが、15の流れが止まるとAg0は自然拡散し
て酵素膜に達し、ウレアーゼの活性を阻害する。
In this measurement system, as long as the buffer solution 15 is flowing, Ag+ originating from the electrodes 2 and 3 flows away and is difficult to be captured by the enzyme membrane 4, but when the flow of buffer solution 15 stops, Ag0 naturally diffuses into the enzyme membrane. and inhibits urease activity.

本発明者等の実験によると、電極1,2盈び3全1cr
I!間隔で配置した場合、装置を停止してから15h以
内で固定化ウレアーゼ膜4の活性が完全に失われた。そ
こで細管14に50mMメルカプトエタノール溶液を満
たし4h放置した後再測定を行ったところ、ウレアーゼ
膜の活性は約80%回復した。また、同様に完全に失活
したウレアーゼgf 50 m Mメルカプトエタノー
ル溶液に8h接触させておいたところ、膜の活性は完全
に回復した。一方、装置を停止してから直ちに細管14
にメルカプトエタノール溶液を満たし、15h後にウレ
アーゼ膜の活性を測定したところ、全く減衰は認屹られ
なかった。
According to experiments conducted by the present inventors, electrodes 1 and 2 and electrodes 3 were all 1 cr.
I! When arranged at intervals, the activity of the immobilized urease membrane 4 was completely lost within 15 h after the apparatus was stopped. Therefore, when the tubule 14 was filled with a 50 mM mercaptoethanol solution and remeasured after being left for 4 hours, the activity of the urease membrane was recovered by about 80%. Furthermore, when the membrane was kept in contact with a 50 mM mercaptoethanol solution of urease gf, which had been completely inactivated, for 8 hours, the activity of the membrane was completely recovered. On the other hand, immediately after stopping the device, the thin tube 14
was filled with mercaptoethanol solution, and the activity of the urease membrane was measured 15 hours later, and no attenuation was observed.

固定化酵素膜極の代シに固定化酵素リアクタとアンモニ
ウム電極を一対として用いた場合にも上記と同様の効果
を示した。
The same effect as above was also obtained when an immobilized enzyme reactor and an ammonium electrode were used as a pair in place of the immobilized enzyme membrane electrode.

第1図に示した装置による実験とは別に、いくつかのS
H酵素について原理的な実験を行った。
Apart from experiments using the apparatus shown in Figure 1, several S
A fundamental experiment was conducted on the H enzyme.

すなわち、アルコールデヒドロゲナーゼ、アスパラキナ
ーゼ、β−アミラーゼ、ウレアーゼ、フルクト−スジホ
スファターゼ、α−グルコシダーゼをそれぞれセルロー
スアセテート膜に固定化し実ス 験試料とした。/クレオフィルタで2室に仕切った容器
を用意し、各室に60mMIJン酸緩衝液を10mtず
つ入れ、一方に10μM硝酸銀溶液100μt1他方に
固定化酵素膜の小片を加えた。
That is, alcohol dehydrogenase, asparakinase, β-amylase, urease, fructo-striped phosphatase, and α-glucosidase were each immobilized on a cellulose acetate membrane and used as experimental samples. A container partitioned into two chambers with a creofilter was prepared, and each chamber was filled with 10 mt of 60mM IJ phosphate buffer, 100 μt of 10 μM silver nitrate solution was added to one, and a small piece of the immobilized enzyme membrane was added to the other.

4tll’、15h放置後酵素活性を測定したところ、
いずれも活性は消失していた。一方固定化酵素膜を加え
る方の室に1Mメルカプトエタノール溶液100μt’
2あらかじめ添加しておき、上記と同様に4C,15h
放置後酵素活性を測定した。別にコントロールとし7て
、緩衝液中に固定化酵素膜を入れ、4tr、15h放置
した。前記酵素膜の酵素活性は、コントロールと比較し
て、減衰は認められなかった。
After 4tll' and 15h of standing, the enzyme activity was measured.
In both cases, activity had disappeared. On the other hand, 100 μt' of 1M mercaptoethanol solution was added to the chamber to which the immobilized enzyme membrane was added.
2 Add in advance and add 4C for 15h in the same way as above.
After standing, enzyme activity was measured. Separately, as a control, an immobilized enzyme membrane was placed in a buffer solution and left at 4tr for 15 hours. No decrease in the enzyme activity of the enzyme membrane was observed compared to the control.

8H酵素を使用した分析装置(酵素電極、酵素リアクタ
等を備えた分析装置)においては、前記のように、測定
休止中宮に固定化酵素を一低分子SH化合物に接触させ
ておくと、重金属、とくに一価の重金属による酵素の失
活が防止出来ること、が明らかになった。ここで休止中
というのは、1夜程度の休止も数日間の休止も含むもの
である。
In an analyzer using an 8H enzyme (an analyzer equipped with an enzyme electrode, an enzyme reactor, etc.), as mentioned above, if the immobilized enzyme is brought into contact with a low-molecular-weight SH compound while the measurement is paused, heavy metals, In particular, it has been found that enzyme deactivation caused by monovalent heavy metals can be prevented. Here, being on hiatus includes a hiatus of about one night or a hiatus of several days.

一般に固定化酵素膜は時間の経過と共に徐々に活性が低
下するが、その原因の一つとして重金属による失活が考
えられる。重金属の起源は、前記のように、各種電極に
由来するAg0の如く明確なものもあるが、使用する試
薬中などに不純物として含まれているものもある。これ
らの微量重金属も長期的にみると酵素の寿命を低下する
要因となっている。このような不純物として測定系に入
り込む微量重金属もSH基を有する化合物により捕捉し
、系外に除去出来る。
Generally, the activity of immobilized enzyme membranes gradually decreases over time, and one of the reasons for this is thought to be deactivation due to heavy metals. As mentioned above, the origin of heavy metals is clear, such as Ag0, which originates from various electrodes, but there are also heavy metals that are contained as impurities in the reagents used. These trace amounts of heavy metals are also a factor that reduces the lifespan of enzymes in the long term. Trace amounts of heavy metals that enter the measurement system as impurities can also be captured by the compound having an SH group and removed from the system.

SH基を有する化合物は還元性物質であるが、これが目
的とする測定に影響を与えない場合には緩衝液中に添加
しておくことが可能である。この場合のSH基ヲ有する
化合物の濃度は、0,1 〜100mMの範囲が好まし
く、5〜50mMの範囲がより好ましい。100 mM
’に越える濃度としてもさしつかえないが、不経済であ
シ、かつ悪臭全件うので好ましくない。また0、1mM
未満では溶液を多量に流す必要があり、同様に経済的で
ない。
A compound having an SH group is a reducing substance, but if it does not affect the intended measurement, it can be added to the buffer solution. In this case, the concentration of the compound having an SH group is preferably in the range of 0.1 to 100 mM, more preferably in the range of 5 to 50 mM. 100mM
Although it is acceptable to have a concentration exceeding 1, it is not desirable because it is uneconomical and gives off a bad odor. Also 0,1mM
If it is less than that, it is necessary to flow a large amount of solution, which is similarly uneconomical.

SH基を有する化合物としては、緩衝液に溶解するもの
であればいかなるものでもよいが、とくに低分子量のも
のが溶解しやすいので好ましい。
The compound having an SH group may be any compound as long as it dissolves in the buffer solution, but compounds with a low molecular weight are particularly preferred since they are easily soluble.

このような化合物としては、メルカプトエタノール、グ
ルタチオン、システィン、チオクリコール酸、2−メル
カグトエチルアミン、ベンゼンチオール、パラチオクレ
ゾール、ジチオスレイトール等多くのSH化合物が使用
出来る。
As such compounds, many SH compounds such as mercaptoethanol, glutathione, cysteine, thiocricholic acid, 2-mercagutoethylamine, benzenethiol, parathiocresol, and dithiothreitol can be used.

本発明の他の方法として、酵素電極と参照電極の間の液
の流路に一価重金属の捕捉剤を詰めたトラップを配置す
る方法がある。−制電金属の捕捉剤としては、SH基を
有する不溶性物質、例えばSH化ポリスチレン微粒子な
どがある。この微粒子を前記のように流路中に配置し、
その前後を微粒子の流出全防止するため、親水処理した
ポリエステル不織布などの多孔質膜を配置する。この方
法によっても、参照電極、アース電極から流出する一価
重金属から酵素電極を保護することができる。
Another method of the present invention is to place a trap filled with a monovalent heavy metal scavenger in the liquid flow path between the enzyme electrode and the reference electrode. - As the antistatic metal scavenger, there are insoluble substances having SH groups, such as SH-modified polystyrene fine particles. The fine particles are placed in the flow path as described above,
In order to completely prevent the outflow of fine particles, a porous membrane such as a hydrophilically treated polyester nonwoven fabric is placed before and after the membrane. This method also allows the enzyme electrode to be protected from monovalent heavy metals flowing out from the reference electrode and the ground electrode.

酵素電極の代わりに酵素リアクタとアンモニウム電極を
用いた場合も同様である。この場合、アンモニウム電極
からのA g 4−の流出は、参照電極のそれと比較し
て極めて少ないので、−制電金属の捕捉剤を詰めたトラ
ップは、リアクタと参照電極の間の流路に配置すれば、
アンモニウム電極の上流側でも下流側でもさしつかえな
い。しかし通常は、リアクタとアンモニウム電極の間に
設けることが好ましい、。
The same applies when an enzyme reactor and an ammonium electrode are used instead of an enzyme electrode. In this case, since the outflow of A g 4- from the ammonium electrode is extremely low compared to that of the reference electrode, a trap filled with an antistatic metal scavenger is placed in the flow path between the reactor and the reference electrode. if,
It can be used upstream or downstream of the ammonium electrode. However, it is usually preferable to provide it between the reactor and the ammonium electrode.

測定休止時間が長く、すなわち捕捉剤の使用時間が長く
、捕捉剤が多量の重金属を吸着したときは、SH基を有
する化合物、例えばメルカプトエタノールを含む緩衝液
をトラップに流すことにより、前述の式からも分かるよ
うに重金柄捕捉剤としての機能を容易に再生させること
ができる。
When the measurement pause time is long, that is, the trapping agent is used for a long time, and the trapping agent has adsorbed a large amount of heavy metals, by flowing a buffer solution containing a compound having an SH group, such as mercaptoethanol, into the trap, the above-mentioned formula As can be seen from the above, the function as a heavy gold handle scavenger can be easily regenerated.

本発明のさらに他の方法は、測定休止中にも、緩衝液全
間歇的に流路に流す方法である。すでに述べたように、
重金属は、主として参照電極、アース電極から流出する
ものであるから、第1図の如く緩衝液の流路の上流側か
ら、酵素電極、参照電極、アース電極と配置し、測定休
止中も緩衝液を常時流し続ければ酵素電極は失活しない
。しかし、これは経済的な面から実用的でない。そのた
め、前述の如く緩衝液を間歇的に流路に流せばよい。
Still another method of the present invention is a method in which the buffer solution is intermittently flowed through the flow channel even during the suspension of measurement. As already mentioned,
Since heavy metals mainly flow out from the reference electrode and the ground electrode, the enzyme electrode, reference electrode, and ground electrode are arranged from the upstream side of the buffer flow path as shown in Figure 1, and the buffer solution is kept flowing even during measurement suspension. The enzyme electrode will not be deactivated if it is kept flowing at all times. However, this is not practical from an economic standpoint. Therefore, as described above, it is sufficient to intermittently flow the buffer solution into the channel.

前記酵素電極と参照電極との間の流路の長さは、通常1
5〜150rranであることが好ましく、20〜50
嗣であるととがよシ好ましい。両電極をこのような間隔
で配置したとき、5〜10時間の間隔で、両電極間の流
路に存在する緩衝液の容量の1〜20倍、より好ましく
は2〜10倍の容量の新らしい緩衝液を流せばよい。例
えば、細管が1φ位であるとき10〜50mAの液を流
せばよい。
The length of the flow path between the enzyme electrode and the reference electrode is usually 1
It is preferable that it is 5 to 150 rran, and 20 to 50 rran
It is especially desirable to be the heir. When both electrodes are arranged at such an interval, a new volume of 1 to 20 times, more preferably 2 to 10 times, the volume of the buffer solution present in the flow path between the two electrodes is generated at intervals of 5 to 10 hours. All you have to do is run a suitable buffer solution. For example, when the thin tube has a diameter of about 1φ, a liquid of 10 to 50 mA may be applied.

もちろん、上記間隔よりも短かい間隔で、又は液量を多
く流してもさしつかえないが経済的ではない。
Of course, it is possible to flow at shorter intervals than the above-mentioned interval or to flow a larger amount of liquid, but it is not economical.

〔発明の実施例ゴ 以下、本発明を実施例を用いて説明する。[Embodiments of the invention] The present invention will be explained below using examples.

第2図に本発明の装置の一実施例を示す。・第2図(a
)は酵素電極を用いた分析装置の原理図であり、第2図
(b)Fi酵素リアクタを用いた分析装置の原理図であ
る。図において、1,2.3はそれぞれ酵素電極、参照
電極、アース電極である。また22はウレアーゼを固定
化した酵素リアクタ、23はアンモニウム電極である。
FIG. 2 shows an embodiment of the apparatus of the present invention.・Figure 2 (a
) is a diagram of the principle of an analysis device using an enzyme electrode, and FIG. 2(b) is a diagram of the principle of an analysis device using an Fi enzyme reactor. In the figure, 1, 2.3 are an enzyme electrode, a reference electrode, and a ground electrode, respectively. Further, 22 is an enzyme reactor in which urease is immobilized, and 23 is an ammonium electrode.

14は細管、15はキャリア緩衝液、17は送液ポンプ
、18は試料注入器、19は電極を保持するセル、20
はプリアンプ、21は記録計である。キャリア緩衝液を
セルに流しながら試料注入器より微量(例えば10〜2
0μt)の試料全流路系に注入すると試料は電極に遅し
、あるいはリアクタで分解されてから電極に達し、濃度
に応じた信号が得られる。ここで緩衝液にSH基f:有
する化合物としてメルカプトエタノール5mMk添加し
ておくと、−流路系に流出あるいは混在した重金属は常
にSH基を有する化合物に捕捉され、固定化酵素の重金
属により劣化は防止出来る。このように測定中止時のみ
ならず、測定中18H基?有する化合物が緩衝液中にあ
っても、ウレアーゼを固定化した感応膜を有する酵素電
極又はリアクタには悪影響を与えない。
14 is a thin tube, 15 is a carrier buffer, 17 is a liquid pump, 18 is a sample injector, 19 is a cell holding an electrode, 20
is a preamplifier, and 21 is a recorder. While flowing the carrier buffer into the cell, add a small amount (for example, 10 to 2
When a sample (0 μt) is injected into the entire flow path system, the sample is delayed to the electrode, or is decomposed in a reactor before reaching the electrode, and a signal corresponding to the concentration is obtained. Here, if mercaptoethanol (5mMk) is added to the buffer as a compound having an SH group f:, the heavy metals flowing out or mixed into the channel system will always be captured by the compound having an SH group, and the immobilized enzyme will not be degraded by the heavy metals. It can be prevented. In this way, not only when the measurement is stopped, but also during the measurement, the 18H group? Even if the compound containing urease is present in the buffer solution, it does not adversely affect the enzyme electrode or reactor that has a sensitive membrane on which urease is immobilized.

第2図は固定化ウレアーゼを用いて尿素音測定する装置
の例を示したものであるが、同一流路系に多くの固定化
酵素を用いた電極等を設置し、多項目同時測定を行なう
装置を第3図に示す。この場合、例えばグルコース測定
用電極等は還元物質の影響を受けるめで、キャリア緩衝
液中に上記物質を添加しておくと測定精度を低下させる
ことになる。図において、24はウレアーゼのよりなS
H酵素電極用のセル、25は参照電極等を備えたセル、
26はグルコース測定用などの他の電極を備えたセルを
示す。また27はSH化合物を含む緩衝液、28及び2
9は流路切シ換え弁である。
Figure 2 shows an example of a device that measures urea sound using immobilized urease, but it is also possible to install electrodes using many immobilized enzymes in the same channel system to perform multi-item simultaneous measurements. The apparatus is shown in FIG. In this case, for example, the electrode for measuring glucose is affected by the reducing substance, and if the substance is added to the carrier buffer, the measurement accuracy will be reduced. In the figure, 24 is the more S of urease.
H cell for enzyme electrode; 25 is a cell equipped with a reference electrode, etc.;
26 indicates a cell equipped with other electrodes, such as for glucose measurement. In addition, 27 is a buffer containing SH compound, 28 and 2
9 is a flow path switching valve.

測定中はSH化合物を含′1ないキャリア緩衝液全流路
系に流しておく。測定休止あるいは停止中は弁28及び
29金切りかえて、SH化合物を含む緩衝液27をセA
/24だけ全通るように流すか、あるいは緩衝液27全
短時間流路に流したのち、ポンプ全とめ、液をこの流路
系に満たしておく。
During the measurement, a carrier buffer containing no SH compound is allowed to flow through the entire channel system. When the measurement is suspended or stopped, the valves 28 and 29 are switched to drain the buffer solution 27 containing the SH compound.
After flowing the buffer solution for a short period of time, the pump is completely stopped and the liquid is filled into this channel system.

このようにして、他の電極に影響を及ぼすことなく、S
H酵素電極の劣化を防止することが出来る。
In this way, S without affecting other electrodes
Deterioration of the H enzyme electrode can be prevented.

緩衝液27は適宜交換すれば良い。The buffer solution 27 may be replaced as appropriate.

なお、メルカプトエタノールに代えて、グルタチオン、
システィン、チオグリコール酸、2−メルカプトエチル
アミン、べ/ゼンチオール、パラチオクレゾール、ジチ
オスレイトールなどを用いた場合も同様の結果を得た。
In addition, instead of mercaptoethanol, glutathione,
Similar results were obtained when cysteine, thioglycolic acid, 2-mercaptoethylamine, be/zenthiol, parathiocresol, dithiothreitol, etc. were used.

さらに他の実施例として一価重金属の捕捉剤金詰めたト
ラップを設けた例全第4図を示す。平均粒径約0.3 
ranφのポリスチレン微粒子を、公知の′方法により
表面にSH基をもたせ、SH化ポリスチレン微粒子を得
た。このSH化ポリスチレン微粒子41を直径2W+I
φの細管に10咽の長さに詰め、その前後に親水処理し
たポリエステル不織布の多孔質膜42.43を配置して
微粒子の流出を防止した。第4図は、分析装置の一部分
金示したが、この上流側には緩衝液の容器、送液ポンプ
、試料注入器など設けることは、第2図(a)と同じで
ある。この装置により試料測定後、15時間送液を止め
て放置し、再び送液全開始して試料を測定したが酵素電
極の失活は全くみられなかった。
Still another embodiment is shown in FIG. 4, in which a trap filled with gold, a scavenger for monovalent heavy metals, is provided. Average particle size approximately 0.3
Polystyrene fine particles of ranφ were provided with SH groups on the surface by a known method to obtain SH-modified polystyrene fine particles. This SH-modified polystyrene fine particle 41 has a diameter of 2W+I.
It was filled into a φ thin tube to a length of 10 mm, and porous membranes 42 and 43 of hydrophilic nonwoven polyester fabric were placed before and after the tube to prevent the outflow of fine particles. Although FIG. 4 shows a part of the analyzer, the provision of a buffer solution container, liquid feed pump, sample injector, etc. on the upstream side is the same as in FIG. 2(a). After measuring the sample using this device, the liquid feeding was stopped for 15 hours, and the sample was measured after the liquid feeding was started again, but no deactivation of the enzyme electrode was observed.

一方、比較のためSH化ポリスチレン微粒子を除いて同
様の実験を行なったところ、測定休止15時間で、酵素
電極は完全に失活した。
On the other hand, for comparison, when a similar experiment was conducted except for the use of SH-modified polystyrene fine particles, the enzyme electrode was completely inactivated after 15 hours of stopping measurement.

つぎに間歇的に緩衝液を流す実施例を示す。第2図(a
)に示した構造の分析装置を用い、緩衝液15として6
 omM (pH7,4)(7)りん酸水浴流を、細管
14として内径0.5 inのチューブを使用した。た
だしセル19内の流路は内径1flD11とした。
Next, an example will be shown in which the buffer solution is intermittently supplied. Figure 2 (a
) using an analyzer with the structure shown in 6.
omM (pH 7,4) (7) phosphoric acid water bath flow, and a tube with an inner diameter of 0.5 inches was used as the capillary 14. However, the flow path in the cell 19 had an inner diameter of 1flD11.

酵素電極1、参照電極2、アース電極3管それぞれ20
mmの間隔で配置し、ポンプは、’l m t/ 都の
速度で緩衝液を流すようにし、試料注入器18から試料
(血清)lOμtf注入し分析した。測定を8時間続け
たのち、ボング全止め、あと16時間の間は、電子装置
(図示せず)により、6時間おきにポンプを5分間作動
させた。このようにして、60日間測定をくシ返し、約
5000検体を分析したが、酵素電極の劣化はみられな
かった。
1 enzyme electrode, 2 reference electrodes, 3 earth electrodes, 20 each
They were arranged at intervals of mm, and the pump was configured to flow the buffer solution at a speed of 'l m t/m, and a sample (serum) lOμtf was injected from the sample injector 18 and analyzed. After the measurement continued for 8 hours, the bong was completely stopped, and for the remaining 16 hours, the pump was operated for 5 minutes every 6 hours using an electronic device (not shown). In this way, measurements were repeated for 60 days and approximately 5,000 samples were analyzed, but no deterioration of the enzyme electrode was observed.

一方、比較のため、16時間の測定休止中はポンプを全
く作動させなかったところ、16時間後にポンプを動か
しても酵素電極は、失活していた。
On the other hand, for comparison, the pump was not operated at all during the 16-hour measurement pause, and even after the pump was operated 16 hours later, the enzyme electrode was still inactivated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、SH酵素を固定化し、た酵素膜を用い
る酵素電極あるいは上記酵素を固定化したリアクタの寿
命を著しく高めることができる。
According to the present invention, the lifetime of an enzyme electrode using an enzyme membrane or a reactor in which the enzyme is immobilized can be significantly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による酵素電極を用いた分
析装置の電極部分の模式図、第2図(a)。 (b)は、酵素電極を用いた分析装置及び酵素リアクタ
を用いた分析装置の原理図、第3図は、酵素電極を用い
た多項目同時分析装置の原理図、第4図は、捕捉剤トラ
ップを設けた分析装置の部分模式1・・・酵素電極、2
・・・参照電極、3・・・アース電極、4・・・固定化
酵素膜、5・・・アンモニウム選択透過膜、6.7・・
・イオン透過膜、8,9.10・・・Ag−AgCA電
極、11,12.13・・・電解質液、14・・・細管
、15・・・緩衝液、16・・・流れ方向、17・・・
ポンプ、18・・・試料注入器、19・・・セル、20
・・・プリアンプ、21・・・記録計、22・・・酵素
リアクタ、23・・・アンモニウム電極、24・・・s
H酵素電極用セル、25・・・参照電極用セル、26・
・・電極セル、27・・・8H基を有する化合物を含む
緩衝液、28.29・・・切り換え弁、41・・・SH
化ポリスチレン微粒子、42.43・・・多孔質膜。 篤  1  図 8132 第 2  図 (1) 試料 ↓ 一 (bン 第1頁の続き 0発 明 者 唐沢吉治 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
FIG. 1 is a schematic diagram of an electrode portion of an analyzer using an enzyme electrode according to an embodiment of the present invention, and FIG. 2(a). (b) is a principle diagram of an analyzer using an enzyme electrode and an analyzer using an enzyme reactor, Figure 3 is a principle diagram of a multi-item simultaneous analyzer using an enzyme electrode, and Figure 4 is a diagram showing the principle of an analyzer using an enzyme electrode and an enzyme reactor. Partial schematic diagram of an analyzer equipped with a trap 1... Enzyme electrode, 2
...Reference electrode, 3... Earth electrode, 4... Immobilized enzyme membrane, 5... Ammonium selectively permeable membrane, 6.7...
・Ion permeable membrane, 8,9.10...Ag-AgCA electrode, 11,12.13...Electrolyte solution, 14...tubule, 15...buffer solution, 16...flow direction, 17 ...
Pump, 18... Sample injector, 19... Cell, 20
... preamplifier, 21 ... recorder, 22 ... enzyme reactor, 23 ... ammonium electrode, 24 ... s
H Enzyme electrode cell, 25...Reference electrode cell, 26.
...electrode cell, 27...buffer containing a compound having an 8H group, 28.29...switching valve, 41...SH
Polystyrene fine particles, 42.43 Porous membrane. Atsushi 1 Figure 8132 Figure 2 (1) Sample ↓ 1 (Continued from page 1 of page 0 Inventor Yoshiharu Karasawa Inside the Central Research Laboratory, Hitachi, Ltd., 1-280 Higashikoigakubo, Kokubunji City

Claims (1)

【特許請求の範囲】 1、酵素を固定化した酵素膜を感応膜とする酵素電極又
は酵素を固定化したリアクタを用いて溶液中の上記酵素
の基質を測定する方法において、測定休止中に上記酵素
電極の感応膜又は上記リアクタ’k、SH基を有する化
合物の溶液に接触させて保つことを特徴とする溶質の測
定方法。 2、上記酵素が、ウレアーゼ、アルコールデヒドロゲナ
ーゼ、アスパラキナーゼ、β−アミラーゼ、フルクトス
ジホメファターゼ又はα−グルコシダーゼである特許請
求の範囲第1項記載の溶質の測定方法。 3、上記酵素の基質を測定する方法が、酵素を固定化し
た酵素膜を感応膜とする酵素電極を用いるものである特
許請求の範囲第1項又は第2項記載の溶質の測定方法。 4、上記酵素の基質を測定する方法が、酵素を固定化し
たりアクタを用いるものである特許請求の範囲第1項又
は第2項記載の溶質の測定方法。 5、上記SH基を有する化合物の溶液は、該化合物の濃
度が0.1〜100mMの範囲である特許請求の範囲第
1項から第4項までのいずれかに記載の溶質の測定方法
。 6、緩衝液を保つ容器、該容器中に保たれた緩衝液、試
料注入部並びに酵素を固定化した酵素膜を感応膜とする
酵素電極又は酵素を固定化したリアクタと該酵素によっ
て分解された基質の分解物を測定する電極並びに参照電
極、アース電極並びに上記容器、試料注入部、酵素電極
又はリアクタと電極、参照電極及びアース電極を連絡し
て緩衝液を輸送するための細管よりなる生化学用測定装
置において、上記緩衝液がSH基を含む化合物を溶解し
た溶液であること全特徴とする測定装置。 7、上記SH基を含む化合物の溶液は、該化合物の濃度
が0.1〜100 mMの範囲である特許請求の範囲第
6項記載の測定装置。 8、上記酵素がウレアーゼ、アルコールデヒドロゲナー
ゼ、アスパラキナーゼ、β−アミラーゼ。 フルクト−スジホスファターゼ又はα−グルコシダーゼ
である特許請求の範囲第6項又は第7項記載の測定装置
。 9、緩衝液を保つ容器、該容器中に保たれた緩衝液、試
料注入部並びに酵素を固定化した酵素膜を感応膜とする
酵素電極又は酵素を固定化したリアクタと該酵素によっ
て分解された基質の分解物を測定する電極並びに参照電
極、アース電極並びに上記容器、試料注入部、酵素電極
又はリアクタと電極、参照電極及びアース電極を連絡し
て緩衝Wi、を輸送するための細管、SH基を含む化合
物を溶解した第2の緩衝液を保つ第2の容器、測定休止
時に上記酵素電極又はリアクタに上記第2の緩衝液を接
触させるために上記第2の容器から第2の緩衝液を上記
細管に流入及び流出させるための切シ換え弁を有するこ
とを特徴とする生化学用測定装置。 10、上記第2の緩衝液のSH基を含む化合物の濃度が
0.1〜100mMの範囲である特許請求の範囲第9項
記載の測定装置。 11、上記酵素がウレアーゼ、アルコールデヒドロゲナ
ーゼ、アスパラキナーゼ、β−アミラーゼ。 フルクト−スジホスファターゼ又はα−グルコシダーゼ
である特許請求の範囲第9項又は第10項記載の測定装
置。 12、酵素を固定化した酵素膜を感応膜とする酵素電極
と参照電極とを有する生化学測定装置において、上記酵
素電極と参照電極をつなぐ流路中に、重金属捕捉トラッ
プを設けたことを特徴とする測定装置。
[Scope of Claims] 1. In a method for measuring the substrate of the enzyme in a solution using an enzyme electrode having an enzyme membrane on which an enzyme is immobilized as a sensitive membrane or a reactor on which an enzyme is immobilized, A method for measuring a solute, which comprises keeping the sensitive membrane of an enzyme electrode or the above-mentioned reactor 'k in contact with a solution of a compound having an SH group. 2. The method for measuring a solute according to claim 1, wherein the enzyme is urease, alcohol dehydrogenase, asparakinase, β-amylase, fructos dihomephatase, or α-glucosidase. 3. The method for measuring a solute according to claim 1 or 2, wherein the method for measuring the enzyme substrate uses an enzyme electrode whose sensitive membrane is an enzyme membrane on which an enzyme is immobilized. 4. The method for measuring a solute according to claim 1 or 2, wherein the method for measuring the substrate of the enzyme involves immobilizing the enzyme or using an acta. 5. The method for measuring a solute according to any one of claims 1 to 4, wherein the solution of the compound having an SH group has a concentration of the compound in the range of 0.1 to 100 mM. 6. A container for holding a buffer solution, a buffer solution kept in the container, a sample injection part, and an enzyme electrode or a reactor with an enzyme immobilized thereon, whose sensitive membrane is an enzyme membrane on which an enzyme is immobilized, and a sample decomposed by the enzyme. A biochemical device consisting of an electrode for measuring the decomposition product of a substrate, a reference electrode, a ground electrode, the container mentioned above, a sample injection part, an enzyme electrode or a reactor, and a capillary for connecting the electrode, the reference electrode and the ground electrode, and transporting a buffer solution. 1. A measuring device for measuring equipment, characterized in that the buffer solution is a solution in which a compound containing an SH group is dissolved. 7. The measuring device according to claim 6, wherein the solution of the compound containing the SH group has a concentration of the compound in the range of 0.1 to 100 mM. 8. The enzymes mentioned above are urease, alcohol dehydrogenase, asparakinase, and β-amylase. The measuring device according to claim 6 or 7, which is fructo-streak phosphatase or α-glucosidase. 9. A container for holding a buffer solution, a buffer solution kept in the container, a sample injection part, and an enzyme electrode or a reactor with an enzyme immobilized thereon, whose sensitive membrane is an enzyme membrane with an immobilized enzyme, and a sample decomposed by the enzyme. An electrode for measuring the decomposition product of the substrate, a reference electrode, a ground electrode, the container, a sample injection part, an enzyme electrode or a reactor, a capillary tube for connecting the enzyme electrode or the reactor, a buffer Wi for connecting the reference electrode and the ground electrode, and transporting the buffer Wi. a second container for storing a second buffer solution in which a compound containing a compound is dissolved; a second buffer solution is supplied from the second container to bring the second buffer solution into contact with the enzyme electrode or the reactor when the measurement is stopped; A biochemical measurement device characterized by having a switching valve for inflowing and outflowing into the thin tube. 10. The measuring device according to claim 9, wherein the concentration of the compound containing an SH group in the second buffer is in the range of 0.1 to 100 mM. 11. The above enzymes are urease, alcohol dehydrogenase, asparakinase, and β-amylase. The measuring device according to claim 9 or 10, which is fructo-streak phosphatase or α-glucosidase. 12. A biochemical measurement device having an enzyme electrode and a reference electrode, the sensitive membrane being an enzyme membrane on which an enzyme is immobilized, characterized in that a heavy metal trap is provided in the flow path connecting the enzyme electrode and the reference electrode. Measuring device.
JP58037399A 1983-03-09 1983-03-09 Method and apparatus for determination of solute using immobilized enzyme Granted JPS59162898A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58037399A JPS59162898A (en) 1983-03-09 1983-03-09 Method and apparatus for determination of solute using immobilized enzyme
DE19833347104 DE3347104C2 (en) 1983-03-09 1983-12-27 Method for measuring dissolved constituents and device for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037399A JPS59162898A (en) 1983-03-09 1983-03-09 Method and apparatus for determination of solute using immobilized enzyme

Publications (2)

Publication Number Publication Date
JPS59162898A true JPS59162898A (en) 1984-09-13
JPH0459876B2 JPH0459876B2 (en) 1992-09-24

Family

ID=12496447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037399A Granted JPS59162898A (en) 1983-03-09 1983-03-09 Method and apparatus for determination of solute using immobilized enzyme

Country Status (2)

Country Link
JP (1) JPS59162898A (en)
DE (1) DE3347104C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546499U (en) * 1991-11-05 1993-06-22 清水 正廣 File used for engraving

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264106A (en) * 1988-10-07 1993-11-23 Medisense, Inc. Enhanced amperometric sensor
AU625439B2 (en) * 1988-10-07 1992-07-09 Medisense Inc. Enhanced amperometric sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106397A (en) * 1973-01-19 1974-10-08
JPS5484090A (en) * 1977-11-04 1979-07-04 Toyo Jozo Co Ltd Beta-galactosidase-activity enhancing medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106397A (en) * 1973-01-19 1974-10-08
JPS5484090A (en) * 1977-11-04 1979-07-04 Toyo Jozo Co Ltd Beta-galactosidase-activity enhancing medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546499U (en) * 1991-11-05 1993-06-22 清水 正廣 File used for engraving

Also Published As

Publication number Publication date
DE3347104A1 (en) 1984-09-20
DE3347104C2 (en) 1986-04-30
JPH0459876B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
Cammann Bio-sensors based on ion-selective electrodes
Stricks et al. Polarography of glutathione
EP0025110B1 (en) Electrochemical measuring apparatus provided with an enzyme electrode
JPH0363018B2 (en)
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
JPS63294799A (en) Method for simultaneously measuring glucose and 1,5-anhydroglycitol
HU180210B (en) Method and device for continuous detecting concentration of an enzymatic substratum
Chemnitius et al. Thin-film polyamine biosensor: substrate specificity and application to fish freshness determination
Guilbault et al. Preparation and analytical uses of immobilized enzymes
JPS59162898A (en) Method and apparatus for determination of solute using immobilized enzyme
Starodub et al. Optimisation methods of enzyme integration with transducers for analysis of irreversible inhibitors
Izquierdo et al. Ion‐sensitive field‐effect transistors and ion‐selective electrodes as sensors in dynamic systems
JP4622836B2 (en) Analysis equipment
JPH01237446A (en) Biosensor
Zhang et al. Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system
EP0416419B1 (en) Immobilized alcohol oxidase, method for its preparation and measuring apparatus
JPH0332357B2 (en)
Kimura et al. Evaluation of an albumin-based, spin-coated, enzyme-immobilized membrane for an ISFET glucose sensor by computer simulation
Milardović et al. Determination of oxalate in urine, using an amperometric biosensor with oxalate oxidase immobilized on the surface of a chromium hexacyanoferrate-modified graphite electrode
JPH0570103B2 (en)
JP3077461B2 (en) How to monitor hazardous substances in water
JPS59170760A (en) Biochemical analysis device
JPS5843797A (en) Enzyme electrode
JPS61159161A (en) Instrument for analyzing acetylcholine
Begum New configuration of an analytical enzyme reactor: design and performance