JPS59162443A - Method and device for evaluating performance of dielectric material - Google Patents

Method and device for evaluating performance of dielectric material

Info

Publication number
JPS59162443A
JPS59162443A JP3638483A JP3638483A JPS59162443A JP S59162443 A JPS59162443 A JP S59162443A JP 3638483 A JP3638483 A JP 3638483A JP 3638483 A JP3638483 A JP 3638483A JP S59162443 A JPS59162443 A JP S59162443A
Authority
JP
Japan
Prior art keywords
dielectric material
current
electrodes
performance
transient response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3638483A
Other languages
Japanese (ja)
Other versions
JPH0322940B2 (en
Inventor
Takayuki Kato
隆幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3638483A priority Critical patent/JPS59162443A/en
Priority to US06/585,257 priority patent/US4686857A/en
Priority to EP84102243A priority patent/EP0121739B1/en
Priority to DE8484102243T priority patent/DE3472460D1/en
Priority to CA000448715A priority patent/CA1239443A/en
Publication of JPS59162443A publication Critical patent/JPS59162443A/en
Publication of JPH0322940B2 publication Critical patent/JPH0322940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration

Abstract

PURPOSE:To evaluate the performance of a dielectric material, by applying a pulse to a pair of electrodes which are provided on the dielectric material to be measured from a power source means, and measuring a transient response current flowing through the electrode in correspondence with the components of the dielectric material between the electrode. CONSTITUTION:When a pulse voltage 2 is applied to electrodes 1, which are provided on a dielectric material, from a voltage source 2, the dielectric material between the electrodes 1 is charged, and a current flows through the dielectric material. The current has different trnasient responses depending on the properties of the dielectric materials. Therefore the current is detected by a current detecting means 3, and the transient response characteristics are analyzed by a signal processing means 4. The processing means 4 measures the transient characteristics, i.e., the peak value of the current, the amount of change in current in a specified time within the period of pulse-voltage application, the ratio between the peak value and the amount of change in current, and the like. Based on the results, indexes corresponding to the performance of the dielectric material can be displayed on a display means 5.

Description

【発明の詳細な説明】 本発明は潤滑油,切削油,冷却油等の誘電体物質の性能
を評価する方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for evaluating the performance of dielectric materials such as lubricating oil, cutting oil, cooling oil, etc.

一般的に上記油やグリース等の誘電体物質は。Generally speaking, dielectric materials such as oil and grease are mentioned above.

その使用過程や経年変化によって,性能が除々に変化し
てゆく。潤滑油を例によれば,これは自動車や船舶等の
エンジン機構部および工作機械や繊維機械等の産業機器
等において,その機械的摩擦部の潤滑材として使用され
ている。この潤滑油は。
Performance gradually changes due to the process of use and changes over time. For example, lubricating oil is used as a lubricant for mechanical friction parts in engine mechanisms of automobiles and ships, and industrial equipment such as machine tools and textile machines. This lubricant.

その使用過程で潤滑油中に金属粉の混入や,あるy)は
、潤滑油自体の酸化や改質などによって,その潤滑性能
が除々に低下してくる。
In the course of its use, the lubricating performance of the lubricating oil gradually decreases due to the mixing of metal powder into the lubricating oil and the oxidation and modification of the lubricating oil itself.

特に、内燃機関に用いられ゜てぃる潤滑油は.その使用
過程における性能低下は,激しく.内燃機関の特性を維
持させてゆく上で,潤滑油を定期的に診断検査し,性能
低下を来たしている場合には交換する必要がある。
Especially the lubricating oil used in internal combustion engines. The performance deterioration during the process of use is severe. In order to maintain the characteristics of an internal combustion engine, the lubricating oil must be periodically inspected for diagnosis and replaced if its performance has deteriorated.

この潤滑油の性能低下を把握する手段として。As a means to understand the performance deterioration of this lubricating oil.

従来・粘度の低下.酸化度合い.残留炭素の増加。Conventional/Decrease in viscosity. Degree of oxidation. Increase in residual carbon.

不溶解分の増加等を定量的分析によって測定するか,も
しくは、これらを電気的な手法によって。
Measure the increase in insoluble matter through quantitative analysis, or use electrical methods.

誘電率あるいは導電率の変化として測定されていた。It was measured as a change in permittivity or conductivity.

しかし、前記従来技術において,定量的分析を行うには
,内燃機関から潤滑油を注出し,化学的手法によって分
析を行う必要がある。これには膨大な時間を費やしjか
つ高価な測定機器を必要としおの機器自体も複雑である
ことから実用的な手゛法とは云えない。
However, in the prior art, in order to perform quantitative analysis, it is necessary to pour out lubricating oil from the internal combustion engine and conduct analysis using a chemical method. This is not a practical method because it takes a huge amount of time and requires expensive measuring equipment, which itself is complicated.

また、潤滑油の誘電率や導電率の変化から,その性能を
把握する手法は簡便ではあるが,誘電率もし七(″よ導
電率の単一の情報のみでは,正確にその性能を判別する
ことはできない。
In addition, although it is easy to understand the performance of lubricating oil from changes in its dielectric constant and conductivity, it is difficult to accurately determine its performance with only a single piece of information about the dielectric constant and conductivity. It is not possible.

すなわち内燃機関の潤滑油は,それ自体に含まれている
添加物の種類によって,その初期性能は一定ではなく,
誘電率や導電率に大きな差異が生ずる。更に内燃機関の
運転条件によって潤滑油はその性能低下の状態が異り,
単に誘電率もしくは導電率を測定しても,潤滑油の本来
の性能とは直接的に結びつかない欠点がある。
In other words, the initial performance of lubricating oil for internal combustion engines varies depending on the types of additives it contains.
Large differences occur in permittivity and conductivity. Furthermore, the performance of lubricating oil varies depending on the operating conditions of the internal combustion engine.
Merely measuring dielectric constant or conductivity has the disadvantage that it does not directly correlate with the original performance of lubricating oil.

また自動車等の潤滑油,特にエンジンオイノレに到って
は,従来は,走行距離もしくはその色や手ざわり(粘度
および不溶解分を指先で検査する)などの官能検査が一
般的に行われている。しかしこの手法は、潤滑油の性能
とは、全く関連せず。
Furthermore, when it comes to lubricating oils for automobiles, especially engine oils, sensory tests such as mileage, color, and texture (viscosity and insoluble matter are tested with a fingertip) have not been commonly performed. There is. However, this method has nothing to do with the performance of lubricating oil.

合理的ではない。It's not reasonable.

すなわち、この手法は潤滑油の本質的な性能を把握でき
ないため、単に走行距離や、その汚損状態等の間接的な
情報から、潤滑油の交換を指示されることになる。これ
は、潤滑油を無駄にすてる結果となり、省資源の観点に
立てば、産業上極めて大きな問題である。
In other words, since this method cannot grasp the essential performance of the lubricating oil, an instruction to replace the lubricating oil is given simply based on indirect information such as the mileage or the state of contamination. This results in wasted lubricating oil, which is an extremely serious industrial problem from the perspective of resource conservation.

本発明は、上記種々の問題点を解消するものであって、
測定すべき潤滑油、切削油等の誘電体物質における本来
の性能を直接的に簡便な方法およびその装置により的確
にかつ精度、信頼性高<評価することができ、その汚損
状態および使用限界等を判別することができ、潤滑油等
の省資源に寄与する極めて有効な誘電体物質の性能評価
方法および装置を提供することを主たる目的とする。
The present invention solves the various problems mentioned above, and includes:
The original performance of dielectric substances such as lubricating oils and cutting oils to be measured can be directly and easily evaluated using a simple method and equipment with high precision and reliability, and the state of contamination and usage limits can be evaluated. The main purpose of this invention is to provide an extremely effective method and device for evaluating the performance of dielectric materials, which can determine the performance of dielectric materials and contribute to the saving of resources such as lubricating oil.

本発明のその他の目的は、測定すべき誘電体物質に臨ま
した少なくとも一対の電極に電源手段よりパルス電圧を
印加し、該電極間に介在する誘電体物質の成分に対応し
七該電極間に流れる過渡応答電流を測定し当該電流値か
ら誘電体物質の性能を評価する誘電体物質の性能評価方
法およびその装置を提供するにある。
Another object of the present invention is to apply a pulse voltage from a power supply means to at least one pair of electrodes facing a dielectric substance to be measured, and to apply a pulse voltage between seven electrodes corresponding to the components of the dielectric substance interposed between the electrodes. The present invention provides a method and apparatus for evaluating the performance of a dielectric material, which measures a flowing transient response current and evaluates the performance of the dielectric material from the current value.

さらに9本発明の他の目的は、測定すべき誘電体物質に
臨ました少なくとも一対の電極に電源手段よりパルス電
圧を印加し、該電極間に介在する誘電体物質の成分に対
応して該電極間に流れる電流を電流検出手段により検出
すると共に、当該電流の変化を処理手段により測定し、
前記パルス電圧の印加時における誘電体物質の過渡応答
特性から誘電体物質の性能を評価する’4tlK−専百
要F蚤方法、およびその装置を提供するにある。
Furthermore, another object of the present invention is to apply a pulse voltage from a power supply means to at least one pair of electrodes facing a dielectric substance to be measured, and to apply a pulse voltage to the electrodes in response to the components of the dielectric substance interposed between the electrodes. detecting the current flowing between them by a current detection means, and measuring a change in the current by a processing means,
The present invention provides a method and apparatus for evaluating the performance of a dielectric material from the transient response characteristics of the dielectric material when the pulse voltage is applied.

また1本発明の目的は、前記過渡応答電流のピーク値を
把握することによって、誘電体物質中の導電率に比例し
た性状(金属粉や残留炭素および荷電イオンなどによる
)を把握し、誘電体物質の性能を評価する方法および装
置を提供することにある。
Another object of the present invention is to grasp the properties proportional to the conductivity in the dielectric material (due to metal powder, residual carbon, charged ions, etc.) by grasping the peak value of the transient response current, and to An object of the present invention is to provide a method and apparatus for evaluating the performance of substances.

さらに1本発明の他の目的は、前記過渡応答電流の一定
時間巾における電流の変化量を把握することにより、誘
電体物質中の誘電率に比例した性状(水分や分子イオン
などによる)を把握し、誘電体物質の性能を評価する方
法および装置を提供することにある。
Furthermore, another object of the present invention is to understand the properties (due to water, molecular ions, etc.) proportional to the dielectric constant in the dielectric material by understanding the amount of change in the current in a certain time span of the transient response current. An object of the present invention is to provide a method and apparatus for evaluating the performance of dielectric materials.

また本発明の目的は、前記過渡応答電流のピーク値と、
一定時間内における電流変化量との比率を把握すること
により、誘電体物質中の導電率および誘電率に比例しん
性状を把握し、誘電体物質の性能を評価する方法および
装置を提供することにある。
Further, an object of the present invention is to determine the peak value of the transient response current;
The present invention provides a method and apparatus for evaluating the performance of dielectric materials by understanding the conductivity and dielectric constant-proportional properties of dielectric materials by determining the ratio to the amount of change in current within a certain period of time. be.

ソシて・本発明は、測定すべき誘電体物質に臨ましん少
なくとも一対の電極に電源手段よりパルス電圧を印加し
、該電極間に介在する誘電体物質の成分に対応して該電
極間に流れる過渡応答電流を測定し当該電流値から誘電
体物質の性能を評価することを特徴とする誘電体物質の
性能評価方法である(以下第1発明と称する)。
According to the present invention, a pulse voltage is applied from a power supply means to at least one pair of electrodes facing a dielectric substance to be measured, and a voltage is applied between the electrodes in accordance with the components of the dielectric substance interposed between the electrodes. This is a method for evaluating the performance of a dielectric material (hereinafter referred to as the first invention), which is characterized by measuring a flowing transient response current and evaluating the performance of the dielectric material from the current value.

また1本発明は、測定すべき誘電体物質に臨ました少な
くとも一対の電極に電源手段よりパルス電圧を印加し、
該電極間に介在する誘電体物質の成分に対応して該電極
間に流れる電流が電流検出手段により検出すると共に、
当該電流の変化を処理手段により測定し、前記パルス電
圧の印加時における誘電体物質の過渡応答特性から誘電
体物質の性能を評価することを特徴とする誘電体物質の
性能評価方法である(以下第2発明と称する)。
In addition, in one aspect of the present invention, a pulse voltage is applied from a power supply means to at least a pair of electrodes facing a dielectric substance to be measured,
A current flowing between the electrodes is detected by a current detection means in accordance with a component of a dielectric substance interposed between the electrodes, and
A method for evaluating the performance of a dielectric material, characterized in that the change in the current is measured by a processing means, and the performance of the dielectric material is evaluated from the transient response characteristics of the dielectric material when the pulse voltage is applied (hereinafter referred to as (referred to as the second invention).

さらに、第2発明にあっては、前記処理手段による電流
変化の測定は、前記誘電体物質の過渡応答によって前記
電極間に流れる電流の任意位置におケル電流値のピーク
値、該任意位置における一定時間内の電流変化量および
前記ピーク値と該ピーク値から一定時間経過後の電流変
化量とを割算演算した比率の少なくとも一つにより8行
なうようにしたことを特徴とする誘電体物質の性能評価
方法である(以下第2発明の第1態様と称する)。
Furthermore, in the second aspect of the present invention, the measurement of the current change by the processing means is performed such that the measurement of the current change by the processing means determines the peak value of the current value at an arbitrary position of the current flowing between the electrodes due to the transient response of the dielectric substance, and the peak value of the current value at the arbitrary position. 8. The dielectric material is characterized in that the process is performed using at least one of the amount of current change within a certain period of time and the ratio calculated by dividing the peak value and the amount of current change after a certain period of time from the peak value. This is a performance evaluation method (hereinafter referred to as the first aspect of the second invention).

前記第2発明において、前記電源手段による電極への印
加は一定振巾、一定時間巾のパルス電圧を発生すること
を特徴とする誘電体物質の性能評価方法である(以下第
2発明の第2態様と称する)。
In the second invention, the method for evaluating the performance of a dielectric material is characterized in that the voltage applied to the electrode by the power supply means generates a pulse voltage of a constant amplitude and a constant time width (hereinafter referred to as the second aspect of the second invention). (referred to as aspects).

また1本発明は測定すべき誘電体物質に臨ました少なく
とも一対の電極と、該電極にパルス電圧を印加する電源
手段と、該電極間に介在する誘電体物質の成分に対応し
て該電極間に流れる過渡応答電流を測定する手段とから
成り、当該測定した電流値から誘電体物質の性能を評価
することを特徴とする誘電体物質の性能評価装置である
(以下第8発明と称する)。
The present invention also provides at least a pair of electrodes facing a dielectric substance to be measured, a power supply means for applying a pulse voltage to the electrodes, and a gap between the electrodes corresponding to the components of the dielectric substance interposed between the electrodes. This is a performance evaluation device for a dielectric material (hereinafter referred to as the eighth invention), comprising means for measuring a transient response current flowing through the dielectric material, and evaluating the performance of the dielectric material from the measured current value.

さらに1本発明は、測定すべき誘電体物質に臨ました少
なくとも一対の電極と。
Furthermore, the present invention includes at least one pair of electrodes facing a dielectric substance to be measured.

該電極にパルス電圧を印加する電源手段と。and power supply means for applying a pulse voltage to the electrode.

該M、電極間介在する誘電体物質の成分に対応して該電
極間に流れる電流を検出する電流検出手段と。
M, a current detection means for detecting a current flowing between the electrodes in accordance with a component of a dielectric substance interposed between the electrodes;

該電流の変化を測定する処理手段とから成り。and processing means for measuring changes in the current.

前記パルス電圧の印加時における誘電体物質の過渡応答
特性から誘電体物質の性能を評価することを特徴とする
誘電体物質の性能評価装置である(以下第4発明と称す
る)。
This is a performance evaluation device for a dielectric material, characterized in that the performance of the dielectric material is evaluated from the transient response characteristics of the dielectric material when the pulse voltage is applied (hereinafter referred to as the fourth invention).

また、第4発明にあっては、前記処理手段は。Moreover, in the fourth invention, the processing means.

前記誘電体物質の過渡応答によって前記電極間に流れる
電流の、任意位置における電流値のピーク値を測定する
ピーク検出手段であることを特徴とする誘電体物質の性
能評価装置である(以下第4発明の第1態様と称する)
This is a performance evaluation device for a dielectric material, characterized in that it is a peak detection means for measuring a peak value of a current flowing between the electrodes at an arbitrary position due to a transient response of the dielectric material (hereinafter referred to as No. 4). (referred to as the first aspect of the invention)
.

前記第4発明において前記処理手段は、前記誘電体物質
の過渡応答によって前記電極間に流れる電流の任意位置
における一定時間内の電流変化量を測定するピーク検出
手段と差動演算手段とから成ることを特徴とする誘電体
物質の性能評価装置である(以下第4発明の第2態様と
称する]。
In the fourth invention, the processing means includes a peak detection means and a differential calculation means for measuring the amount of change in the current flowing between the electrodes at an arbitrary position within a certain period of time due to a transient response of the dielectric material. This is a performance evaluation device for dielectric materials (hereinafter referred to as the second aspect of the fourth invention).

また、第4発明において前記処理手段は、前記誘電体物
質の過渡応答によって前記電極間に流れる電流の任意位
置におけるピーク値と、該ピーク値から一定時間経過後
の電流変化量とを割算演算し、電流のピーク値と変化量
との比率を測定するためのピーク検出手段と差動演算手
段および割算演算手段とから成ることを特徴とする誘電
体物質の性能評価装置で屹る(以下第4発明の第3態様
と称する)。
Further, in the fourth invention, the processing means performs a calculation by dividing a peak value at an arbitrary position of the current flowing between the electrodes due to a transient response of the dielectric material and an amount of change in the current after a certain period of time has elapsed from the peak value. and a performance evaluation device for dielectric materials characterized by comprising a peak detection means, a differential calculation means, and a division calculation means for measuring the ratio between the peak value and the amount of change in current (hereinafter referred to as (referred to as the third aspect of the fourth invention).

さらに、第4発明において前記電源手段は、一定振巾、
一定時間゛巾のバiス電圧を発生する機能を、有するこ
とを特徴とする誘電体物質の性能評価装置である(以下
第4発明の第4態様と称する)。
Furthermore, in the fourth invention, the power supply means has a constant amplitude;
This is a performance evaluation device for a dielectric material (hereinafter referred to as a fourth aspect of the fourth invention), characterized in that it has a function of generating a bias voltage of a certain period of time.

次に9本発明の誘電体物質の性能評価方法およびその装
置における基本原理を第1図および第2図に基づき説明
する。
Next, the basic principle of the dielectric material performance evaluation method and device of the present invention will be explained based on FIGS. 1 and 2.

一対の電極に臨ました誘電体物質は第1図(a)の等価
回路■で示され、誘電体物質の持つ内部抵抗joと、比
誘電率ε8による容量Cで現わされる。
The dielectric material facing the pair of electrodes is shown by the equivalent circuit (2) in FIG. 1(a), and is represented by the internal resistance jo of the dielectric material and the capacitance C due to the dielectric constant ε8.

この等価回路Iにおいて、電源EからスイッチSによっ
て第1図(blの如き、ステップ電圧Vを印加すると1
等価回路Iには i=工sip (−占) r。
In this equivalent circuit I, when a step voltage V is applied from the power supply E by the switch S as shown in FIG.
In the equivalent circuit I, i=sip (-sip) r.

なる過渡応答電流が流れる。この電流iを第1図(b)
の電流波形によって詳述する。
A transient response current flows. This current i is shown in Figure 1(b).
This will be explained in detail using the current waveform.

一対の電極に電圧Vを印加した直後には−なrO る電流が流れるが時間の経過と共に電流は指数関数的に
減少してゆく。これは誘電体物質の容量Cに除々に電荷
が蓄えられてゆくためである。
Immediately after the voltage V is applied to the pair of electrodes, a current of -rO flows, but the current decreases exponentially as time passes. This is because charge is gradually stored in the capacitance C of the dielectric material.

ここでγ0 とCは誘電体物質による変数であり。Here, γ0 and C are variables depending on the dielectric material.

その種類や性状によって大きく変化する。例えば過渡応
答電流iにおいてA特性はrOが小さく、Cが大きい場
合であり、B特性はTOが大きく、Cが小さい場合であ
る。この人特性において、過渡応答電流の一定時間内に
おける該電流の初期値をipl  、一定時間後の電流
をimlとするとiPlは、誘電体物質中の誘電率ε8
に依存される。従って、iplが大きい場合には、誘電
体物質中に金属質中の比誘電率ε8が小さく、電気的容
量Cが小さいと云える。
It varies greatly depending on its type and properties. For example, in the transient response current i, the A characteristic is when rO is small and C is large, and the B characteristic is when TO is large and C is small. In this human characteristic, if the initial value of the transient response current within a certain time is ipl, and the current after the certain time is iml, iPl is the dielectric constant ε8 of the dielectric material.
depends on. Therefore, when ipl is large, it can be said that the dielectric constant ε8 of the metal in the dielectric material is small and the electric capacitance C is small.

上記過渡応答電流特性から、A特性とB特性を比較する
と o  tp、  ) 1pz o  ip、−imt  (ip2−im2なる関係か
ら、A特性の誘電体物質はB特性に比較し七、導電率お
よび誘電率が大きいと判別できる。
From the above transient response current characteristics, comparing A characteristic and B characteristic, o tp, ) 1 pzo ip, -imt (ip2 - im2), the dielectric material of A characteristic has a lower conductivity and conductivity than that of B characteristic. It can be determined if the dielectric constant is large.

この誘電体物質における過渡応答電流を実際の潤滑油ヲ
代表するエンジンオイルによって測定した一例を第2図
に示す。
FIG. 2 shows an example in which the transient response current in this dielectric material was measured using engine oil, which is representative of actual lubricating oil.

第2図ta+は未使用のエンジンオイル、(b)は80
00軸走行後、(C)は17.000 ky走行後のそ
れぞれの電流特性である。
Figure 2 ta+ is unused engine oil, (b) is 80
After running on the 00 axis, (C) shows the current characteristics after running for 17.000 ky.

それぞれの電流波形から前記ipとip−imすなわち
△iを求めると表1の通りとなる。
Table 1 shows ip and ip-im, that is, Δi, calculated from each current waveform.

(表1) そしセミPは走行距離に比例して増加、△i&よ走行距
離に比例して小さくなってゆ(ことがわ力無る。
(Table 1) And the semi-P increases in proportion to the distance traveled, and △i & decreases in proportion to the distance traveled.

このipの増加はエンジンオイル等の潤滑油番よ。This increase in IP is due to lubricating oil such as engine oil.

その使用過程で金属粉の混入や残留炭素が増加し。During the process of use, metal powder and residual carbon increase.

導電率が除々に高くなってゆくものと考えられる。It is thought that the conductivity gradually increases.

更に△iの低下は、その使用過程におυ\て、水分や不
溶解分などの影響により、エンジンオイル自体の誘電率
が除々に大きくなってゆくものと考えられる。
Furthermore, the decrease in Δi is considered to be due to the fact that the dielectric constant of the engine oil itself gradually increases during the course of its use due to the influence of moisture, insoluble matter, etc.

従ってエンジンオイIし等の潤滑油においてをよ。Therefore, use lubricating oil such as engine oil.

ipが大きく、Δ量が小さくなる程、その性能力;低下
しそくるものと判断できる。
It can be determined that the larger the ip and the smaller the Δ amount, the more likely the sexual ability will be reduced.

そこで誘電体物質の導電率に依存するip  と。Therefore, ip depends on the conductivity of the dielectric material.

誘電率に依存する△iとをip/△iなる演算を行い、
その比率を求めると表1の通りとなる。すなわちオイル
の使用期間(走行距#)シこ比例して。
△i, which depends on the permittivity, is calculated as ip/△i,
Table 1 shows the ratio. In other words, the period of use of the oil (mileage #) is proportional to this.

その比率は増加してくるため、この値はエンジンオイル
等の誘電体物質の性能を評価できる有効な手段となる。
Since the ratio increases, this value becomes an effective means for evaluating the performance of dielectric materials such as engine oil.

以上の基本原理および数々の実験的考察事実力為ら潤滑
油等の誘電体物質を一対の電極に臨まし、該電極にパル
ス性の電圧を印加し、該ノ<ルス性の電圧を印加してい
る期間内における。電極間に流れる過渡応答電流のピー
ク値、一定時間内における変化量もしくは、ピーク値と
変化量との比率を測定することにより、誘電体物質にお
ける本来の性能を直接的に極めて正確に信頼性高くかつ
簡便に評価することができるのである。
Based on the above basic principles and numerous experimental considerations, a dielectric material such as lubricating oil is applied to a pair of electrodes, and a pulsed voltage is applied to the electrodes. within the period. By measuring the peak value of the transient response current flowing between the electrodes, the amount of change within a certain period of time, or the ratio between the peak value and the amount of change, it is possible to directly determine the original performance of dielectric materials with high accuracy and reliability. And it can be easily evaluated.

以下本発明誘電体物質の性能評価方法およびその装置の
具体的な実施例について説明する。
Hereinafter, specific examples of the method and apparatus for evaluating the performance of dielectric materials of the present invention will be described.

第8図に示す一実施例の誘電体物質の性能評価方法およ
びその装置は、第1発明ないし第4発明に属するもので
あって、具体的には測定すべき誘電体物質に臨ました少
なくとも一対の電極lに電源手段2よりパルス電圧を印
加し、該電411間に介在する誘電体物質の成分に対応
して該電極間に流れる過渡応答電流を測定し当該電流値
から誘電体物質の性能を評価する方法である。さらには
本実施例は測定すべき誘電体物質に臨ました少なく′と
も一対の電極Iと、該電極にパルス電圧を印加する電源
手段2と、該電極間に介在する誘電体物質の成分に対応
して該電極間に流れる過渡応答電流を測定する手段とか
ら成り、当該測定した電流IIア・ら誘電体物質の性能
を評価する装置である。
The method and apparatus for evaluating the performance of a dielectric material according to an embodiment shown in FIG. A pulse voltage is applied to the electrode 1 from the power supply means 2, a transient response current flowing between the electrodes is measured in accordance with the components of the dielectric material interposed between the electrodes 411, and the performance of the dielectric material is determined from the current value. This is a method of evaluating Furthermore, this embodiment corresponds to at least a pair of electrodes I facing the dielectric substance to be measured, a power supply means 2 for applying a pulse voltage to the electrodes, and a component of the dielectric substance interposed between the electrodes. and a means for measuring the transient response current flowing between the electrodes, and the device evaluates the performance of the dielectric material based on the measured current.

さらに具体的には本実施例は測定すべき誘電体物質に臨
ました少なく左も一対の電極夏に電源手段2よりパルス
電圧を印加し、該電極1間に介在する誘電体物質の成分
に対応して該電極1間に流れる電流を電流検出手段8に
より検出すると共に。
More specifically, in this embodiment, a pulse voltage is applied from the power supply means 2 to at least one pair of electrodes on the left facing the dielectric substance to be measured, and this corresponds to the components of the dielectric substance interposed between the electrodes 1. The current flowing between the electrodes 1 is detected by the current detection means 8.

当該電流の変化を処理手段4により測定し、前記パルス
電圧の印加時における誘電体物質の過渡応答特性から誘
電体物質の性能を評価する方法である。
In this method, the change in the current is measured by the processing means 4, and the performance of the dielectric material is evaluated from the transient response characteristics of the dielectric material when the pulse voltage is applied.

そして1本実施例装置は測定すべき誘電体物質に臨まし
た一対の電極lと、該電極lにパルス性の電圧を印加す
る電圧源2と、前記電fM1にパルス電圧を印加し痘時
に誘電体物質を介して流れる過渡応答電流を検出する電
流検出手段8と、該電流検出手段8の出力を受けて前記
過渡応答電流の特性を解析するたメーサ処理手段4と、
該信号処理手段4の出力に応じて、誘電体物質の性能値
を表示するための表示手段5とから構成される装上記構
成からなる本実施例の方法およびその装置において、電
圧源2から誘電体物質に臨ました電極1にパルス性電圧
を印加すると、該電極1の間に存在する誘電体物質に荷
電され、該誘電体物質を通じて電流が流れる。この電流
は、誘電体物質の性状(導電率や誘電率など)によって
、過渡応答が異るため、この電流を電流検出手段8によ
、って検出し、その過渡応答特性を信号処理手段4によ
って解析する。該信号処理手段4は、前記電流の過渡応
答特性すなわち電流のピーク値やパルス電圧印加期間内
における一定時間内の電流変化量および前記ピーク値と
電流変化量との比率などを測定し、その結果から、誘電
体物質の性能に準じた指標で表示手段5に表示する。
The apparatus of this embodiment includes a pair of electrodes 1 facing the dielectric substance to be measured, a voltage source 2 that applies a pulse voltage to the electrode 1, and a pulse voltage applied to the voltage fM1. a current detection means 8 for detecting a transient response current flowing through body substances; a mesa processing means 4 for receiving the output of the current detection means 8 and analyzing the characteristics of the transient response current;
In the method and apparatus of this embodiment, the device comprises a display means 5 for displaying the performance value of the dielectric material according to the output of the signal processing means 4, and the dielectric material is When a pulsed voltage is applied to the electrodes 1 facing the body substance, the dielectric material present between the electrodes 1 is charged, and a current flows through the dielectric material. Since the transient response of this current varies depending on the properties (conductivity, permittivity, etc.) of the dielectric material, this current is detected by the current detection means 8, and the transient response characteristics are measured by the signal processing means 4. Analyze by The signal processing means 4 measures the transient response characteristics of the current, that is, the peak value of the current, the amount of current change within a certain time period within the pulse voltage application period, the ratio of the peak value to the amount of current change, etc., and calculates the result. This is displayed on the display means 5 using an index based on the performance of the dielectric material.

誘電体物質の性能評価の現わし方として、自動車等の潤
滑油に対しては、その汚損度合いや使用限界(寿命)と
して表示できる。
Performance evaluation of dielectric materials can be expressed in terms of the degree of contamination and usage limit (life) for lubricating oil for automobiles, etc.

更に潤滑油の種類の類別や、経年変化に伴う改質の度合
などとしそも表示できる。
Furthermore, the type of lubricating oil and the degree of modification due to aging can also be displayed.

以上の原理、構成にもとづく誘電体物質の性能評価装置
は極めて簡単な構成で、かつ誘電体物質の性能を的確に
検出できて、産業上、多大な効果を奏するものである。
The performance evaluation device for dielectric materials based on the above-described principles and configuration has an extremely simple configuration, can accurately detect the performance of dielectric materials, and has great industrial effects.

又前記電圧源2は誘電体物質に過渡応答を生じせしある
ものであればよく、パルス電圧、ステップ電圧でも良い
ことは云うまでもない。
Further, the voltage source 2 may be any voltage source that causes a transient response in the dielectric material, and it goes without saying that a pulse voltage or a step voltage may be used.

更に電流検出手段8は、誘電体物質中に流れる過渡応答
電流に比例した信号でよく、電圧源2における電圧降下
量から測定しでもよい。
Furthermore, the current detection means 8 may be a signal proportional to the transient response current flowing in the dielectric material, and may be measured from the amount of voltage drop in the voltage source 2.

更に誘電体物質に臨ました電極1は、誘電体物質に荷電
できる構造であれば良く、並行平板電極。
Further, the electrode 1 facing the dielectric material may be a parallel plate electrode as long as it has a structure that can charge the dielectric material.

円筒電極、多層電極でも良いことは云うまでもない。Needless to say, a cylindrical electrode or a multilayer electrode may also be used.

第4図に示す実施例の誘電体物質の性能評価方法および
その装置は第2発明の第1態様、第4発明およびその第
1態様に属するものであって、以下。
The method and apparatus for evaluating the performance of a dielectric material according to the embodiment shown in FIG. 4 belong to the first aspect of the second invention, the fourth invention, and the first aspect thereof, and are described below.

前記実施例と同一部分は同一符号をもって示し評定は、
前記誘電体物質の過渡応答によって前記電極間に流れる
電流の任意位置における電流値のピーク値により行なう
誘電体物質の性能評価方法である。さらには9本実施例
は、誘電体物質に臨ます一対の電極1と、該電極1にパ
ルス電圧を印加するだめの電圧源2と、前記電極1にパ
ルス電圧を印加しん時、前記電極1間の誘電体物質に流
れる過渡応答電流を検出する電流検出手段8と、該電流
検出手段3によって検出される過渡応答電流の任意位置
におけるピーク電流を検出するためのピーク検出手段4
0から成る処理回路手段4と該ピーク検出手段40の出
力値を誘電体物質の性能値として表示する表示手段5と
から構成される装置電体物質にパルス性電圧を印加した
時、該誘電体物質の過渡応答による電流の任意位置(パ
ルス電圧を印加し、任意時間経過後)におけるピーク籠
は、誘電体物質中の導電率に依存されるため。
The same parts as in the above example are indicated by the same reference numerals, and the evaluation is as follows:
This is a method for evaluating the performance of a dielectric material, in which the peak value of the current flowing between the electrodes is determined at an arbitrary position due to a transient response of the dielectric material. Furthermore, this embodiment includes a pair of electrodes 1 facing a dielectric material, a voltage source 2 for applying a pulse voltage to the electrodes 1, and a voltage source 2 for applying a pulse voltage to the electrode 1. a current detection means 8 for detecting a transient response current flowing through a dielectric substance between the two; and a peak detection means 4 for detecting a peak current at an arbitrary position of the transient response current detected by the current detection means 3.
0 and a display means 5 for displaying the output value of the peak detection means 40 as a performance value of the dielectric material. This is because the peak value of the current at a given position (after a given time has elapsed after applying a pulse voltage) due to the transient response of the material depends on the conductivity of the dielectric material.

このピーク値の値から2例えば自動車等の潤滑油におい
ては、その使用過程で油中に混入して(る金属粉や残留
炭素の量などを判別でき、潤滑油の性能を把握できる。
From this peak value, for example, in lubricating oil for automobiles, it is possible to determine the amount of metal powder and residual carbon that are mixed into the oil during its use, and the performance of the lubricating oil can be ascertained.

第5図に示す実施例の誘電体物質の性能評価方法および
その装置は第2発明の第1態様、第4発明およびその第
2態様に属するものであって、前記処理手段は、前記誘
電体物質の過渡応答によって前記電極間に流れる電流の
任意位置における一定時間内の電流変化量により行なう
誘電体物質の性能評価方法であ之。さらには本実施例は
誘電体物質に臨ます一対の電極lと、該電極lにパルス
電圧を印加するための電圧源2と、前記電極lにパルス
電圧を印加した時、該電極1の間の誘電体物質に流れる
過渡応答電流を検出する電流検出手段8と、該電流検出
手段8によって検出される過渡応答電流の任意位置にお
ける一定時間内の電流変化量を検出するピーク検出手段
40と差動演算手段41とから成る処理回路手段4と、
前記差動演算手段41の出力値を誘電体物質の性能値と
して表示する表示手段5とから構成される9Mz−ト かかる構成からなる本実施例の方法およびその装置にお
いて、一対の電極間lに臨ました誘電体物質にパルス電
圧を印加した時、該誘電体物質の過渡応答による電流の
一定時間内における電流変化量は、誘電体物質中の誘電
率に依存されるため。
The method and apparatus for evaluating the performance of a dielectric material according to the embodiment shown in FIG. 5 belong to the first aspect of the second invention, the fourth invention, and the second aspect thereof, in which the processing means This method evaluates the performance of a dielectric material by measuring the amount of change in current flowing between the electrodes at any position within a certain period of time due to the transient response of the material. Further, in this embodiment, a pair of electrodes 1 facing a dielectric material, a voltage source 2 for applying a pulse voltage to the electrodes 1, and a gap between the electrodes 1 when a pulse voltage is applied to the electrodes 1 are provided. The current detection means 8 detects the transient response current flowing through the dielectric material of the current detection means 8, and the peak detection means 40 detects the amount of current change within a fixed time at an arbitrary position of the transient response current detected by the current detection means 8. a processing circuit means 4 consisting of a dynamic calculation means 41;
In the method and apparatus of this embodiment, the display means 5 is configured to display the output value of the differential calculation means 41 as a performance value of the dielectric material. This is because when a pulse voltage is applied to a dielectric material, the amount of current change within a certain period of time due to the transient response of the dielectric material depends on the dielectric constant of the dielectric material.

該電流変化量から例えば自動車等の潤滑油では。For example, in lubricating oil for automobiles, etc., from the amount of change in current.

その使用過程で油中に混入する水分や誘電性の不溶解分
の量が判別できる。
It is possible to determine the amount of water and dielectric insoluble matter mixed into the oil during its use.

この電流変化量を検出する処理回路手段4を第6図の信
号波形によって説明する。
The processing circuit means 4 for detecting this amount of current change will be explained with reference to the signal waveforms shown in FIG.

電圧源lから出力されるパルス電圧の時間巾をT O+
 その電圧値をVとする。該パルス電圧(第6図−(a
))が誘電体物質が臨まされる電mlに印加されると、
電極間の誘電体物質には第6図−(b)なる過渡応答電
流iが流れる。
The time width of the pulse voltage output from voltage source l is T O+
Let the voltage value be V. The pulse voltage (Fig. 6-(a)
)) is applied to the electric current ml faced by the dielectric material,
A transient response current i as shown in FIG. 6-(b) flows through the dielectric material between the electrodes.

該電流iの初期値は誘電体の内部抵抗をr。とするとi
=■/roで現わされるが、この値は電極間の誘電体物
質が十分に荷電されるに到っていないため、誘電体物質
中に混入するすべての導電性の物体に依存するに到らな
い。しかし、パルヌ電圧印加後、任意時間経過後の電流
ip は、電極間の導電性物体が十分荷電された時の値
であることるピーク検出手段40では、一定時間中のパ
ルス電圧を印加後、一定時間経過後の前記過渡応答電流
のピーク値ipを検出する機能を有する。
The initial value of the current i is the internal resistance of the dielectric material r. Then i
This value is expressed as =■/ro, but since the dielectric material between the electrodes is not sufficiently charged, this value depends on all conductive objects mixed into the dielectric material. I can't reach it. However, the current ip after an arbitrary period of time has elapsed after the application of the PURNU voltage is the value when the conductive object between the electrodes is sufficiently charged. It has a function of detecting the peak value ip of the transient response current after a certain period of time has elapsed.

(第6図−((+))このピーク値検出手段40によっ
て検出された過渡応答電流ipは差動演算回路手段41
の一方の入力端子に入力し、前記一定時間経過後の過渡
応答電流を他方の入力端子に入力し。
(FIG. 6-((+)) The transient response current ip detected by the peak value detection means 40 is
The transient response current after the certain period of time is input to the other input terminal.

差動演算を行うことにより、一定時間内における過渡応
答電流の変化量△i(第6図−(d))を存易に検出で
きる。
By performing differential calculation, the amount of change Δi (FIG. 6-(d)) in the transient response current within a certain period of time can be easily detected.

第7図に示す実施例の誘電体物質の性能評価方法および
その装置は第2発明の第1態様、第4発明の第3態様に
属するものであって、前記処理手段は、前記誘電体物質
の過渡応答によって前記電極間に流れる電流の任意位置
におけるピーク値と該ピーク値から一定時間経過後の電
流変化量とを割算演算した比率により行なう誘電体物質
の性能評価方法である。さらには1本実施例は誘電体物
質に臨ます一対の電極1と、該電極1にパルス電圧を印
加するための電圧源2と、前記電極1にパルス電圧を印
加しん時、該電極1間の誘電体物質に流れる過渡応答電
流を検出する電流検出手段8と、該電流検出手段8によ
って検出される過渡応答電流の任意位置における電流の
ピーク値と一定時間内における電流変化量との比率を求
めるためのピーク検出手段40と、差動演算手段41と
The method and apparatus for evaluating the performance of a dielectric material according to the embodiment shown in FIG. 7 belong to the first aspect of the second invention and the third aspect of the fourth invention, in which the processing means This method evaluates the performance of a dielectric material by dividing the peak value at an arbitrary position of the current flowing between the electrodes due to the transient response of the current and the amount of change in the current after a certain period of time has elapsed from the peak value. Furthermore, this embodiment includes a pair of electrodes 1 facing a dielectric material, a voltage source 2 for applying a pulse voltage to the electrodes 1, and a voltage source 2 for applying a pulse voltage to the electrodes 1. A current detection means 8 detects the transient response current flowing through the dielectric material of the current detection means 8, and the ratio of the peak value of the current at an arbitrary position of the transient response current detected by the current detection means 8 to the amount of current change within a certain period of time. peak detection means 40 and differential calculation means 41 for calculating.

割算手段42とから成る処理回路手段と、前記割算手段
42の出力値を誘電体物質の性能値として表示する表示
手段5とから構成される装置である。
This device is composed of a processing circuit means consisting of a dividing means 42, and a display means 5 for displaying the output value of the dividing means 42 as a performance value of the dielectric material.

かかる構成から成る本実施例の方法およびその装置によ
れば、上記第4図々示の実施例によって検出される誘電
体物質中の導電率に依存する混入物体と、第5図々示の
実施例によって検出される誘電体物質中の誘電率に依存
する混入物体との相乗特性を把握することができ、誘電
体物質の性能を的確に測定できるものである。
According to the method and apparatus of this embodiment having such a configuration, the contaminant that depends on the conductivity in the dielectric substance detected by the embodiment shown in FIG. 4 above, and the method shown in FIG. As an example, it is possible to grasp the synergistic characteristics with a contaminant that depends on the dielectric constant in the detected dielectric material, and the performance of the dielectric material can be accurately measured.

例えば自動車等の潤滑油においては、その使用過程にお
いて金属粉や残留炭素などの導電性物体が増加し、パル
ス電圧を印加した時の過渡応答電流のピーク値が太き(
なる。
For example, in lubricating oil for automobiles, conductive substances such as metal powder and residual carbon increase during the use process, and the peak value of the transient response current when a pulse voltage is applied increases (
Become.

又、水分や誘電性の不溶解分の増加に伴い、その誘電率
が太き(なるため、前記過渡応答電流の−が大きい程、
潤滑油の導電率が高(1、力為つ誘電率が大きいと判断
でき l P/△iの値から、潤滑油の性能、汚損状態
および使用限界などを的確に測定することが可能となる
In addition, as moisture and dielectric insoluble matter increase, the dielectric constant becomes thicker (because the - of the transient response current is larger,
If the lubricating oil has a high electrical conductivity (1, it can be determined that the dielectric constant is large due to force). From the value of P/△i, it is possible to accurately measure the lubricating oil's performance, contamination state, and usage limit. .

第8図に示す実施例の誘電体物質の性能評価方法および
その装置は第2発明の第2態様、第4発明の第4態様に
属するものであって、前記電源手段による電極への印加
は一定振巾、一定時間巾のパルス電圧を発生するように
した方法である。さらには9本実施例において、電圧源
2は、任意の直流電圧を発生する電源20と、任意な時
間巾を設定できるスイッチ手段21とから構成さる装置
である。かかる構成からなる本実施例の方法およびその
装置によれば、一対の電極lの間に臨ます誘電体物質に
対して、任意の電圧値、任意の時間巾を有するパルス電
圧を印加することができる。
The method and apparatus for evaluating the performance of a dielectric material according to the embodiment shown in FIG. 8 belong to the second aspect of the second invention and the fourth aspect of the fourth invention, in which the voltage applied to the electrodes by the power supply means is This method generates a pulse voltage of a constant amplitude and a constant time duration. Further, in this embodiment, the voltage source 2 is a device comprising a power source 20 that generates an arbitrary DC voltage and a switch means 21 that can set an arbitrary time width. According to the method and device of this embodiment having such a configuration, a pulse voltage having an arbitrary voltage value and an arbitrary duration can be applied to the dielectric material facing between the pair of electrodes l. can.

これは、誘電体物質の種類によって最適な過渡応答特性
を選択でき、該誘電体物質の性能を最大感度で評価でき
る。
This makes it possible to select the optimum transient response characteristic depending on the type of dielectric material, and to evaluate the performance of the dielectric material with maximum sensitivity.

次にパルス電圧が印加された時、電極1間の誘電体物質
に流れる過渡応答電流は、抵抗などによる電流→電圧変
換素子30と、前記過渡応答電流に混入する電源ハムな
どを除去するLPF回路31とから構成する電流検出手
段3によって検出する。
Next, when a pulse voltage is applied, the transient response current that flows through the dielectric material between the electrodes 1 is transferred to a current-to-voltage conversion element 30 using a resistor, etc., and an LPF circuit that removes power supply hum mixed into the transient response current. The current is detected by the current detection means 3 consisting of 31.

かかる構成の電流検出手段3によれば、前記過渡応答電
流を容品に電圧信号に変換でき、かつ極めて高い抵抗値
を呈す誘電体物質において、前記電流の測定時に電流信
号に混入するハムをLPFで除去することにより、正確
な過渡応答電流を検出できる。
According to the current detection means 3 having such a configuration, in a dielectric material that can easily convert the transient response current into a voltage signal and exhibits an extremely high resistance value, the LPF eliminates the hum mixed into the current signal when measuring the current. By removing the current, an accurate transient response current can be detected.

次に処理回路手段4はゲート手段43.ピーク検出手段
40.差動演算手段41および割算手段42とから構成
する。かかる構成においてゲート手段48は前記電圧源
2をスタートさせる信号より。
Next, the processing circuit means 4 is connected to the gate means 43. Peak detection means 40. It is composed of a differential calculation means 41 and a division means 42. In such an arrangement, the gating means 48 is activated by a signal for starting said voltage source 2.

任意時間遅延されたゲート信号が前記スイッチ手段21
から付勢される。
The gate signal delayed by an arbitrary time is transmitted to the switch means 21.
is energized from.

従って、電極1tこパルス電圧を印加した直後の過渡応
答電流はゲート手段43によりてしゃ断され。
Therefore, the transient response current immediately after the pulse voltage is applied to the electrode 1t is cut off by the gate means 43.

ピーク検出手段40には印′加されない。No voltage is applied to the peak detection means 40.

すなわちゲート手段48の作用によって、前記過渡応答
電流の内、パルス電圧印加して、任意時間経過後の一定
時間内の電流信号のみを検出できるO以下ゲート手段に
よって選択された任意時間経過後のピーク値と一定時間
内における前記電流の変化量とが検出、演算され、処理
回路手段4からは前記ピーク値と電流変化値との比率信
号が検出される。
That is, by the action of the gate means 48, among the transient response currents, a pulse voltage is applied and only a current signal within a certain time after an arbitrary time has elapsed can be detected. The value and the amount of change in the current within a certain period of time are detected and calculated, and the processing circuit means 4 detects a ratio signal between the peak value and the current change value.

次に表示手段5は、ホールド手段60とアナログ表示部
51および判定手段52とインジケータ58とから構成
する。かかる構成によれば、前記処理手段4から出力さ
れる誘電体物質の過渡応答電流の任意位置、一定時間内
における。そのピーク値と変化量との比率信号を、ホー
ルド手段50によって保持し、アナログメータ51など
によってその値を指示する。従って、アナログメータ5
1の指示値から、誘電体物質の性能を把握することがで
きる。
Next, the display means 5 includes a hold means 60, an analog display section 51, a determination means 52, and an indicator 58. According to this configuration, the transient response current of the dielectric substance outputted from the processing means 4 can be generated at any position within a certain period of time. A ratio signal between the peak value and the amount of change is held by the holding means 50, and the value is indicated by an analog meter 51 or the like. Therefore, analog meter 5
The performance of the dielectric material can be grasped from the indicated value of 1.

一方、前記処理手段4の出力もしく龜ホーμド手段50
の出力は判定手段52に入力−し、任意に設定される基
準値と比較しj′その結果をランプ等のインジケータ5
8によって表示する。
On the other hand, the output of the processing means 4 or the feed means 50
The output is inputted to the determining means 52, and compared with an arbitrarily set reference value, the result is displayed as an indicator 5 such as a lamp.
Displayed by 8.

一定時間内における変化量との比率すなわちip/△i
を測定した結果の一例を示す。
The ratio to the amount of change within a certain period of time, i.e. ip/△i
An example of the measurement results is shown below.

第9図から未使用油およびLoootm走行以下ではi
p/△iは2以下、5.00.O/v走行相尚では3〜
5,6.000〜B、 OOOkm走行では7〜11゜
10、ooo+b走行以上では16以上となっており。
From Figure 9, under unused oil and Loootm running, i
p/△i is 2 or less, 5.00. O/v running phase is 3~
5,6.000~B, 7~11°10 for OOOkm driving, and 16 or more for ooo+b driving or more.

iP/△iはほぼ自動車の走行距離に比例することがわ
かる。
It can be seen that iP/Δi is approximately proportional to the distance traveled by the car.

第9図における潤滑油の使用限界は約10. OOOk
The usage limit of lubricating oil in Figure 9 is approximately 10. OOOk
.

走行であることから9例えば前記表示手段60判定手段
62における基準値を−ip/△iが6以下をOK、6
〜12をCHECK 、12以上をNGに設定すれば、
潤滑油の汚損状態および使用限界を的確に判別すること
ができる。
Since it is running, for example, the reference value in the display means 60 judgment means 62 is set to -ip/△i of 6 or less, 6
If you set ~12 to CHECK and 12 or more to NG,
It is possible to accurately determine the contamination state and usage limit of lubricating oil.

又第9図において、電圧源2は、直流電圧源20の出力
をスイッチ手段21によってパルス電圧に変換する方法
を示したが、直接パルス電圧を発生させても良い。
Further, in FIG. 9, the voltage source 2 shows a method in which the output of the DC voltage source 20 is converted into a pulse voltage by the switch means 21, but the pulse voltage may be directly generated.

更に処理手段4において1割算手段42は過渡応答電流
のピーク値ipを分母、変化量へiを分子としたが、逆
の演算であっても良いことは云うまでもない。
Further, in the processing means 4, the 1 division means 42 uses the peak value ip of the transient response current as the denominator and the amount of change i as the numerator, but it goes without saying that the reverse calculation may be used.

以上本発明にかかる誘電体物質の性能評価方法および装
置の具体的な実施例を自動車の潤滑油に対しそ実施した
一例について述べたが1本発明の   ′基本原理によ
れば、誘電体物質であれば、その性状、汚損状態、使用
限界などを的確に把握することができる。従って自動車
の潤滑油のみならず。
Above, we have described a specific example in which the method and apparatus for evaluating the performance of dielectric materials according to the present invention were applied to lubricating oil for automobiles.1 According to the basic principle of the present invention, dielectric materials can If so, it is possible to accurately grasp its properties, state of contamination, usage limits, etc. Therefore, not only automotive lubricants.

工作機械、繊維機械、船舶等潤滑油が利用されている分
野に幅広く適用できる。
It can be widely applied to fields where lubricating oil is used, such as machine tools, textile machinery, and ships.

この事実は、特に石油等から作られる潤滑油の性能評価
が的確に行えるため、資源に対する指標として1社会に
大きく貢献できるものである。
This fact makes it possible to accurately evaluate the performance of lubricating oils made from petroleum, etc., which can greatly contribute to society as an indicator for resources.

又9本発明にかかる第1発明ないし第4の発明を個別な
装置として述べたが、これらをい(つか選
In addition, although the first to fourth inventions according to the present invention have been described as individual devices, some (selected)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す線図、第2図は本発明によ
る測定結果を示す写真、第8図ないし第9図は第1発明
ないし第4発明に・おける方法およびその装置ならびに
測定結果をそれぞれ示す線図である。 図中  1・・・電極、2・・・電源手段。 8・・・電流検出手段、4・・・信号処理手段、6・・
・表示手段、40・・・ピーク検出手段、41・・・差
動演算手段、42・・・割算手段 特許出願人 株式会社 豊田中央研究所 i=M r。 第7回 一山 3  ・ ト堅 → 265− t 7 2 t
FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a photograph showing measurement results according to the present invention, and FIGS. 8 to 9 are methods, apparatuses, and measurements in the first to fourth inventions. It is a line diagram which shows each result. In the figure 1...electrode, 2...power source means. 8... Current detection means, 4... Signal processing means, 6...
・Display means, 40... Peak detection means, 41... Differential calculation means, 42... Division means Patent applicant Toyota Central Research Institute i=M r. 7th Ilsan 3・G-ken → 265-t 7 2 t

Claims (1)

【特許請求の範囲】 1) 測定すべき誘電体物質に臨ました少なくとも一対
の電極に電源手段よりパルス電圧を印加し、該電極間に
介在する誘電体物質の成分に対応して該電極間に流れる
過渡応答電流を測定し当該電流値から誘電体物質の性能
を評価することを特徴とする誘電体物質の性能評価方法
。 2) 測定すべき誘電体物質に臨ました少なくとも一対
の電極に電源手段よりパルス電圧を印加し、該電極間に
介在する誘電体物質の成分に対応して該電極間に流れる
電流を電流検出手段により検出すると共に、当該電流の
変化を処理手段により測定し、前記パルス電圧の印加時
における誘電体物質の過渡応答特性から誘電体物質の性
能を評価することを特徴とする誘電体物質の性能評価方
法。 8) 前記処理手段による電流変化の測定は。 前記誘電体物質の過渡応答によって前記電極間に流れる
電流の任意位置における電流値のピーク値。 該任意位置における一定時間内の電流゛変化量および前
記ピーク値と該ピーク値から一定時間経過後の電流変化
量とを割算演算した比率の少なくとも一つにより行なう
ようにしたことを特徴とする特許 評価方法。 4) 前記電源手段による電極への印加は一定振巾,一
定時間巾のパルス電圧を発生することを特徴とする前記
特許請求の範囲第8項記載の誘電体物質の性能評価方法
。 5) 測定すべき誘電体物質に臨ました少なくとも一対
の電極と.該電極にパルス電圧を印加する電源手段と,
該電極間に介在する誘電体物質の成分に対応して該電極
間に流れる過渡応答電流を測定する手段とから成り,当
該測定した電流値から誘電体物質の性能を評価すること
を特徴とする誘電体物質の性能評価装置。 6) 測定すべき誘電体物質に臨ました少なくとも一対
の電極と。 該電極にパルス電圧を印加する電源手段と。 該電極間に介在する誘電体物質の成分に対応して該電極
間に流れる電流を検出する電流検出手段と。 該電流の変化を測定する処理手段とから成り。 前記パルス電圧の印加時における誘電体物質の過渡応答
特性から誘電体物質の性能を評価することを特徴とする
誘電体物質の性能評価装置。 7) 前記処理手段は、前記誘電体物質の過渡応答によ
って前記[極間に流れる電流の任意位置における電流値
のピーク値を測定するピーク検出手段であることを特徴
とする特許 第6項記載の誘電体物質の性能評価装置。 8) 前記処理手段は,前記誘電体物質の過渡応答によ
って前記電極間に流れる電流の任意位置における一定時
間内の電流変化量を測定するピーク検出手段と差動演算
手段とから成ることを特徴とする前記特許請求の範囲第
6項記載の誘電体物質の性能評価装置。 9) 前記処理手段は,前記誘電体物質の過渡応答によ
って.前記電極間に流れる電流の任意位置におけるピー
ク値と,該ピーク値から一定時間経凸後の電流変化量と
を割算演算し,一流のピーク値と変化量との比率,を測
定するためのピーク検出手段と差動演算手段および割算
演算手段とから成ることを特徴とする前記特許請求の範
囲第6項記載の誘電体物質の性能評価装置。 10)  前記電源手段は.一定振l】、一定時間巾の
パルス電圧を発生する機能を有することを特徴とする前
記特許請求の範囲第8項および第9項記載の誘電体物質
の性能評価装置。
[Claims] 1) A pulse voltage is applied from a power supply means to at least a pair of electrodes facing a dielectric substance to be measured, and a pulse voltage is applied between the electrodes in accordance with the components of the dielectric substance interposed between the electrodes. A method for evaluating the performance of a dielectric material, characterized by measuring a flowing transient response current and evaluating the performance of the dielectric material from the current value. 2) A pulse voltage is applied from a power supply means to at least a pair of electrodes facing the dielectric material to be measured, and a current flowing between the electrodes is detected by a current detection means in accordance with the components of the dielectric material interposed between the electrodes. performance evaluation of a dielectric material, characterized in that the change in the current is measured by a processing means, and the performance of the dielectric material is evaluated from the transient response characteristics of the dielectric material when the pulse voltage is applied. Method. 8) Measurement of current change by the processing means. A peak value of a current value at an arbitrary position of a current flowing between the electrodes due to a transient response of the dielectric material. The method is characterized in that the determination is performed using at least one of the amount of change in current within a certain time at the arbitrary position and the ratio obtained by dividing the peak value and the amount of change in current after a certain period of time has elapsed from the peak value. Patent evaluation method. 4) The method for evaluating the performance of a dielectric material according to claim 8, wherein the voltage applied to the electrode by the power supply means generates a pulse voltage of a constant amplitude and a constant time duration. 5) At least one pair of electrodes facing the dielectric material to be measured. power supply means for applying a pulse voltage to the electrode;
and means for measuring a transient response current flowing between the electrodes corresponding to the components of the dielectric material interposed between the electrodes, and the performance of the dielectric material is evaluated from the measured current value. Performance evaluation device for dielectric materials. 6) at least one pair of electrodes facing the dielectric material to be measured; and power supply means for applying a pulse voltage to the electrode. current detection means for detecting a current flowing between the electrodes in accordance with a component of a dielectric substance interposed between the electrodes; and processing means for measuring changes in the current. A performance evaluation device for a dielectric material, characterized in that the performance of the dielectric material is evaluated from the transient response characteristics of the dielectric material when the pulse voltage is applied. 7) The processing means is a peak detection means for measuring the peak value of the current flowing between the electrodes at an arbitrary position based on the transient response of the dielectric material. Performance evaluation device for dielectric materials. 8) The processing means is characterized by comprising a peak detection means and a differential calculation means for measuring the amount of change in the current flowing between the electrodes at an arbitrary position within a certain period of time due to the transient response of the dielectric material. A performance evaluation device for a dielectric material according to claim 6. 9) The processing means is configured to: by a transient response of the dielectric material. The peak value of the current flowing between the electrodes at an arbitrary position is divided by the amount of change in the current after a certain period of time has elapsed from the peak value, and the ratio between the peak value and the amount of change is calculated. 7. A performance evaluation device for a dielectric material according to claim 6, comprising a peak detection means, a differential calculation means, and a division calculation means. 10) The power source means. 10. The device for evaluating the performance of a dielectric material according to claim 8, characterized in that it has a function of generating a pulse voltage of a constant amplitude and a constant time width.
JP3638483A 1983-03-04 1983-03-04 Method and device for evaluating performance of dielectric material Granted JPS59162443A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3638483A JPS59162443A (en) 1983-03-04 1983-03-04 Method and device for evaluating performance of dielectric material
US06/585,257 US4686857A (en) 1983-03-04 1984-03-01 Method and apparatus for evaluating the performance of dielectric substances
EP84102243A EP0121739B1 (en) 1983-03-04 1984-03-02 Method and apparatus for evaluating the performance of dielectric substances
DE8484102243T DE3472460D1 (en) 1983-03-04 1984-03-02 Method and apparatus for evaluating the performance of dielectric substances
CA000448715A CA1239443A (en) 1983-03-04 1984-03-02 Method and apparatus for evaluating the performance of dielectric substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3638483A JPS59162443A (en) 1983-03-04 1983-03-04 Method and device for evaluating performance of dielectric material

Publications (2)

Publication Number Publication Date
JPS59162443A true JPS59162443A (en) 1984-09-13
JPH0322940B2 JPH0322940B2 (en) 1991-03-27

Family

ID=12468346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3638483A Granted JPS59162443A (en) 1983-03-04 1983-03-04 Method and device for evaluating performance of dielectric material

Country Status (1)

Country Link
JP (1) JPS59162443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162444A (en) * 1983-03-07 1984-09-13 Toyota Central Res & Dev Lab Inc Method and device for measuring performance of oil
CN103809030A (en) * 2012-11-13 2014-05-21 韩国原子力研究院 Method For Measuring Electric Conductivity And Electric Conductivity Measuring System Using The Same
JP2017219420A (en) * 2016-06-07 2017-12-14 株式会社豊田中央研究所 Oil deterioration detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110376A (en) * 1976-03-13 1977-09-16 Biyuutei Hanbai Kk Apparatus for judging deterioration of lubricating oil
JPS53116194A (en) * 1977-03-19 1978-10-11 Fuji Electric Co Ltd Oil deterioration assessment device
JPS5639449A (en) * 1979-09-07 1981-04-15 Mitsubishi Electric Corp Detector for deterioration of insulating fluid of electric equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110376A (en) * 1976-03-13 1977-09-16 Biyuutei Hanbai Kk Apparatus for judging deterioration of lubricating oil
JPS53116194A (en) * 1977-03-19 1978-10-11 Fuji Electric Co Ltd Oil deterioration assessment device
JPS5639449A (en) * 1979-09-07 1981-04-15 Mitsubishi Electric Corp Detector for deterioration of insulating fluid of electric equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162444A (en) * 1983-03-07 1984-09-13 Toyota Central Res & Dev Lab Inc Method and device for measuring performance of oil
CN103809030A (en) * 2012-11-13 2014-05-21 韩国原子力研究院 Method For Measuring Electric Conductivity And Electric Conductivity Measuring System Using The Same
US9618468B2 (en) 2012-11-13 2017-04-11 Korea Hydro & Nuclear Power Co., Ltd. Method for measuring electrical conductivity and electrical conductivity measuring system using the same
JP2017219420A (en) * 2016-06-07 2017-12-14 株式会社豊田中央研究所 Oil deterioration detection device

Also Published As

Publication number Publication date
JPH0322940B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
EP0121739B1 (en) Method and apparatus for evaluating the performance of dielectric substances
CA2045053C (en) Complete oil analysis technique
TWI480551B (en) Degradation of lubricating oil ‧ Method for measuring variable mass and its measuring device
US5644239A (en) Method and apparatus for sensing the condition of a fluid
JP5718822B2 (en) Lubricating oil degradation state judging method and judging device, and lubricating oil monitoring system in machine / equipment
Wang Engine oil condition sensor: method for establishing correlation with total acid number
JPS59162443A (en) Method and device for evaluating performance of dielectric material
WO2010078555A2 (en) Capacitive and resistive conductivity engine oil analyzer
DE10243510B4 (en) Device for determining the state of oil
US2752566A (en) Methods and means for indicating contamination of lubricating oil
JPS59168322A (en) Method and device for measuring lubricating oil
JPS59210353A (en) Measuring device of performance of lube
CN107560686A (en) A kind of crude oil liquid level emasuring device
JPS59162444A (en) Method and device for measuring performance of oil
JPH0361137B2 (en)
JPS6120848A (en) Deciding device for degree of deterioration of lubricating oil
RU2473884C1 (en) Method of diagnosing machine assemblies based on operating oil parameters
Halalay et al. In-situ monitoring of engine oils through electrical AC impedance measurements
SU958945A1 (en) Device for measuring liquid electric conductivity
Thong-un et al. Design of capacitive sensor for concentration measurement
JPH11223618A (en) Contamination and deterioration detecting device for liquid
JPH028259B2 (en)
Peev Impedance approaches to motor oils
JP2001264291A (en) Method and device for detecting change in constituent and property of liquid and separate auxiliary electrode structure
Mäder et al. Concentration measurements of biodiesel in engine oil and in diesel fuel