JPS59162408A - Distance measuring unit - Google Patents

Distance measuring unit

Info

Publication number
JPS59162408A
JPS59162408A JP3718283A JP3718283A JPS59162408A JP S59162408 A JPS59162408 A JP S59162408A JP 3718283 A JP3718283 A JP 3718283A JP 3718283 A JP3718283 A JP 3718283A JP S59162408 A JPS59162408 A JP S59162408A
Authority
JP
Japan
Prior art keywords
light
block
light receiving
lens
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3718283A
Other languages
Japanese (ja)
Inventor
Takeo Takarada
宝田 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP3718283A priority Critical patent/JPS59162408A/en
Publication of JPS59162408A publication Critical patent/JPS59162408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line

Abstract

PURPOSE:To obtain a broad range wherein adjustment can be performed, by displacing a light receiving block having a light receiving element in the direction of the length of a base line by the rotation of an eccentric shaft, which is compressed to an optical block having a light receiving lens. CONSTITUTION:An optical block A supports a light receiving lens 6. A light receiving block C supports a light receiving element. A coupling means couples the light receiving block C and the optical block A so that the light receiving block C can be displaced in the direction of the length of a base line with respect to the optical block A. An adjusting member 15 devices the light receiving block C, so that the light receiving block C is displaced in the direction of the length of the base line, and adjusts the position.

Description

【発明の詳細な説明】 技術分野 本発明は測距対象に光を投射し、測距対象で反射した光
を受光して測距対象1での距離を測定する投射光式三角
測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a projection light type triangular distance measuring device that measures the distance at a distance measuring object 1 by projecting light onto a distance measuring object and receiving the light reflected by the distance measuring object. .

従来技術 従来、カメラなどに用いて対象物(カメラにあ=いては
被写体−)までの距離を測定するために、光を対象物に
投射し、対象物によ−って反射したこの光を受光して対
象物までの距離を測定する投射光式三角測距装置が知ら
れている。この装置においては発光光源部と受光部との
間の基線長の精度が測距精度に影響するため、この基線
長は正確に設定されねばなら寿い。
Prior Art Conventionally, in order to measure the distance to an object (in the case of a camera, the subject) using a camera, light is projected onto the object, and this light reflected by the object is measured. 2. Description of the Related Art Projection light type triangulation distance measuring devices that measure the distance to an object by receiving light are known. In this device, the accuracy of the baseline length between the light emitting light source section and the light receiving section affects the distance measurement accuracy, so this baseline length must be set accurately.

投射光式三角測距装置においては、対象物の距離によっ
て、その対象物で反射した光の入射角・が異なることを
利用して測定を行なうが、この入射角の異なりを検出す
るために複数の光起電力素子を配列した受光素子を設け
、何れの素子に入射したかによって検出を行なう構成の
ものが知られている。この構成において、対象物で反射
した光を受光する受光レンズと受光素子の相対位置が正
確でないと、成る距離から成る入射角で入射した光を、
本来その入射光を受光すべき素子が受光できず、異った
素子が受光してし甘い、測距が不正確になってしまう。
Projection light triangulation distance measuring devices perform measurements by utilizing the fact that the angle of incidence of the light reflected from the object differs depending on the distance to the object. There is a known configuration in which a light-receiving element is provided with photovoltaic elements arrayed, and detection is performed depending on which element the light is incident on. In this configuration, if the relative positions of the light-receiving lens and the light-receiving element that receive the light reflected by the object are not accurate, the light incident at the angle of incidence defined by the distance will be
The element that should originally receive the incident light cannot receive it, and a different element receives the light, resulting in inaccurate distance measurement.

このため、受光レンズと受光素子の相対位置を調整する
調整装置が必要となる。
Therefore, an adjustment device is required to adjust the relative position of the light receiving lens and the light receiving element.

−ところで、こ、のような測距装置の組立時においては
受光レンズと受光素子の相対位置にはある程度の誤差が
避は難く、上記のような調整装置は大きな調整範囲を有
する必要がある。
- By the way, when assembling such a distance measuring device, it is difficult to avoid a certain degree of error in the relative positions of the light receiving lens and the light receiving element, and the above adjusting device needs to have a large adjustment range.

この調整装置として例えば、昼光レンズと受光素子の間
に透明均質で均一な厚みを有する平板を受光レンズから
の入射光路に対して傾けて設けたものがある。これは平
板表面に対し斜めに入射した光が屈折し、裏面より斜め
に射出する時に再度屈折して入射前の光路と平行でかつ
異った光路上を通るためで、入射光路に対する平板の角
度を変えることにより射出光路を調整する。
An example of this adjusting device is one in which a transparent homogeneous flat plate having a uniform thickness is provided between a daylight lens and a light receiving element and is tilted with respect to the incident optical path from the light receiving lens. This is because the light incident obliquely on the flat plate surface is refracted, and when it exits obliquely from the back surface, it is refracted again and passes along a different optical path that is parallel to the optical path before incidence, and the angle of the flat plate with respect to the incident optical path. Adjust the exit optical path by changing .

しかしながらこの調整装置においては、調整量は透明な
平板の厚みによって限界がちシ、必要な調整量が犬きく
なると完全には調整できず、よシ厚い平板に交換するな
どの対策が必要となる。
However, with this adjustment device, the amount of adjustment tends to be limited by the thickness of the transparent flat plate, and if the required amount of adjustment becomes too large, it cannot be adjusted completely, and countermeasures such as replacing it with a thicker flat plate are required.

また、調整範囲を大きくすると、逆に微調整が困難にな
るという問題も有る。
Furthermore, if the adjustment range is increased, there is also the problem that fine adjustment becomes difficult.

目   的 本発明の目的は、基線長調整が広い範囲で可能な測距ユ
ニットを得ることにあるみ 実施例 次に添付図面を参照し七本発明の実施例につき説明する
OBJECT An object of the present invention is to obtain a distance measuring unit in which the base line length can be adjusted over a wide range.Embodiments Next, seven embodiments of the present invention will be described with reference to the accompanying drawings.

本実施例においては、本発明を、カメラの自動焦点装置
に使用する測距装置に適用したものを示している。
In this embodiment, the present invention is applied to a distance measuring device used in an automatic focusing device of a camera.

第1図はとの測距ユニットを上方から見た状態、第2図
は測距ユニットを第1図に示すファインダー光軸線x−
x’を含む水平面で切断して上方より見た状態、第3図
は第1図のファインダー光軸線X、X/を含む垂直面で
切断して左方より見た状態、第4図は第1図の左方から
見た状態、第5図は第1図の受光光軸線Z−Z/を含む
垂直面で切断して左方より見た状態を示している。
Figure 1 shows the distance measuring unit as seen from above, and Figure 2 shows the distance measuring unit as shown in Figure 1.
Figure 3 shows the view from above when cut along the horizontal plane including x', Figure 3 shows the view from the left when cut along the vertical plane including the finder optical axes X and X/ in Figure 1, and Figure 4 shows the view from the left. 1 as seen from the left, and FIG. 5 shows the state as seen from the left when cut along a vertical plane including the light receiving optical axis Z--Z/ in FIG.

測距ユニットは投射光式三角測距装置とファインダー装
置とからなっており、該投射光式三角測距装置は投射光
源部と受光部からなっている。この投射光源部は、測距
のだめに被写体に向け1光を投射する光源及び投射光学
系を有しておシ、受光部は、被写体で反射された光を受
光する受光“素子、受光光学系及び該受光素子の出方信
号を処理して距離を測定する電気回路を有している。
The distance measuring unit includes a projection light type triangulation distance measuring device and a finder device, and the projection light type triangulation distance measuring device includes a projection light source section and a light receiving section. The projection light source section includes a light source and a projection optical system that project a single beam of light toward the subject for distance measurement, and the light receiving section includes a light receiving element that receives light reflected by the subject, and a light receiving optical system. and an electric circuit that processes the output signal of the light receiving element and measures the distance.

測距ユニットはカメラホディの上部に取付穴(A13)
i介して取付ネジによって固定され、この取付状態にお
いてはファインダー装置のファインダー光軸線X−X/
がカメラに設置され轡る撮影レンズ(図示せず)の光軸
と平行になる。またカメラの上部に固定された後、受光
部の電気回路がカメラ本体の端子に接続され、測距信号
をカメラ本体へ伝達できるようになる。
The distance measuring unit has a mounting hole (A13) on the top of the camera body.
It is fixed with a mounting screw through the i, and in this mounted state, the finder optical axis
is parallel to the optical axis of a photographic lens (not shown) installed on the camera. Furthermore, after being fixed to the top of the camera, the electric circuit of the light receiving section is connected to the terminal of the camera body, allowing distance measurement signals to be transmitted to the camera body.

測距ユニットは投射光源部と受光部の夫々の光学系及び
ファインダー装置からなる光学系ブロック(A)、投射
光源を設置する光源ブロック■)、受光素子と電気回路
を設置する舌先ブロック(C)とがらなり、各ブロック
(A) (B) (C)相互の相対位置が調整により変
位できるように連結されている。
The distance measuring unit consists of an optical system block (A) consisting of the optical systems of the projection light source section and the light receiving section and a finder device, a light source block (■) in which the projection light source is installed, and a tongue tip block (C) in which the light receiving element and electric circuit are installed. The blocks (A), (B), and (C) are connected so that their relative positions can be changed by adjustment.

次に各ブロック(A) (B) (C)の構成につき説
明する。
Next, the configuration of each block (A), (B), and (C) will be explained.

第1図乃至第3図に示すように、光学系グロソり(A)
は上方から見て略T字形状に形成されている。
As shown in Figures 1 to 3, optical system gloss (A)
is formed into a substantially T-shape when viewed from above.

光学系ブロック(A)の基体は、例えばガラス繊維を混
入させて強化したボリカーポネ皐イト等の材料から成る
プラスチック成型品であり、中央部及び左右部に前後方
向に貫通する空洞が形成されている。
The base of the optical system block (A) is a plastic molded product made of a material such as polycarbonate reinforced with glass fiber, and has cavities penetrating in the front and back direction in the center and left and right parts. .

光学系ブロック(A)の中央部の空洞にはファインダー
用の対物レンズ(1)、凹レンズ(2)、平面ガラス(
3)、接眼レンズ(4)が支持されており、左側の空洞
には投光レンズ(5)、右側の空洞には前記投光レンズ
(5)から所定の基線長隔てて受光レンズ(6)が支持
されている。尚、ファインダー用の光学系は正面から見
て四角形状をなしている。
The central cavity of the optical system block (A) contains a finder objective lens (1), a concave lens (2), and a flat glass (
3), an eyepiece lens (4) is supported, a light projecting lens (5) is provided in the left cavity, and a light receiving lens (6) is provided at a predetermined base length distance from the light projecting lens (5) in the right cavity. is supported. The finder optical system has a rectangular shape when viewed from the front.

対物レンズ(1)は、T字状をなす光学系ブロック体)
の中央部で前方から後方へ伸びる胴部(A1)を前後に
貫通している空洞の前端部に、空洞の周枠部とレンズ前
枠(7)にレンズの上下の縁部(1a)が挾せれること
によって取り付けられている。尚、レンズ前枠(7)は
、投光レンズ(5)及び受光レンズ(6)も支持してお
り、第1図及び第4図、第5図に示すように、左右の上
下辺から上下方向へ突出している突起(7a)が光学系
ブロック(A)の前部に形成されている前枠取付穴(A
4)に係合することにより、光学系ブロック(A)に連
結される。
The objective lens (1) is a T-shaped optical system block)
The upper and lower edges (1a) of the lens are attached to the peripheral frame of the cavity and the lens front frame (7) at the front end of the cavity that penetrates the body (A1) extending from the front to the rear in the center of the lens. Attached by being pinched. The front lens frame (7) also supports the light emitting lens (5) and the light receiving lens (6), and as shown in Fig. 1, Fig. 4, and Fig. 5, A protrusion (7a) protruding in the front frame mounting hole (A) formed in the front part of the optical system block (A)
4), it is connected to the optical system block (A).

対物レンズ(1)の後方には前方から見て略四角形状の
凹レンズ(2)が取り付けられる。該凹レンズ(2)は
、空洞が稍細くなることによって胴部(A1)内に対物
レンズ光軸と垂直に形成される段面(A5)と凹レンズ
(2)との間に、凹レンズ(2)の形状に合致する矩形
の枠状で、各枠縁部の中央部が枠面から突出するように
く字状に折曲げられて形成された板バネ(9)を挾み、
更に、その前方から矩形のレンズ枠(8)によって押さ
えられて支持されている。レンズ枠(8)は第3図に示
すように上下に折シ曲げ部(8a)が形成され、この折
り曲げ部(8a)によって凹レンズ(2)を上下に挾む
ように支持しており、又、レンズ枠(8)の下端部(8
b)が胴部(AI )の底部を貫通するよう開口してい
る穴部(八6)に嵌入し、穴部(A6)の前縁から後方
へ突出する突起(A、)に当接している。
A substantially rectangular concave lens (2) when viewed from the front is attached to the rear of the objective lens (1). The concave lens (2) is arranged between the concave lens (2) and a stepped surface (A5) formed perpendicularly to the optical axis of the objective lens in the body (A1) by making the cavity slightly narrower. It is a rectangular frame shape that matches the shape of the frame, and the plate springs (9) are bent in a dogleg shape so that the center part of each frame edge protrudes from the frame surface.
Furthermore, it is pressed and supported from the front by a rectangular lens frame (8). As shown in Fig. 3, the lens frame (8) has bent portions (8a) formed at the top and bottom, and these bent portions (8a) support the concave lens (2) vertically between them. The lower end of the frame (8)
b) is inserted into the hole (86) which is opened so as to pass through the bottom of the body (AI), and comes into contact with the protrusion (A,) which protrudes rearward from the front edge of the hole (A6). There is.

また、胴部(A1)の上部には調整用偏心軸(10)が
胴部(A1)の外から内へ圧入されて貫通しており、該
調整用偏心軸(10)の偏心ピン(10IL)が板バネ
(9)の付勢力に抗してレンズ枠(8)及び凹レンズ(
2)を前方から後方へ押圧して凹レンズ(2)の位置決
めがなされている。尚、偏心ピン(10a)は調整用偏
心軸(10)の圧入部の軸心から偏心した位置に形成さ
れたピンである。従って調整用偏心軸(10)を回転さ
せることにより、偏心ピン(LOa)の前後位置が変化
し、レンズ枠(8)と凹レンズ(2)が突起(A、)と
レンズ枠の下端部(8b)の当接部分を支点として揺動
し、凹レンズ(2)の光軸の角度を調整して、後述する
ファインダー視野内の撮影範囲枠等の表示の位置を調整
することができる。
Further, an adjustment eccentric shaft (10) is press-fitted from the outside to the inside of the trunk (A1) and passes through the upper part of the trunk (A1), and the eccentric pin (10IL) of the adjustment eccentric shaft (10) ) resists the biasing force of the leaf spring (9) and the lens frame (8) and concave lens (
The concave lens (2) is positioned by pressing the lens (2) from the front to the rear. Incidentally, the eccentric pin (10a) is a pin formed at a position eccentric from the axis of the press-fit portion of the adjustment eccentric shaft (10). Therefore, by rotating the adjustment eccentric shaft (10), the front and rear positions of the eccentric pin (LOa) change, and the lens frame (8) and concave lens (2) are aligned with the protrusion (A,) and the lower end of the lens frame (8b). ) can be used as a fulcrum to swing, and by adjusting the angle of the optical axis of the concave lens (2), it is possible to adjust the position of a display such as a shooting range frame within the field of view of the finder, which will be described later.

尚、調整用偏心軸(10)は第1図に示す通りファイン
ダー光軸線x−x’に関し略対称となる位置に一対設け
られておシ、両者の回転によシ、凹レンズ(2)の傾き
を上下左右方向に調整することができる、。
Incidentally, as shown in Fig. 1, a pair of eccentric shafts (10) for adjustment are provided at substantially symmetrical positions with respect to the finder optical axis x-x'. It can be adjusted vertically, horizontally, and horizontally.

ここで、調整用偏心軸(10)は、プラスチックモー/
リドで形成されている光学系ブロック(A)の胴部(A
□)の上部から所謂しt、b嵌めによって圧入され、回
転可能ではあるが均一の固さで半固定的に相着されてい
る。従って調整用偏心軸(10)はドライバー等の器具
によって回転させることは可能であるが、振動や接触だ
けでは容易に回転することはできない。
Here, the adjustment eccentric shaft (10) is a plastic motor/
The body (A) of the optical system block (A) formed by the lid
□) is press-fitted from the top by so-called t and b fitting, and although it is rotatable, it is semi-fixed with uniform hardness. Therefore, although it is possible to rotate the adjusting eccentric shaft (10) with a tool such as a screwdriver, it cannot be easily rotated by vibration or contact alone.

凹レンズ(2)の握力には平面ガラス(3)、更にその
後方には接眼レンズ(4)が取り付けられている。これ
ら平面ガラス(3)及び接眼レンズ(4)も略四角形状
をなし、光学系ブロック(A)の胴部(A1)の内壁側
に形成された取付用溝(ん)(A9)に嵌合し、適宜接
着剤を用いて固定されている・。
A flat glass (3) is attached to the grip of the concave lens (2), and an eyepiece (4) is attached to the rear of the flat glass (3). The flat glass (3) and the eyepiece (4) also have a substantially square shape, and fit into the mounting groove (A9) formed on the inner wall side of the body (A1) of the optical system block (A). and is fixed using adhesive as appropriate.

尚、前記の凹レンズ(2)と平面ガラス(3)の互いに
向かいあう面には、全反射又は半透明の反射鏡面部(2
a)(8a)が設けられ、対物レンズ(1)から入射し
た光の一部が平面ガラヌ(3)の反射鏡面部(3a)に
反射し、躯に凹レンズ(2)側の反射鏡面部(2a)で
反射して接眼レンズ(4)に導かれることによシ、ファ
インダー視野内に撮影範囲枠や測距範囲その他の文字や
パターン等を表示することができる。この表示は、前述
、した凹レンズ(2)の角度を調整し、凹レンズ(2)
−と平面ガラス(3)夫々の反射鏡面部(2aX8a)
の相対位置を変えることによシ正しい位置に調整し得る
Incidentally, on the opposing surfaces of the concave lens (2) and the flat glass (3), there is a total reflection or translucent reflective mirror surface (2).
a) (8a) is provided, a part of the light incident from the objective lens (1) is reflected on the reflective mirror part (3a) of the flat galanu (3), and the reflective mirror part (3a) on the concave lens (2) side is attached to the body. By being reflected by 2a) and guided to the eyepiece lens (4), it is possible to display the photographing range frame, distance measurement range, and other characters, patterns, etc. within the field of view of the finder. This display can be made by adjusting the angle of the concave lens (2) as described above.
- and flat glass (3) respective reflective mirror surfaces (2aX8a)
The correct position can be adjusted by changing the relative position of the .

(11社発光ダイオードであり、被写体輝度が低く適正
露光が行なえない場合に行なわれる低輝度警告や、閃光
装置の充電完了表示゛、測距動作の完了表示など、カメ
ラの種々の表示に使用される。
(Light-emitting diodes made by 11 manufacturers are used for various camera displays, such as low-luminance warnings that are issued when subject brightness is low and proper exposure cannot be performed, displays that the flash device has been charged, and displays that the distance measurement operation has completed. Ru.

発光ダイオード(11)はその発光部が光学系ブロック
(A)の胴部(A1)内側へ稍突出し、接続端子(11
11)が胴部側壁(AI。)を貫通し、胴部外側へ突出
した部分に接片(llb)がハンダ付けされることによ
って光学系ブロック体)に一体重に取付けられている。
The light emitting part of the light emitting diode (11) slightly protrudes inside the body part (A1) of the optical system block (A), and the connecting terminal (11)
11) penetrates the body side wall (AI) and is integrally attached to the optical system block body by soldering a contact piece (llb) to the portion that protrudes to the outside of the body.

従って撮影者はファインダー接眼枠(A、、)を介して
ファインダー装置を覗くことによって被写体像及び撮影
範囲枠、測距範囲枠、発光ダイオード(11)による表
示等を同時に観察することができる。
Therefore, by looking into the finder device through the finder eyepiece frame (A, . . . ), the photographer can simultaneously observe the subject image, the photographing range frame, the distance measuring range frame, the display by the light emitting diode (11), etc.

尚、第1図において、ファインダー装置は上方゛、即ち
図の手前が開口しているが、カメラ本体への組込み時に
はこの部分は遮蔽される。
In FIG. 1, the finder device is open at the top, that is, at the front in the figure, but this portion is covered when it is assembled into the camera body.

光学系ブロック(A)のファインダー光軸KfAX7X
’の左方には投光レンズ(5)、右方には受光レンズ(
6)が設置されている。投光レンズ(5)及び受光レン
ズ(6)は光学系ブロック(A)の左右の空洞の前端部
に、空洞の周枠部とレンズ前枠(7)にレンズの縁部(
5a)(6a)が挾まれることによって支持されている
Finder optical axis of optical system block (A) KfAX7X
'To the left is the light emitting lens (5), and to the right is the light receiving lens (5).
6) is installed. The light emitting lens (5) and the light receiving lens (6) are attached to the front ends of the left and right cavities of the optical system block (A), and the edges of the lenses (
5a) (6a) are supported by being pinched.

光源ブロックCB)は第1図及び第2図に示すように、
ファインダー光軸線X−X/に関して測距ユニットの左
部でかつ投光レンズ(5)の後方の位置において光学系
ブロック(A)に連結される。光源ブロック(B)゛は
貫通する空洞を有し、該空洞内には赤外光を発する発光
ダイオード(12)が板バネ(2ハ)により空洞−の内
壁■に押し付けられることによって投光レンズ(5)の
投射光光軸線Y−Y/上に位置決めされて設置されてい
る。
As shown in FIGS. 1 and 2, the light source block CB)
It is connected to the optical system block (A) at a position on the left side of the distance measuring unit with respect to the finder optical axis XX/ and behind the light projecting lens (5). The light source block (B) has a cavity passing through it, and in the cavity, a light emitting diode (12) that emits infrared light is pressed against the inner wall of the cavity by a plate spring (2c), so that a light projection lens is installed. (5) It is positioned and installed on the projection light optical axis Y-Y/.

光源ブロック(B)には、第2図及び第4図に示すよう
に、その左寄多位置に前−後方向に伸長する縦長の案内
孔(B2)が形成され、又、左端部が前方へ突出して摺
動片(B3)を形成している。一方、光学系ブロックG
A)の左側面の後方寄りが稍凹んで前記摺動片(B3)
φ嵌合し得るような垂直な段面をなす案内溝(AJを形
成し、該案内溝(A12)の段面が延長されてレンズ支
持ブロック(A)の後方へ伸びる様に突出部分が形成さ
れ、該突出部分の先端が上下2本に分割されてフォーク
状案内片(A、□)となっている。このような形状をな
している部分において、光学系ブロック体)のフォーク
状案内片(An)が弾性によって光源ブロック(B)の
案内孔(B4.、)に上下方向に圧接するよう嵌入しζ
光源ブロック(B)の摺動片(B3)が光学系ブロック
(A)の案内溝(A□)に嵌合している。これによって
フォーク状案内片(AI1)と案内孔(B2)及び摺動
片(B8)と案内溝(All)が夫々摺動しあって、光
学系ブロック(A)に対して光源ブロックCB)が前後
方向に移、動することができる。
As shown in FIGS. 2 and 4, the light source block (B) has a vertically elongated guide hole (B2) extending in the front-to-back direction at the left side position, and the left end is located at the front side. It protrudes to form a sliding piece (B3). On the other hand, optical system block G
The rear side of the left side of A) is slightly concave and the sliding piece (B3)
A guide groove (AJ) is formed with a vertical stepped surface that can be fitted into the guide groove (A12), and a protruding portion is formed so that the stepped surface of the guide groove (A12) is extended and extends to the rear of the lens support block (A). The tip of the protruding portion is divided into upper and lower parts to form a fork-shaped guide piece (A, □).In the part having such a shape, the fork-shaped guide piece of the optical system block body (An) is elastically fitted into the guide hole (B4., ) of the light source block (B) so that it presses in the vertical direction ζ
The sliding piece (B3) of the light source block (B) fits into the guide groove (A□) of the optical system block (A). As a result, the fork-shaped guide piece (AI1) and the guide hole (B2) and the sliding piece (B8) and the guide groove (All) slide on each other, so that the light source block CB) is moved relative to the optical system block (A). It can move forward and backward.

また、フォーク状案内片(All)が形成された突出部
分には調整用偏心軸(13)が圧入されており、この調
整用偏心軸(13)の頭部を形成する偏心頭部(13a
)が摺動片(B3)に形成された上下方向に長い長円形
状の長孔溝(B4)に嵌入している。この調整用偏心軸
(13)を回転させると、偏心頭部(13a)の変位に
従って光源ブロック(B)が、前後方向に変位する。
Further, an eccentric shaft for adjustment (13) is press-fitted into the protruding portion where the fork-shaped guide piece (All) is formed, and an eccentric head (13a) forming the head of the eccentric shaft for adjustment (13)
) is fitted into a vertically elongated oblong slot (B4) formed in the sliding piece (B3). When the adjustment eccentric shaft (13) is rotated, the light source block (B) is displaced in the front-rear direction according to the displacement of the eccentric head (13a).

従って調整用偏心軸(13)を回転させることにより発
光ダイオード(12)を投光レンズ(5)の焦点位置に
位置させ、これによシ発光ダイオード(12)から発し
た光が投光レンズ(5)によって平行光束となって測距
対象まで投射される。尚、偏心頭部(1’la)の上下
方向の変位量゛は長孔溝(B4)の長軸方向の長さより
少ないため、光源ブロック(B)には上下に変位させる
力は働か力い。
Therefore, by rotating the adjustment eccentric shaft (13), the light emitting diode (12) is positioned at the focal point of the light emitting lens (5), and thereby the light emitted from the light emitting diode (12) is directed to the light emitting lens (5). 5), the light becomes a parallel beam of light and is projected to the object to be measured. In addition, since the amount of vertical displacement of the eccentric head (1'la) is smaller than the length of the elongated hole groove (B4) in the long axis direction, no force acts on the light source block (B) to displace it vertically. .

尚、この調整用偏心軸(13)はプラスチックモールド
で形成されている光学系ブロック(A)のフォーク状案
内片(、A11)を形成する突出部分の基部にしまシ嵌
めによって圧入され、回転可能ではあるが、半固体的に
枢着されている。従って調整用偏心軸(13)はドライ
バー等の器具によって回転させることは可能であるが、
振動や接触だけでは容易に回転することはできない。
The eccentric shaft for adjustment (13) is press-fitted into the base of the protruding part forming the fork-shaped guide piece (A11) of the optical system block (A) formed of plastic mold by a stripe fit, and is rotatable. However, it is pivoted semi-solidly. Therefore, although it is possible to rotate the adjustment eccentric shaft (13) with a tool such as a screwdriver,
It cannot be easily rotated by vibration or contact alone.

受光ブロック(C)は貫通する空洞を有し、第1図及び
第2図に示すようにファインダー光軸線X−X/に関し
て測距ユニットの布部で、光学系プロソク(A)Kおけ
る受光レンズ(6)の後方に取付けられる。
The light-receiving block (C) has a penetrating cavity, and as shown in FIGS. 1 and 2, the light-receiving lens in the optical system processor (A) K is the cloth part of the distance measuring unit with respect to the finder optical axis (6) Attached to the rear.

即ち、測距ユニットの上下方向に光学系フ゛ロック、(
A)と受光ブロック″(C)を貫通する゛ように枢着J
ン(14)を所謂しまり嵌めによって圧入して両フ゛ロ
ック(A)(C)が互いに半固定的に揺動し得るよう連
結し、力・つ光学系ブロック体)にしまり嵌めによって
14整用偏心軸(15)を圧入し、その頭部をなす偏1
B頭部(15a)が受光ブロック(C)に形成された前
後に長い長円形状の長孔溝(C,)に嵌入することによ
って、両フ゛ロック(A) (C)は互いに変位可能に
連結されている。
In other words, the optical system block, (
A) and the light receiving block (C) are pivoted so as to pass through it.
The pin (14) is press-fitted by a so-called interference fit, and both blocks (A) and (C) are connected to each other so as to be able to swing in a semi-fixed manner. Press-fit the shaft (15) and make the head part of the shaft (15).
By fitting the B head (15a) into a longitudinally elongated oblong groove (C,) formed in the light receiving block (C), both blocks (A) and (C) are connected to each other so that they can be displaced. has been done.

調整用偏心軸(15)を回転させると、偏心量@1S(
15a)によって長孔溝(C1)が左右に押動され、受
光ブロック(C)は枢着ピン(14)を中心として揺動
する。この揺動によって、前述の発光ダイオード(12
)から発せられ、投光レンズ(5)によって平イ1光束
となって被写体へ到達して反射した赤外光カニJ所定の
受光素子(16)に到達するように所謂基線長π削整〃
S行なわれる。
When the adjustment eccentric shaft (15) is rotated, the amount of eccentricity @1S (
15a), the long hole groove (C1) is pushed left and right, and the light receiving block (C) swings about the pivot pin (14). This oscillation causes the aforementioned light emitting diode (12
) is emitted by the projecting lens (5), reaches the subject as a flat beam, and is reflected.The so-called base line length π is trimmed so that the infrared light crab J reaches a predetermined light receiving element (16).
S will be carried out.

(22)は受光レンズ(6)の後方に位置するよう西己
設される光軸調整板で、抱−な厚さを有する透明子プラ
スチック成型部材である。回動軸部(22b)は受光ブ
ロック(C)の右方から所謂しまり嵌めによって圧入さ
れ、光軸調整板(22)が回転゛可能であるが半固定的
に軸支されている。光軸調整板(22)は回動軸部(2
2b)を回転させることによって透明平面板部(22a
)が軸P−P’を中心に回転し、受光レンズ(6)から
入射した光の光路を上下方向に変位させることができる
Reference numeral (22) denotes an optical axis adjustment plate disposed behind the light-receiving lens (6), which is a transparent plastic molded member having a certain thickness. The rotation shaft portion (22b) is press-fitted from the right side of the light receiving block (C) by a so-called interference fit, and the optical axis adjustment plate (22) is rotatable but semi-fixedly supported. The optical axis adjustment plate (22) is connected to the rotation shaft part (2
By rotating the transparent plane plate part (22a)
) rotates around the axis PP', and can vertically displace the optical path of the light incident from the light receiving lens (6).

受光素子(16)は第2図及び第5図に示すように受光
ブロック(C)に形成された空洞の後端に位置し複数個
の光起電力素子列よりなる半導体片で、セラミック基板
(17)上に取付けられている。セラミック基板(17
)には四に受光素子(16)からの信号を処理するだめ
の集積回路(18)が設置され、セラミック基板(17
)の裏面にはやはり信号処理のだめの電気回路素子が組
まれたエポキシ樹脂製の回路基板(19)が貼付されて
いる。これらの回路基板(17)(19怠、受光ブロッ
ク(C)に形成された位置決め用突起(C2)を受は孔
(19a)に嵌合させ、取付はネジ(20)をねじ込む
ことによって受光ブロック(C)に取付けられている。
As shown in FIGS. 2 and 5, the light receiving element (16) is a semiconductor piece that is located at the rear end of the cavity formed in the light receiving block (C) and is composed of a plurality of photovoltaic element arrays, and is mounted on a ceramic substrate ( 17) Mounted on top. Ceramic substrate (17
) is equipped with an integrated circuit (18) for processing the signal from the light receiving element (16), and a ceramic substrate (17).
) is pasted on the back side of the epoxy resin circuit board (19) on which electric circuit elements for signal processing are assembled. These circuit boards (17) (19) fit the positioning protrusions (C2) formed on the light receiving block (C) into the receiving holes (19a), and the light receiving block is installed by screwing in the screws (20). It is attached to (C).

また、受光素子(16)の前面には空洞内に赤外光のみ
透過し、他の光は吸収するフィルター(21)が設置さ
れておシ、[前記の発光ダイオード(12)から発せら
れた赤外光は受光素子(16)へ到達するが、他の光は
到達しないよう構成されている。
In addition, a filter (21) is installed on the front surface of the light-receiving element (16), which transmits only infrared light into the cavity and absorbs other light. Infrared light reaches the light receiving element (16), but other light does not reach the light receiving element (16).

以上のように構成されだ測距ユニットにおいて、所定の
距離にある被写体で反射した光は、その距離に応じた入
射角で受光レンズ(6)に入射し、匪に距離に応じた入
射角で受光素子(16)へ到達するため、被写体の距離
に応じて、受光素子(16)上における反射光の11]
達点が異る。従って正確な測距を行なうためには受光レ
ンズ(6)に対する受光素子(16)の位置が正しくな
ければならないが、本発明においては調整用偏心軸(1
5)を回転させ、枢着ピン(14)を中心に受光ブロッ
ク(C)を回動させて受光素−T(16)を左右方向へ
移動させて、被写体距離に応じた素子によって正しく受
光できるよう調整することができる。
In the distance measuring unit configured as described above, the light reflected from an object at a predetermined distance is incident on the light receiving lens (6) at an incident angle corresponding to the distance, and the light is reflected at an incident angle corresponding to the distance. 11] of the reflected light on the light receiving element (16) depending on the distance of the subject in order to reach the light receiving element (16).
The points are different. Therefore, in order to perform accurate distance measurement, the position of the light receiving element (16) with respect to the light receiving lens (6) must be correct.
5), rotate the light-receiving block (C) around the pivot pin (14), and move the light-receiving element-T (16) in the left-right direction so that light can be received correctly by the element according to the subject distance. It can be adjusted as follows.

以上のように本発明の測距ユニットにおいて調整用偏心
軸(15)を回転させると受光ブロック(C)は枢着ピ
ン(14)を中心に回動し、受光素子(16)は測距ユ
ニットの略左右方向へ移動する。このとき、調整用偏心
軸(15)の偏心量の設定によって調整範囲を選択する
ことができ、この偏心量を大きくして、広い調整範囲を
得ることができる。従って、測距装置の組立時に生じる
受光素子(16)と受光レンズ(6)の取付位置の誤差
が大”きいものであっても基線長調整を行なうことがで
きる。
As described above, when the adjustment eccentric shaft (15) is rotated in the distance measuring unit of the present invention, the light receiving block (C) rotates around the pivot pin (14), and the light receiving element (16) is connected to the distance measuring unit. Move approximately left and right. At this time, the adjustment range can be selected by setting the eccentricity of the adjustment eccentric shaft (15), and by increasing the eccentricity, a wide adjustment range can be obtained. Therefore, even if there is a large error in the mounting positions of the light receiving element (16) and the light receiving lens (6) during assembly of the distance measuring device, the baseline length can be adjusted.

尚、上述の実施例において調整用偏心軸(10)(’1
3)(15)及び枢着ピン(14)はプラスチック成型
品でめる測距ユニットの基体に圧入されており、適度な
固さによって半固定の状態となっているため、調整のた
めに器具を使用して回転させる場合の他は容易に回転す
ることはない。
In addition, in the above-mentioned embodiment, the adjustment eccentric shaft (10) ('1
3) (15) and the pivot pin (14) are press-fitted into the base of the ranging unit, which is made of plastic molding, and are semi-fixed due to their moderate hardness, so they cannot be adjusted using the tool. If you rotate it using other methods, it will not rotate easily.

効  果 以上の通シ、本発明の測距ユニットにおいては、受光素
子を有する受光ブロックが受光レンズを有する光学系ブ
ロー)りに対し、圧入された偏心軸の回転によって基線
長方向へ変位するよう構成したため、調整可能範囲の広
い測距ユニットとすることができる。
As described above, in the distance measuring unit of the present invention, the light receiving block having the light receiving element is displaced in the base line length direction by rotation of the press-fitted eccentric shaft with respect to the blower of the optical system having the light receiving lens. Because of this configuration, it is possible to provide a distance measuring unit with a wide adjustable range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す上面図、第2図は同上
実施例を水平面で切断した断面図、第3図は同上実施例
をファインダー光軸線を含む垂直面で切断した縦断面図
、第4図は同上実施例の側面図、第5図は同上実施例を
受光光軸線を含む垂直面で切断した縦断面図である。 16・受光素子、22・・・光軸調整板、 A・・・光
学系ブロック。 B−・光源ブロック、C・受光ブロック。 出願人    ミノルタカメラ株式会社第3図 第4図 第5図 a
Fig. 1 is a top view showing an embodiment of the present invention, Fig. 2 is a sectional view of the above embodiment taken along a horizontal plane, and Fig. 3 is a longitudinal section of the above embodiment taken along a vertical plane including the finder optical axis. FIG. 4 is a side view of the same embodiment, and FIG. 5 is a longitudinal sectional view of the above embodiment taken along a vertical plane including the light receiving optical axis. 16. Light receiving element, 22... Optical axis adjustment plate, A... Optical system block. B--Light source block, C-Light receiving block. Applicant: Minolta Camera Co., Ltd. Figure 3 Figure 4 Figure 5 a

Claims (1)

【特許請求の範囲】 1 測距用の光を発する光源と、該光源からの光を測距
対象へ投射する投光レンズと、該、投光レンズから所定
の基線長を隔てて設置され、投光レンズから投射され測
距対象で反射した光を受ける受光レンズと、該受光レン
ズを通過した光を受光する受光素子を備えた投射光式三
角測距装置において、受光レンズを支持する光学系ブロ
ックと、受光素子を支持する受光ブロックと、受光ブロ
ックが光学系ブロックに対して基線長方向に変位し得る
よう受光ブロックと光学系ブロックとを連結する連結手
段と、受光ブロックが光学系ブロックに対して基線長方
向に変位するよう受光ブロックを駆動して位置を調整す
る調整部材とを備えたことを特徴とする測距ユニット。 2 連結手段は光学系ブロックと受光ブロックとを貫通
し、半固定的に圧入された回転軸であることを特徴とす
る特許請求の範囲第1項記載の測距ユニット。 3 調整部材は、光学系ブロックに半固定的に圧入され
、受光ブロックに係合する回転可能な偏心軸部材である
ことを特徴とする特許請求の範囲第1項記載の測距ユニ
ット。 4 投光レンズは光学系ブロックに支持され、又、光源
は光源ブロックに支持され、該光源ブロックは投光レン
ズ光軸と平行に変位可能で、光源ブロックを光学系ブロ
ックとの相対位置が変位し得るよう駆動する調整部材が
設けられたことを特徴とする特許請求の範囲第1項記載
の測距ユニット。
[Scope of Claims] 1. A light source that emits light for distance measurement, a light projection lens that projects the light from the light source onto a distance measurement target, and a light source that is installed at a predetermined baseline length from the light projection lens, An optical system that supports the light receiving lens in a projection light type triangular ranging device comprising a light receiving lens that receives light projected from a light projecting lens and reflected by a distance measurement target, and a light receiving element that receives light that has passed through the light receiving lens. a light-receiving block that supports a light-receiving element; a connecting means that connects the light-receiving block and the optical system block so that the light-receiving block can be displaced in the baseline length direction with respect to the optical system block; A distance measuring unit comprising: an adjustment member that adjusts the position by driving the light receiving block so as to displace it in the baseline length direction. 2. The distance measuring unit according to claim 1, wherein the connecting means is a rotating shaft that passes through the optical system block and the light receiving block and is press-fitted in a semi-fixed manner. 3. The distance measuring unit according to claim 1, wherein the adjustment member is a rotatable eccentric shaft member that is semi-fixedly press-fitted into the optical system block and engages with the light receiving block. 4. The light projection lens is supported by the optical system block, and the light source is supported by the light source block, and the light source block is movable parallel to the optical axis of the projection lens, and the relative position of the light source block with the optical system block is displaceable. 2. The distance measuring unit according to claim 1, further comprising an adjusting member that is driven to adjust the distance.
JP3718283A 1983-03-07 1983-03-07 Distance measuring unit Pending JPS59162408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3718283A JPS59162408A (en) 1983-03-07 1983-03-07 Distance measuring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3718283A JPS59162408A (en) 1983-03-07 1983-03-07 Distance measuring unit

Publications (1)

Publication Number Publication Date
JPS59162408A true JPS59162408A (en) 1984-09-13

Family

ID=12490441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3718283A Pending JPS59162408A (en) 1983-03-07 1983-03-07 Distance measuring unit

Country Status (1)

Country Link
JP (1) JPS59162408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186710A (en) * 1984-03-05 1985-09-24 Konishiroku Photo Ind Co Ltd Photoelectric device
JP2002357755A (en) * 2001-05-31 2002-12-13 Sony Corp Optical device
US9244247B2 (en) 2012-11-13 2016-01-26 Ricoh Company, Limited Auto-focus device, projection lens device, and image projection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116031A (en) * 1974-02-26 1975-09-11
JPS5440663A (en) * 1977-09-06 1979-03-30 Minolta Camera Co Ltd Range finder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116031A (en) * 1974-02-26 1975-09-11
JPS5440663A (en) * 1977-09-06 1979-03-30 Minolta Camera Co Ltd Range finder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186710A (en) * 1984-03-05 1985-09-24 Konishiroku Photo Ind Co Ltd Photoelectric device
JP2002357755A (en) * 2001-05-31 2002-12-13 Sony Corp Optical device
US9244247B2 (en) 2012-11-13 2016-01-26 Ricoh Company, Limited Auto-focus device, projection lens device, and image projection apparatus

Similar Documents

Publication Publication Date Title
US6992279B2 (en) Method for adjusting a multi-beam source unit
US4792669A (en) Focus detecting device having two selectively movable lenses
JPH09127406A (en) Range finder
US4104652A (en) Single lens reflex camera
JPS59162408A (en) Distance measuring unit
US4189218A (en) Apparatus for detecting focal point
US4123765A (en) Automatic focus adjusting device
US4470682A (en) Optical element positioning method and optical element assembly utilizing the same
US4868593A (en) Light projector for a distance measuring device
JP2724251B2 (en) Positioning method of distance measuring lens
US2983208A (en) Rangefinder system
JP4467656B2 (en) Focus detection apparatus and position adjustment method
US6903885B2 (en) Light-projecting device
JPH0214031Y2 (en)
CN220692519U (en) Auxiliary assembling and adjusting structure and optical reflection cavity
JPS6234113A (en) Automatic focus adjusting device
US2464166A (en) Split field range finder for cameras interconnected to camera lens
JPH0259607A (en) Position adjusting device for light emitting element or light receiving element of distance measuring unit
JP2004053305A (en) Optical distance measuring apparatus
JPH01297504A (en) Optical scanning type displacement sensor
JPH0143690Y2 (en)
US2925762A (en) Multilens transmission for range finder
JP2573985Y2 (en) Mounting structure of photometric element
JP3094442B2 (en) Focus detection device
KR100370376B1 (en) Device for measuring corneal curvature having iris integrated with image sensor