JPS59162131A - Pore-size control in porous alumina - Google Patents

Pore-size control in porous alumina

Info

Publication number
JPS59162131A
JPS59162131A JP58034254A JP3425483A JPS59162131A JP S59162131 A JPS59162131 A JP S59162131A JP 58034254 A JP58034254 A JP 58034254A JP 3425483 A JP3425483 A JP 3425483A JP S59162131 A JPS59162131 A JP S59162131A
Authority
JP
Japan
Prior art keywords
alumina
porous alumina
impregnated
salt
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58034254A
Other languages
Japanese (ja)
Other versions
JPH024530B2 (en
Inventor
Takeshi Kotanigawa
小谷川 毅
Mitsuyoshi Yamamoto
山本 光義
Kozo Tanabe
田部 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58034254A priority Critical patent/JPS59162131A/en
Publication of JPS59162131A publication Critical patent/JPS59162131A/en
Publication of JPH024530B2 publication Critical patent/JPH024530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:Porous alumina is impregnated with a melting salt, dried, sintered, then cooled and the salt is leached out with water or a diluted acid solution to effect easy control of the pore size distribution and surface acidity. CONSTITUTION:An aqueous solution of aluminum sulfate and urea is heated to form alumina gel and the alumina gel is sintered into porous alumina. The resultant alumina is impregnated with a melting salt such as boric acid, sodium hydroxide or calcium chloride, dried, sintered, cooled down, then the salt is leached out with water or a dilute aqueous acid to give the objective porous alumina. In this process, the amount and the kind of the melting salts are selected to enable the control of pore size and surface acidity of the porous alumina.

Description

【発明の詳細な説明】 細孔にホウ酸、水酸化アルカリ、塩化カルシウムなどの
溶融塩を含浸させ、これを所定の温度で焼成したのち、
これを熱水又は希酸で処理して含浸させた塩を抽出除去
することによるアルミナの細孔径及び表面酸性度の制御
法に関するものである〇一般に多孔質固体は触媒として
、あるいは触媒の担体として用いられているが、中でも
、シリカアルミナ、アルミナ、シリカ、その他の金属酸
化物の工積極的に意図した細孔径分布を持つような多孔
質固体を調製することが本質的にできないからである。
[Detailed description of the invention] The pores are impregnated with molten salt such as boric acid, alkali hydroxide, calcium chloride, etc., and after being fired at a predetermined temperature,
This relates to a method for controlling the pore size and surface acidity of alumina by extracting and removing the impregnated salt by treating it with hot water or dilute acid. In general, porous solids are used as catalysts or as carriers for catalysts. However, it is essentially impossible to prepare a porous solid having a desired pore size distribution through the engineering of silica-alumina, alumina, silica, and other metal oxides, among others.

多孔質固体の調製法には沈でん法、熱分解法、その他、
特殊な方法として炭酸ガスによる中和法などがあるが、
沈でん法におい“て沈でん生成時のp I−Tを変えた
り、熱分解法において分解温度を変えたりして調製が行
われたりしているものの、このような手段では特に細孔
径分布を制御することは困難である。
Preparation methods for porous solids include precipitation, pyrolysis, and other methods.
There are special methods such as neutralization with carbon dioxide gas,
Although preparations have been carried out by changing the p I-T during precipitate formation in the precipitation method, or by changing the decomposition temperature in the thermal decomposition method, these methods specifically control the pore size distribution. That is difficult.

多孔質固体の細孔は結晶又は微粒子間の空隙である。も
し、結晶又は微粒子の粒径を均一゛に制御できれば、そ
の空隙である細孔も粒子径分布に沿って制御されるはず
である。しかし、この多孔質固体が触媒担体として用い
られるとき、反応温度以上に予備焼成されたり、触媒活
性の再生のため高温焼成して賦活処理されるので、この
時に結晶径の成長が起り、細孔径分布が変化して、これ
が触媒活性の失活の一因となっている。
Pores in porous solids are voids between crystals or particulates. If the particle size of crystals or fine particles can be uniformly controlled, the pores, which are the voids thereof, should also be controlled along the particle size distribution. However, when this porous solid is used as a catalyst support, it is pre-calcined at a temperature higher than the reaction temperature, or activated by high-temperature firing to regenerate the catalyst activity, so the crystal size grows and the pore size increases. The distribution changes, which contributes to the deactivation of the catalyst activity.

なって工業的に不利となる。また、細孔径カタ反応の選
択率にも大きな影響を与える0例えば、反応生成物が細
孔径より大きな化合物である場合、この化合物は事実上
生成されないことになって反応の選択率が高められる。
Therefore, it becomes industrially disadvantageous. In addition, the pore diameter has a large effect on the selectivity of the reaction. For example, when the reaction product is a compound larger than the pore diameter, this compound is virtually not produced, increasing the selectivity of the reaction.

このような効果を持つ典型的な多重し質固体はゼオライ
1−である。ゼオライ1〜の測子14よ結晶中の原子間
結合によって決められた空隙であるためその大きさは結
晶構造によって異る力(、測子り径(よ分子節効果を持
つほどに良く制御されてし)る。しカ)し、ゼオライ1
へはシリカとアルミナから合成される結晶であるため、
シリカ単味、アルミナ単味、その他の酸化物に対して同
様の手段を講じて結晶を形成させても同じ結果は期待で
きない。
A typical multilayer solid with this effect is zeolite 1-. Since the probes 14 of zeolites 1 to 14 are voids determined by interatomic bonds in the crystal, their size varies depending on the crystal structure. teshi)ru.shika)shi, Zeolai 1
Since it is a crystal synthesized from silica and alumina,
The same results cannot be expected even if similar methods are used to form crystals on silica alone, alumina alone, or other oxides.

本発明者は通常のアルミナの細孔を制御すると共に、そ
の表面酸性度をもあわせて制御する方法を研究した結果
、本発明に成功した。すなわち、本発明は多孔質のアル
ミナに溶融性塩類の水溶液を含浸乾燥させ、これを加熱
焼成したのち、冷却し、水又は希酸水溶液で含浸した塩
類を溶出分離することを物像とするアルミナの細孔径制
御方法を提供する。
The present inventor succeeded in developing the present invention as a result of research into a method for controlling the pores of ordinary alumina as well as its surface acidity. That is, the present invention involves impregnating porous alumina with an aqueous solution of molten salts, drying the impregnated alumina, heating and calcining the impregnated alumina, and then cooling the impregnated alumina with water or a dilute acid aqueous solution to elute and separate the impregnated salts. The present invention provides a method for controlling pore size.

本発明の方法に用いられる多孔質のアルミナとは沈でん
法、熱分解法などの通常の方法で得られるもの、あるい
は、硫酸アルミニウムと尿素との混合物酸塩、硝酸塩、
塩化物やイソプロポオキシドのようなアルミニウムアル
コオキシド等を原料とし、沈でん法においてはアルカリ
化剤としてアンモニア、尿素を用いて製造することがで
きる。この他、ア取ミネート塩を炭酸ガスで分解する方
法もアルミナを通常の方法として挙げられる。溶融性塩
類はアルミナの焼成温度付近で溶融する比較的融点の低
い化合物であって且つ水に易溶性の塩類が望ましく用い
られる。そのような化合物として、例えば、ホウ酸、水
酸化アルカリ、塩化カルシウム、リン酸などが挙げられ
る0 これらの溶融性塩類は、通常単独で用いられるが、2種
以上を組合せて使用することもできるOこれら合には、
好ましくは硫酸アルミニウムと尿素との混合物の水溶液
を95〜100℃に加熱して得られるアルミナゲルを焼
成して得られるアルミナを用い、水酸この方法は多孔質
アルミナの固有の細孔内に溶融性塩類を含浸させて焼結
させるとその多孔質アルミナが焼結し始めるが、この時
、含浸させた溶融性塩類がアルミナの焼結を妨げる現象
を利用するものである。このようにして焼成し得られた
溶融塩類を含浸させたアルミナを冷却し、水、好ましく
は熱水又は希酸で含浸させた塩類を抽出除去し去ったあ
とが新しい細孔となって現れると同時に、新しい表面酸
性度を持った表面にもなっている。従って、このような
制御調製法はアルミナに限らず、広く他の固体の細孔制
御法にも適用される普遍性の高いものであり、多くの固
体の制御された多孔質固体の製造に利用することが期待
できる。
The porous alumina used in the method of the present invention is one obtained by a conventional method such as a precipitation method or a thermal decomposition method, or a mixed acid salt of aluminum sulfate and urea, a nitrate salt,
It can be produced using aluminum alkoxide such as chloride or isopropoxide as a raw material, and using ammonia or urea as an alkalizing agent in the precipitation method. In addition, a method of decomposing aluminate salt with carbon dioxide gas is also a common method for alumina. The meltable salts are compounds with a relatively low melting point that melt around the firing temperature of alumina, and salts that are easily soluble in water are preferably used. Examples of such compounds include boric acid, alkali hydroxide, calcium chloride, phosphoric acid, etc. These molten salts are usually used alone, but two or more types can also be used in combination. O In these cases,
It is preferable to use alumina obtained by calcining an alumina gel obtained by heating an aqueous solution of a mixture of aluminum sulfate and urea to 95 to 100 °C, and use alumina obtained by heating an aqueous solution of a mixture of aluminum sulfate and urea to 95 to 100 °C. When the porous alumina is impregnated with molten salts and sintered, the porous alumina begins to sinter, but the method utilizes the phenomenon that the impregnated molten salts prevent the sintering of the alumina. The alumina impregnated with molten salts obtained by firing in this way is cooled, and the impregnated salts are extracted and removed with water, preferably hot water or dilute acid, and the residue appears as new pores. At the same time, the surface has a new surface acidity. Therefore, this controlled preparation method is highly universal and can be applied not only to alumina but also to a wide range of other solid pore control methods, and can be used for the production of controlled porous solids for many solids. You can expect to do so.

以下、実施例によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

なお、実施例に示した表面積はB P ’1”法、全細
孔容積はヘリウム−水銀法、細孔半径は液体窒素温度に
おける窒素ガスの脱離等温線を使ったBJH法(以上の
方法は、地大書館、触媒学会編集、触媒工学講座第4巻
、50〜83ページに明記されている。)によって求め
た。また、実施例1〜5に記したプロセス−1、2、3
、4とはつぎの内容を指す。
In addition, the surface area shown in the examples was determined by the B P '1'' method, the total pore volume was determined by the helium-mercury method, and the pore radius was determined by the BJH method using the desorption isotherm of nitrogen gas at liquid nitrogen temperature (the above method). is specified in the Catalyst Engineering Course Vol. 4, pages 50-83, edited by Jidaishokan, Catalysis Society.) In addition, Process-1, 2, and 3 described in Examples 1 to 5
, 4 refer to the following contents.

プロセス−1;アルミナゲルを乾燥後、550℃で焼成
して通常の多孔質アルミナを得る。
Process-1: After drying the alumina gel, it is fired at 550°C to obtain ordinary porous alumina.

℃で焼成してアルミナと溶融塩との混合物を得る。℃ to obtain a mixture of alumina and molten salt.

プロセス−4;3で得られた混合物を熱水又は希酸にて
抽出し、乾燥後、550℃で焼成し新しい細孔を持°う
゛た1アルミナを得る。
Process-4: The mixture obtained in step 3 is extracted with hot water or dilute acid, dried, and then calcined at 550°C to obtain alumina with new pores.

実施例 1゜ 1002−の硫酸アルミニウムと2502の尿素を3リ
ツ1〜ルのビーカーに採り、これに2リツトルの脱イオ
ン水を加えて溶解したのち、水溶中で95℃以上に加熱
すると、約1時間後に沈でんが完結する0これをろ過、
水洗し、得られたケーキを120 ℃で1日間乾燥し、
550℃で3時間焼成してアルミナを得た(アルミナA
とする)。次に、溶融性塩としてホウ酸を用い、上記プ
ロセス3により、ホウ酸含浸量を変えたアルミナを調製
し、得られた測定結果を表1に示した。但し、実験番号
1,2.3のホウ酸添加量は、それぞれ、5,10.2
0重量%である。
Example 1: Aluminum sulfate (1002) and urea (2502) were placed in a 3 liter beaker, 2 liters of deionized water was added to dissolve it, and the mixture was heated to 95°C or higher in the aqueous solution, resulting in approx. The sedimentation will be completed after 1 hour.Filter this.
The resulting cake was washed with water and dried at 120°C for 1 day.
Alumina was obtained by firing at 550°C for 3 hours (Alumina A).
). Next, using boric acid as the molten salt, alumina with varying amounts of boric acid impregnation was prepared according to the above process 3, and the measurement results obtained are shown in Table 1. However, the amounts of boric acid added in experiment numbers 1 and 2.3 were 5 and 10.2, respectively.
It is 0% by weight.

第  1  表 実施例 2 実施例1.におけるホウ酸に代えて、水酸化す1−リウ
ム(実験番号4)又は塩化カルシウム(実験番号5)を
それぞれ10重量%を含浸させた以外は全く同様にして
多孔質アルミナを調製した。両試料の各プロセスにおけ
る同様の測定結果を第2表に示す。
Table 1 Example 2 Example 1. Porous alumina was prepared in exactly the same manner as in Example 1, except that 10% by weight of each of 1-lium hydroxide (Experiment No. 4) or calcium chloride (Experiment No. 5) was impregnated in place of boric acid. Similar measurement results for both samples in each process are shown in Table 2.

第  2  表 実施例 3 本例はアルミナAを還元処理した場合(プロセス−2)
の例である。アルミナAを加熱条件を変えて、水素ガス
により85時時間光し、3種類の還元アルミナを調製し
た○ 加熱条件は、それぞれ300℃(実験番号6)、400
℃(同7)及び450℃(同8)であり、それぞれに1
0重量係のホウ酸を含浸担持させたO各試料をプロセス
−4及び−5に従って制御された細孔径を有する多孔質
アルミナを得た。各試料の各工程における諸性質を第3
表に示した。
Table 2 Example 3 This example shows the case where alumina A is reduced (Process-2)
This is an example. Alumina A was exposed to hydrogen gas for 85 hours under different heating conditions to prepare three types of reduced alumina. The heating conditions were 300°C (experiment number 6) and 400°C, respectively.
℃ (same as 7) and 450℃ (same as 8), each with 1
Porous alumina having controlled pore diameters was obtained from each O sample impregnated and supported with 0 weight percent boric acid according to Processes -4 and -5. The various properties of each sample in each process are
Shown in the table.

第3表 実施例 4 4507の硫酸アルミニウム塩を3リツトルのビーカー
に採り、これに2リツl−ルの脱イオン水を加えて溶解
せしめ、これに2規定のアンモニア水を加えて十分にか
きまぜた0析出沈でんをろ過、水洗し、得られたケーキ
を120℃で乾燥させたのち、550℃で3時間焼成し
てアルミナを得た(アルミナBとする)。
Table 3 Example 4 4507 aluminum sulfate was placed in a 3 liter beaker, 2 liters of deionized water was added to dissolve it, 2N aqueous ammonia was added and the mixture was thoroughly stirred. The resulting cake was dried at 120°C and then calcined at 550°C for 3 hours to obtain alumina (referred to as alumina B).

アルミナ13に水酸化す1ヘリウム水溶液を含浸乾燥さ
せ、水酸化す1ヘリウムを10重量パーセント担持させ
た。これをプロセス−3及び−4に従って制御された細
孔径のアルミナを調製したが、溶出液として熱水を用い
た場合(実験番号9)及び希塩酸を用いた場合(同10
 )のものについて同様に測定した諸性質を第4表に示
した0 第  4  表 実施例 5 第5表に示す表面積、全細孔容積及び細孔半径を有する
多孔質アルミナを上記プロセス−3及び−4に従って制
御された細孔径の多孔質アルミナを調製した。実験番号
11は溶融性塩としてホウ酸、同12は塩化カルシウム
を用い、それぞれ10重量パーセントを担持させた場合
である。結果を第5表に示す。
Alumina 13 was impregnated with an aqueous solution of helium hydroxide and dried to support 10 weight percent of helium hydroxide. Alumina with a controlled pore size was prepared according to Processes -3 and -4, but when hot water was used as the eluent (Experiment No. 9) and when dilute hydrochloric acid was used (Experiment No. 10).
) Table 4 Table 4 Example 5 Porous alumina having the surface area, total pore volume, and pore radius shown in Table 5 was prepared using the above process-3 and pore radius. Porous alumina with controlled pore size was prepared according to A-4. Experiment No. 11 used boric acid as the molten salt, and Experiment No. 12 used calcium chloride as the molten salt, and each was supported at 10% by weight. The results are shown in Table 5.

第  5  表 参考例 1゜ アルミナAにホウ酸をO〜20重量係添加させ、プロセ
ス−1,3,4の処理を行い、得られた各アルミナの分
子篩効果を調べた。実験条件は、カラム長さ5cr11
、流速は自然流下方式で行い、初期に流出した試料をガ
スクロマ1−グラフ法で分析し、その組成を調べた。な
お、原液組成はいずれも等モルチ混合といわれている。
Table 5 Reference Example Boric acid was added to 1° alumina A in an amount of 0 to 20% by weight, and Processes 1, 3, and 4 were performed, and the molecular sieve effect of each of the obtained aluminas was investigated. The experimental conditions were a column length of 5cr11.
The flow rate was carried out using a gravity flow method, and the sample that initially flowed out was analyzed using a gas chroma 1-graph method to investigate its composition. The composition of the stock solution is said to be an equimolar mixture.

第  6  表 注)ベンゼン、パラ−キシレン、正ヘキサンの吸、着率
で表わした0 参考例 2゜ 実施例6で調製した実験番’Q17 、18 、19の
アルミナと実施例5で得られた実験番号11のアルミナ
の表面酸性度を調べた。この測定法は指示薬法(地人書
館、触媒学会編、触媒工学講座第4巻、161頁)によ
って行った。測定結果を第7表に示す。
Table 6 Note: 0 expressed as the adsorption and adsorption rate of benzene, para-xylene, and normal hexane. The surface acidity of alumina in Experiment No. 11 was investigated. This measurement method was carried out by the indicator method (Jijin Shokan, edited by the Catalyst Society, Catalyst Engineering Course Vol. 4, p. 161). The measurement results are shown in Table 7.

第  7  表 注)(+)は表面に存在する酸強度を示す。Table 7 Note) (+) indicates the acid strength present on the surface.

上記実施例及び参考例から明らかなように、本発明の方
法により、制御された細孔径を有する多孔質アルミナを
容易に調製することができ、またアルミナ表面の酸性度
を所望に応じて容易に制御することができる。
As is clear from the above examples and reference examples, porous alumina having a controlled pore size can be easily prepared by the method of the present invention, and the acidity of the alumina surface can be easily adjusted as desired. can be controlled.

Claims (1)

【特許請求の範囲】[Claims] 多孔質のアルミナに溶融性塩類を含浸乾燥させ、加熱焼
成したのち、これを冷却し、水又は希酸水溶液で溶出成
分を溶解除去することを特徴とする多孔質アルミナの細
孔径制御方法。
A method for controlling the pore diameter of porous alumina, which comprises impregnating and drying porous alumina with molten salts, heating and baking the impregnated alumina, cooling the alumina, and dissolving and removing eluted components with water or a dilute acid aqueous solution.
JP58034254A 1983-03-01 1983-03-01 Pore-size control in porous alumina Granted JPS59162131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034254A JPS59162131A (en) 1983-03-01 1983-03-01 Pore-size control in porous alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034254A JPS59162131A (en) 1983-03-01 1983-03-01 Pore-size control in porous alumina

Publications (2)

Publication Number Publication Date
JPS59162131A true JPS59162131A (en) 1984-09-13
JPH024530B2 JPH024530B2 (en) 1990-01-29

Family

ID=12409033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034254A Granted JPS59162131A (en) 1983-03-01 1983-03-01 Pore-size control in porous alumina

Country Status (1)

Country Link
JP (1) JPS59162131A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133976B (en) * 2018-08-28 2020-10-16 东北大学 Preparation method of porous alumina

Also Published As

Publication number Publication date
JPH024530B2 (en) 1990-01-29

Similar Documents

Publication Publication Date Title
CA1327346C (en) Catalyst support material containing lanthanides
US3244643A (en) Method of preparing supported crystalline aluminosilicate composition
US6737036B2 (en) Catalyst compositions employing sol gel particles and methods of using the same
Valverde et al. Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaring agent
CA2244087C (en) Titania/alumina catalyst carrier
JPS6049135B2 (en) Spheroid with double porosity and method for producing the same
JPH06506434A (en) Manufacturing method of synthetic spinel
US4124699A (en) Alumina-based bodies with large pores, produced by agglomeration
JPS61278590A (en) Catalytic cracking method
JP5792771B2 (en) Method for decomposing N2O using a catalyst consisting essentially of cerium oxide, lanthanum oxide and an oxide of at least one rare earth metal other than cerium and lanthanum and provided in the form of a solid solution
KR0145749B1 (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
Buelna et al. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process
US5407886A (en) Molded catalyst body
Huang et al. Control of porosity and surface area in alumina: I. Effect of preparation conditions
JPH0226642A (en) Manufacture of catalyst particle and catalyst particle produced thereby
US4780446A (en) Alumina-silica cogel
JPS59162131A (en) Pore-size control in porous alumina
CA1211428A (en) Alumina-silica cogel
US2968537A (en) Manufacture of activated refractory inorganic oxides
JP3264813B2 (en) Hydrodemetallation catalyst and its preparation
JPH0194945A (en) Catalyst of carrying superfine gold particles fixed on metal oxide and manufacture therefor
RU2148430C1 (en) Hydrocarbon dehydrogenation catalyst and method of preparation thereof
JP4931099B2 (en) Catalyst for producing cycloolefin and method for producing cycloolefin
JPS6052086B2 (en) Crystalline aluminosilicate composition
JP2005035860A (en) Porous crystalline zirconia material