JPS59160745A - Detector for gas in oil in oil-immersed apparatus - Google Patents

Detector for gas in oil in oil-immersed apparatus

Info

Publication number
JPS59160745A
JPS59160745A JP3629383A JP3629383A JPS59160745A JP S59160745 A JPS59160745 A JP S59160745A JP 3629383 A JP3629383 A JP 3629383A JP 3629383 A JP3629383 A JP 3629383A JP S59160745 A JPS59160745 A JP S59160745A
Authority
JP
Japan
Prior art keywords
gas
oil
detection
components
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3629383A
Other languages
Japanese (ja)
Inventor
Toshio Sugawara
捷夫 菅原
Ichitaro Tani
谷 一太郎
Toshio Tsukioka
月岡 淑郎
Etsuo Oe
大江 悦男
Etsunori Mori
森 悦紀
Akira Ikegami
昭 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3629383A priority Critical patent/JPS59160745A/en
Publication of JPS59160745A publication Critical patent/JPS59160745A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To detect plural gaseous components dissolved in the insulating oil in an oil-immersed apparatus by separating said gaseous components with a gas permeable material, detecting the separated gases with plural gas sensors and processing arithmetically the outputs therefrom. CONSTITUTION:Valves 13a, 13b which are attached in a gas well part 2 provided to an oil-immersed apparatus 9 are closed and the gaseous components in the oil are permeated and separated from an insulating oil 10 into the part 2 through a gas permeable material 1. When the concn. of the gas in the oil and the concn. of the permeated gas in the part 2 attain an equil. state, the valve 13b is opened to restore atm. pressure in the part 2, then the valve is closed. A gas detecting part 4 is then connected to the valve 13a, and the valve 13a is opened to diffuse the gas in the part 2 of itself. The gaseous components are detected with the plural gas sensors 3 in the part 4. The outputs obtd. from the gas sensors are arithmetically processed with the respective detected characteristic values for each of the gaseous components for each of the gas sensors which are measured and stored preliminarily. The concn. of the gas for each of the plural gaseous components is displayed on a display device 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は油入機器の油中ガス検出装置に係り、特に油入
機器内の絶縁油に溶存する複数個のガス成分をガス透過
材を用いて分離し、この分離した複数個のガス成分を検
出する油入機器の油中ガス検出装置に関するものである
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas-in-oil detection device for oil-immersed equipment, and in particular to a device for detecting gas in oil in oil-immersed equipment, using a gas permeable material to detect a plurality of gas components dissolved in insulating oil in oil-filled equipment. The present invention relates to a gas-in-oil detection device for oil-immersed equipment that separates gas components and detects a plurality of separated gas components.

〔従来技術〕[Prior art]

ガス透過材を用いて絶縁油中のガス成分を絶縁油から自
動分離し、この分離したガス成分をガス検知器によって
検出し、油入機器の内部異常を検出する装置は種々提案
されている。
Various devices have been proposed that automatically separate gas components in insulating oil from insulating oil using a gas permeable material, detect this separated gas component with a gas detector, and detect internal abnormalities in oil-immersed equipment.

この絶縁油中例えば変圧器の内部異常によって発生する
ガス成分は水素H2、−酸化炭素CO1炭素ガ゛スC0
zhるいはメタンCH4’、アセチレンC21−I2、
エチレンC2H4、エタンC2H,6等の低分子、の炭
化水素系ガスである。従ってガス透過材を介して透過さ
れるガス成分は殆どこれらのガス成分である。またこれ
らの絶縁油中のガス濃度とガス透過材を介して透過され
たガス濃度とは、透過時間を十分長くすると夫々のガス
分圧としである一定の平衡が保たれるので、透過した夫
々のガス圧力を検出すれば油中ガス濃度を知ることがで
きる。
Gas components generated in this insulating oil due to an internal abnormality in a transformer, for example, include hydrogen H2, -carbon oxide CO1, carbon gas CO0
zhru or methane CH4', acetylene C21-I2,
It is a low-molecular hydrocarbon gas such as ethylene C2H4 and ethane C2H,6. Therefore, most of the gas components permeated through the gas permeable material are these gas components. In addition, the gas concentration in these insulating oils and the gas concentration permeated through the gas permeable material will maintain a certain equilibrium as the partial pressure of each gas if the permeation time is long enough. The concentration of gas in oil can be determined by detecting the gas pressure.

ところで透、過したこれら複数のガス成分を定量するに
はクロマト分離によってガス成分を単離して検出する所
謂ガスクロマトグラフ装置全応用するのが一般的である
。しかしガスクロマトグラフ装置の場合はガスセンサの
他にガスボンベ、ガス流路の切換コック類、ガス分離用
充填剤等多くの部品類を使用し、装置が高師であると共
に、測定操作も煩雑であった。更に装置自体のメンテナ
ンスも容易でなく、またガスをクロマト分離してからガ
ス成分をガスセンサに接触させて測定するため、測定結
果が出るまで長時間を要していた。
By the way, in order to quantify these multiple gas components that have passed through, it is common to use a so-called gas chromatography device that isolates and detects gas components by chromatographic separation. However, in the case of a gas chromatograph apparatus, in addition to the gas sensor, many parts such as a gas cylinder, switching cocks for gas flow paths, and gas separation fillers are used, making the apparatus expensive and the measurement operation complicated. Furthermore, the maintenance of the device itself is not easy, and since the gas components are measured by contacting them with a gas sensor after chromatographic separation of the gas, it takes a long time to obtain the measurement results.

これに対して透過したガス成分の最も簡単な定量は、夫
々ある特定のガスにだけ感応する選択性ガスセンサを複
数個用い、クロマト分離せずに測定するくとである。し
かし現在使用されているガスセンサは選択性に乏しく、
このため現実的には複数個のガスセ/すをそのまま用い
ても精度よく定量することはできなかった。
On the other hand, the simplest way to quantify the permeated gas components is to use a plurality of selective gas sensors, each of which is sensitive to a specific gas, and measure it without chromatographic separation. However, the gas sensors currently in use have poor selectivity.
For this reason, in reality, accurate quantification could not be achieved even if a plurality of gas stations were used as they were.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであシ、短時間に
複数個のガス成分の検出を可能とした油入機器の油中ガ
ス検出装置を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a gas-in-oil detection device for oil-filled equipment that is capable of detecting a plurality of gas components in a short time.

〔、発明の概要〕[Summary of the invention]

すなわち本発明は、油中ガス検出装置を、ガス透過材で
分離された複数個のガス成分を溜めておくガス溜め部と
、このガス溜め部に接続され、かつガス溜め部内の複数
個のガス成分を夫々検出する複数個のガスセンサ(以下
、ガスセンサ群と称する)を設けたガス検知部と、この
ガス検知部に接続され、かつ複数個のガス成分を測定し
たガスセンサ群からの夫々の出力値とガス検知部で予め
測定し記憶させておいた各ガスセンサ毎の各ガス成分単
独に対する夫々の検出特性値とから複数個のガス成分を
演算処理して表示する計測部とから構成したことを特徴
とするものである。
That is, the present invention provides a gas-in-oil detection device that includes a gas reservoir section that stores a plurality of gas components separated by a gas permeable material, and a gas reservoir section that is connected to the gas reservoir section and that stores a plurality of gas components separated by a gas permeable material. A gas detection section equipped with a plurality of gas sensors (hereinafter referred to as a gas sensor group) that detect each component, and respective output values from the gas sensor group connected to this gas detection section and measuring a plurality of gas components. and a measurement unit that calculates and displays a plurality of gas components from the respective detection characteristic values for each gas component alone for each gas sensor that have been measured and stored in advance by the gas detection unit. That is.

発明者等はガスセンサ群を用いて複数個のガス成分を検
出するにはどのようにしたらよいかを検討した。今測定
しようとするガスの種類すなわちガス種をA、B、’C
とし、これらのガスA、B。
The inventors studied how to detect multiple gas components using a group of gas sensors. The type of gas that you are trying to measure now, that is, the gas type, is A, B, 'C.
and these gases A and B.

Cを検出するガスセンサff:s+  、82.83 
とした場合の、夫々のガスセンサSi 、S2 、Ss
の夫々のガスA、B’、、Cに対する検出特性値を測定
した結果が下表に示されている。そしてこれら各ガスA
、B、Cの濃度を夫々GA 、Gn 、Gcとした場合
の、これらのガス濃度()A 、 Gn 、 Gcの混
合したものに対する各ガスセンサS1 r 82 +8
3での測定値である出力値を同表記載のように夫々Mx
、’MzおよびMaとする。この結果から各ガスセンサ
S1.S2.S3の夫々の出力値M1゜M2.Maは、
夫々のガスセンサS+ 、 82.83の夫々のガスA
、B、Cに対する検出特性値をプラスしたものであるか
ら、夫々のガスセンサS++82.83の検出特性値と
出力値との間には、同表から M1=GA X (11+GB Xβ+ + () c
 X r 1− ・=(1)M2−GA×α2 +GB
 xβ2 +Gc X r 2 −(2)Ma  =G
人 Xα3  +Gn  Xβa+Gc’X γ3・・
・・・・(3)の関係が成シ立つ。従ってこれら(1)
から(3)式の三元−次連立方程式を解けば夫々のガス
A、B、Cの濃度を算出することが可能であり、それは
(1)から(3)式を記憶させたマイコンに各ガスセン
サS++82.83からの出力値M+  、M2 、M
3を取り込み演算処理すればよい。すなわち検出特性値
αl。
Gas sensor ff to detect C: s+, 82.83
In this case, each gas sensor Si, S2, Ss
The results of measuring the detection characteristic values for each of the gases A, B', and C are shown in the table below. And each of these gases A
, B, and C as GA, Gn, and Gc, respectively, and each gas sensor S1 r 82 +8 for a mixture of these gas concentrations ()A, Gn, and Gc.
The output value, which is the measured value in step 3, is Mx as shown in the same table.
, 'Mz and Ma. From this result, each gas sensor S1. S2. The respective output values M1°M2.S3. Ma is
Each gas sensor S+, each gas A of 82.83
, B, and C, the difference between the detection characteristic value and the output value of each gas sensor S++82.83 is M1=GA X (11+GB Xβ+ + () c
X r 1- ・=(1) M2-GA×α2 +GB
xβ2 + Gc X r 2 − (2) Ma = G
Person Xα3 +Gn Xβa+Gc'X γ3...
...The relationship (3) is established. Therefore, these (1)
It is possible to calculate the concentrations of each gas A, B, and C by solving the ternary-dimensional simultaneous equations of equations (3) from Output values M+, M2, M from gas sensor S++82.83
3 should be taken in and subjected to arithmetic processing. That is, the detection characteristic value αl.

α2Iα31β11β21β3Iγl 、γ2ツγ3は
夫々のガスA、B、C単独について測定した値であり、
出力値M+  1M2 、M3はこれらガスA。
α2Iα31β11β21β3Iγl and γ2γ3 are values measured for each gas A, B, and C alone,
The output values M+ 1M2 and M3 are these gases A.

B、Cが混合しているものを実測によって求められる値
なので、予め各ガスセンサSl、 S2.83で各ガス
A、;B、C毎の検出特性値を測定してこれを記憶させ
ておいたものと、これら各ガスA。
Since the value is obtained by actual measurement of a mixture of B and C, the detection characteristic values for each gas A, B, and C were measured in advance using each gas sensor Sl, S2.83, and this was memorized. and each of these gases A.

B、Cの混合しているものを各ガスセンサSI+82.
83で実際に測定した出力値M1.M2 。
A mixture of B and C is applied to each gas sensor SI+82.
The output value M1.83 actually measured. M2.

M、とを演算処理すれば、ガスセンサ群S l* 82
183を用いて複数個のガスA、B、C成分が検出・定
量できることが確かめられた。そこで本発明では油中ガ
ス検出装置を、ガス透過材で分離された複数個のガス成
分を溜めておくガス溜め部と、このガス溜め部に接続さ
れ、かつガス溜め部内の複数個のガス成分を夫々検出す
るガスセンサ群を設けたガス検知部と、このガス検知部
に接続され、かつ複数個のガス成分を測定したガスセン
サ群からの夫々の出力値とガス検知部で予め測定し記憶
させておいた各ガスセンサ毎の各ガス成分単独に対する
夫々の検出特性値とから複数個のガス成分を演算処理し
て表示する計測部とかち構成した。
By calculating M, the gas sensor group S l* 82
It was confirmed that multiple gas A, B, and C components could be detected and quantified using 183. Therefore, in the present invention, the gas-in-oil detection device includes a gas reservoir section that stores a plurality of gas components separated by a gas permeable material, and a gas reservoir section that is connected to this gas reservoir section and that stores a plurality of gas components within the gas reservoir section. A gas detection unit is equipped with a gas sensor group that detects each gas component, and each output value from the gas sensor group connected to this gas detection unit and that measures a plurality of gas components is measured and stored in advance by the gas detection unit. The measuring unit is configured to calculate and display a plurality of gas components from the respective detection characteristic values for each gas component alone for each gas sensor installed.

このようにすることにより短時間に複数個のガス成分の
検出を可能とした油入機器の油中ガス検出装置を得るこ
とを可能としたものである。
By doing so, it is possible to obtain a gas-in-oil detection device for oil-filled equipment that is capable of detecting a plurality of gas components in a short period of time.

なお前記例は理解の便を図るため3種類のガスを検出・
定量する場合に□ついて示したが、もつと多くのガスを
検出・定量する場合はもつと多くのガスセンサを用いて
多次元連立−次方程式を解けばよいので、3種類のガス
に限るものではない。
Note that the above example is based on the detection of three types of gas for ease of understanding.
□ is shown in the case of quantitative determination, but when detecting and quantifying many gases, it is sufficient to solve multidimensional simultaneous equations using many gas sensors, so it is not limited to three types of gases. do not have.

なおまたガス濃度゛と検出特性とはガスセンサの種類に
よって非直線性のものもあるが、夫々のガスセンサにつ
いて横用を目的としたガス成分毎の検出特性値をマイコ
ンに記憶させておき、夫々のガスセンサの出力値と検出
特性値とから夫々のガスを定量するように演算して求め
ることも可能である。前記例は理解の便を図るための一
例を示したもので、検出特性が必ずしも線形の場合だけ
に限定するものではない。
Additionally, gas concentration and detection characteristics may be non-linear depending on the type of gas sensor, but for each gas sensor, the detection characteristic values for each gas component are stored in the microcomputer for the purpose of horizontal use. It is also possible to calculate and determine the amount of each gas from the output value of the gas sensor and the detection characteristic value. The above example is an example for ease of understanding, and the detection characteristics are not necessarily limited to linear cases.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。本実施例で
は油中ガス検出装置を、ガス透過材1で分離された複数
個のガス成分を溜めておくガス溜め部2と、このガス溜
め部2に接続し、かつガス溜め部2内の複数個のガス成
分を夫々検出するガスセンサ群3を設けたガス検知部4
と、このガス検知部4に接続し、かつ複数個のガス成分
を測定したガスセンサ群3からの夫々の出力値とガス検
知部4で予め測定し記憶させておいた各ガスセンサ毎の
各ガス成分単独に対する夫々の検出特性値とから複数個
のガス成分を演算処理して表示する計測部5とから構成
した。そして計測部5を、ガスセンサ群3からの夫々の
出力値および各ガスセンサ毎の各ガス成分単独に対する
夫々の検出特性値を増幅するガスセンサ用増幅器6と、
このガスセンサ用増幅器6に接続し、出力値および検出
特性値から複数個のガス成分を演算処理する演算装置7
と、この演算装置7の算出結果を表示する表示装置8と
から構成した。このようにすることによりガスセンサ群
3を用いて複数個のガス成分の検出・定量が短時間に行
なえるようになり、短時間に複数個のガス成分の検出を
可能とした油入機器の油中ガス検出装置を得ることがで
きる。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. In this embodiment, a gas-in-oil detection device is connected to a gas reservoir section 2 that stores a plurality of gas components separated by a gas permeable material 1, and is connected to this gas reservoir section 2, and A gas detection unit 4 provided with a gas sensor group 3 that detects a plurality of gas components, respectively.
and the respective output values from the gas sensor group 3 connected to this gas detection unit 4 and measuring a plurality of gas components, and each gas component for each gas sensor measured and stored in advance by the gas detection unit 4. It is composed of a measuring section 5 that calculates and displays a plurality of gas components from individual detection characteristic values. The measurement unit 5 is replaced by a gas sensor amplifier 6 that amplifies each output value from the gas sensor group 3 and each detection characteristic value for each gas component alone for each gas sensor;
An arithmetic device 7 connected to this gas sensor amplifier 6 and processes a plurality of gas components from output values and detection characteristic values.
and a display device 8 for displaying the calculation results of this arithmetic device 7. By doing this, it becomes possible to detect and quantify multiple gas components in a short time using the gas sensor group 3, and the oil-filled equipment that enables the detection of multiple gas components in a short time A medium gas detection device can be obtained.

すなわち油入機器のケース9内に満たされている絶縁油
10は、ケース9に取シ付けであるフランジ弁11を介
して油導入管12に導入される。
That is, insulating oil 10 filled in a case 9 of an oil-filled device is introduced into an oil introduction pipe 12 via a flange valve 11 attached to the case 9.

この油導入管12には油密になるように取り付けられた
ガス透過材1を介してガス溜め部2が設けられているの
で、油導入管12に導入された絶縁油10中のガス成分
はガス透過材1で透過分離されてガス溜め部2に溜めら
れている。このガス溜め部2に開閉弁13aを介してガ
スセンサ群3を収納したガス検知部4を接続したが、開
閉弁13aとガス検知部4との接続はワンタッチ式で行
なえるように、ワンタッチ式ジヨイントのソケット14
aおよびプラグ(図示せず)を設けて実施した。そして
このガス検−知部4にケーブルを介してガスセンサ用増
幅器6を接続し:このガスセンサ用増幅器6には演算装
置7例えばマイコン装置を、このマイコン装置には表示
装置8を接続した。そしてまたこれらガスセンサ用増幅
器6、演算装置7および表示装置8で構成される計測部
5側には、別途上述の油入機器側に設けられているガス
溜め部2と同じ構成のガス溜め室15を設けた。このガ
ス溜め室15には上述のガスセンサ群3を収納したガス
検知部4に取り付けたワンタッチ式ジヨイントのプラグ
が接続できるソケツl−,14aと同じ構造のソケツ)
14bを取り付けた。
This oil introduction pipe 12 is provided with a gas reservoir 2 via a gas permeable material 1 that is installed in an oil-tight manner, so that the gas components in the insulating oil 10 introduced into the oil introduction pipe 12 are The gas is permeated and separated by a gas permeable material 1 and stored in a gas reservoir 2. The gas detection section 4 housing the gas sensor group 3 is connected to the gas reservoir section 2 via the on-off valve 13a, but the on-off valve 13a and the gas detection section 4 can be connected by a one-touch joint. socket 14
A and a plug (not shown) were provided. A gas sensor amplifier 6 was connected to the gas detection section 4 via a cable; an arithmetic unit 7 such as a microcomputer device was connected to the gas sensor amplifier 6, and a display device 8 was connected to the microcomputer device. Furthermore, on the measuring section 5 side, which is composed of the gas sensor amplifier 6, the arithmetic device 7, and the display device 8, there is a gas reservoir chamber 15 having the same configuration as the gas reservoir section 2 separately provided on the oil-filled equipment side. has been established. This gas reservoir chamber 15 has a socket l-, which has the same structure as 14a, to which a one-touch joint plug attached to the gas detection unit 4 housing the gas sensor group 3 described above can be connected.
14b was installed.

そしてこのように構成した油中ガス検出装置を次に述べ
るように操作して複数個のガス成分を検出・定量する。
Then, the gas-in-oil detection device configured as described above is operated as described below to detect and quantify a plurality of gas components.

ガス溜め部2に取シ付けであるニードル弁131jおよ
び開閉、弁13aを閉じて、ガス溜め部2にガス透過材
1を介して油中のガス成分を絶縁油10から透過分離す
る。この場合に油中ガス濃度と透過ガス濃度とが平衡す
るまである一定期間透過させるが、この透過期間はガス
透過材1のガス透過性能、透過面積およびガス溜め部2
の容積等によって種々異なるものである。油中ガス濃度
とガス溜め部2の透過ガスの濃度とが平衡状態に達した
ら、ニードル弁13bを開きガス溜め部2内を常圧にし
てニードル弁13bを閉じる。次いでガス検知部4をワ
ンタッチ式ジヨイントのンケツ)14aで開閉弁13a
と連結して開閉弁13aを開く。このようにするとガス
溜め部2内のガス成分がガス検知部4に自然に拡散して
ゆき、ガスセンサ群3と接触し、ガスセンサ群3の夫々
のガスセンサが透過ガスの濃度に対応した出力値を示す
。この出力値はガスセ/す用増幅器6を介して演算装置
7に取9込まれ、予め演算装置7のマイコンに記憶させ
である各ガスセンサ毎の各ガス成分単独に対する検出特
性値と演算処、理されて、所期のガス成分毎のガス濃度
が算出され、表示装置8に表示される。
The needle valve 131j attached to the gas reservoir section 2 is opened and closed, and the valve 13a is closed to allow gas components in the oil to permeate and separate from the insulating oil 10 through the gas permeable material 1 in the gas reservoir section 2. In this case, the gas is permeated for a certain period of time until the gas concentration in the oil and the permeated gas concentration are in equilibrium.
It varies depending on the volume etc. When the concentration of the gas in the oil and the concentration of the permeated gas in the gas reservoir 2 reach an equilibrium state, the needle valve 13b is opened to bring the inside of the gas reservoir 2 to normal pressure, and the needle valve 13b is closed. Next, the gas detection unit 4 is connected to the open/close valve 13a using the one-touch joint socket 14a.
and opens the on-off valve 13a. In this way, the gas components in the gas reservoir section 2 will naturally diffuse into the gas detection section 4 and come into contact with the gas sensor group 3, causing each gas sensor in the gas sensor group 3 to output an output value corresponding to the concentration of the permeated gas. show. This output value is taken into the arithmetic unit 7 via the gas amplifier 6, and is pre-stored in the microcomputer of the arithmetic unit 7. Then, the desired gas concentration for each gas component is calculated and displayed on the display device 8.

なお各ガスセンサ毎の各ガス成分単独に対する検出特性
値は、計測部5側に設けたガス溜め室15に既知濃度の
単成分ガスを常圧まで入れ、これをワンタッチ式ジヨイ
ントのソケット1.4 bを介してガス検知部4に接続
し、前述の透過ガスを測定する場合と同様にして測定す
ればよい。このようにすれば各ガスセンサ毎の各ガス成
分単独に°対する検出特性値を求めることができる。
Note that the detection characteristic value for each gas component alone for each gas sensor is determined by filling a single component gas of a known concentration up to normal pressure into the gas reservoir chamber 15 provided on the measurement unit 5 side, and inserting it into the socket 1.4 b of the one-touch joint. The gas detection section 4 may be connected to the gas detection section 4 through the gas detection section 4, and the measurement may be performed in the same manner as in the case of measuring the permeated gas described above. In this way, it is possible to obtain the detection characteristic value for each gas component independently for each gas sensor.

第2図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

本実施例ではキャリヤーガスを発生させる°ためのダイ
ヤフラムポンプ16とキャリヤーガスをガス溜め部2に
送シ込むためのキャリヤーガス管17とを設け、キャリ
ヤーガスでガス溜め部2のガスを強制的にガス検知部4
に送って測定するようにした。そしてガス検知部4には
第3図に示されているように、キャリヤーガスを放出さ
せる穴18を設けた。なお同図において19はワンタッ
チ式ジヨイントのプラグである。
In this embodiment, a diaphragm pump 16 for generating carrier gas and a carrier gas pipe 17 for feeding the carrier gas into the gas reservoir 2 are provided, and the gas in the gas reservoir 2 is forcibly filled with the carrier gas. Gas detection part 4
I sent it to them for measurements. As shown in FIG. 3, the gas detection section 4 was provided with a hole 18 for releasing the carrier gas. In the figure, 19 is a one-touch joint plug.

この場合は次に述べるように操作して複数個のガス成分
を検出・定量する。ニードル弁13bを開きガス溜め部
2内を常圧にし、常圧にした後はIJjび閉める。次い
でガスセンサ群3を収納したガス検知部4をワンタッチ
式ジヨイントのソケット14aで開閉弁13aに接続し
、キャリヤーガス管17をニードル弁13bに夫々接続
する。そして開閉弁13aを開いてからニードル弁13
bを開き、ダイヤフラムポンプ16から発生するキャリ
ヤーガスをガス溜め部2に流し、ガス溜め部2内のガス
成分をガス検知部4に送シガスセンザ群3と接触させる
。このようにすることによりガスセンサ群3は接触した
ガス成分の濃度に対応した出力値を示し、この出力値は
計測部5に取り込まれ、前述の場合と同様にして複数個
のガス成分が検出・定量される。この場合は透過したガ
ス成分を強制的にガスセンサ群3に接触させて測定する
ので、自然対流方式の前述の場合に比べて短時間に、か
つ低濃度のガスも検出できる。
In this case, multiple gas components are detected and quantified by operating as described below. The needle valve 13b is opened to bring the inside of the gas reservoir 2 to normal pressure, and after the pressure is brought to normal pressure, the IJj is closed. Next, the gas detection unit 4 housing the gas sensor group 3 is connected to the on-off valve 13a by a one-touch joint socket 14a, and the carrier gas pipes 17 are connected to the needle valves 13b, respectively. Then, after opening the on-off valve 13a, the needle valve 13
b is opened, the carrier gas generated from the diaphragm pump 16 flows into the gas reservoir section 2, and the gas components in the gas reservoir section 2 are sent to the gas detection section 4 and brought into contact with the gas sensor group 3. By doing so, the gas sensor group 3 shows an output value corresponding to the concentration of the gas component with which it comes in contact, and this output value is taken into the measurement section 5, and multiple gas components are detected and detected in the same way as in the above case. Quantitated. In this case, since the transmitted gas components are forcibly brought into contact with the gas sensor group 3 for measurement, it is possible to detect gases at low concentrations in a shorter time than in the above-mentioned case of the natural convection method.

なお各ガスセンサ毎の各ガス成分単独に対する検出特性
値は、計測部5側に設けたガス溜め室15に既知濃度の
単成分ガスを常圧1で入れ、これをそあ一方端はワンタ
ッチ式ジヨイントのソケツ)14bを介してガス検知部
4に、他方端は接続口を介してキャリヤーガス管17に
夫々接続し、前述の透過ガスを測定する場合と同様にし
て測定すれば求めることができる。
The detection characteristic value for each gas component alone for each gas sensor is determined by introducing a single component gas of a known concentration at normal pressure 1 into the gas reservoir chamber 15 provided on the measurement unit 5 side, and then inserting it into the gas reservoir chamber 15 provided on the measurement unit 5 side. It can be determined by connecting the other end to the gas detection unit 4 through the socket 14b and the carrier gas pipe 17 through the connection port, and measuring in the same manner as in the case of measuring the permeated gas described above.

第4図には本発明の更に他の実施例が示されている。本
実施例ではガス溜め部2に6方切換弁2(lを接続し、
この6万切換弁20aに検量管21aを取り伺けた。そ
してガスセンサ群3を収納1〜だガス検知部4を計測部
5側に設置し、検量管21a内に導入した透過ガス成分
はキャリヤーガス管22.23によってガス検知部4に
導かれるようにした。そして捷た計測部5側にはガス溜
め部2に接続した6方切換弁20aと同じ構造の6方切
換弁201〕および検量管21bを設置した忌この場合
は次に述べるように操作して複数個のガス成分を検出・
定量する。ガス溜め部2に設けた二、−ドル弁24を開
き、ガス溜め部2と検量管21aとを常圧にし、常圧に
したら再びニードル弁24を閉じる。この間は6方切換
弁20aは図中実線表示の流路を形成しているので、透
過したガスは検量管21a内にも溜捷る。次いでキャリ
ヤーガス管22.23をジヨイント25a、25bを介
して6方切換弁20aに取り付ける。このようにすると
ダイヤフラムポンプ16から出たキャリヤーガスは検量
管21aをバイパスしてガス検知部4に流れ、図中に実
線の矢印で示されているように大気中に放出される。こ
のキャリヤーガスの流れが安定したら6方切換弁20a
を図中点線表示の流路に切換え、検量管21a内の透過
したガス成分をキャリヤーガスを介してガス検知部4に
流し、ガスセンサ群3と接触させる。このように−する
ことによシ透過したガス成分の出力値が得られ、これが
計測部5に取り込まれ前述の場合と同様にして複数個の
カス成分が検出・定量できる。
FIG. 4 shows yet another embodiment of the invention. In this embodiment, a six-way switching valve 2 (l) is connected to the gas reservoir 2,
I was able to get the calibration tube 21a to this 60,000 switching valve 20a. Then, the gas sensor group 3 was housed 1~, and the gas detection section 4 was installed on the side of the measurement section 5, so that the permeated gas component introduced into the calibration tube 21a was guided to the gas detection section 4 by the carrier gas pipe 22, 23. . A six-way switching valve 201 with the same structure as the six-way switching valve 20a connected to the gas reservoir section 2 and a calibration tube 21b were installed on the side of the disconnected measuring section 5. In this case, operate as described below. Detection of multiple gas components
Quantify. Open the second dollar valve 24 provided in the gas reservoir 2 to bring the gas reservoir 2 and the calibration tube 21a to normal pressure, and then close the needle valve 24 again when the pressure is at normal pressure. During this period, the six-way switching valve 20a forms a flow path indicated by a solid line in the figure, so that the permeated gas also accumulates in the calibration tube 21a. The carrier gas pipes 22, 23 are then attached to the six-way switching valve 20a via the joints 25a, 25b. In this way, the carrier gas discharged from the diaphragm pump 16 bypasses the calibration tube 21a, flows to the gas detection section 4, and is discharged into the atmosphere as shown by the solid arrow in the figure. When the flow of this carrier gas becomes stable, the 6-way switching valve 20a
is switched to the flow path indicated by the dotted line in the figure, and the gas component that has passed through the calibration tube 21a is caused to flow through the carrier gas to the gas detection section 4 and brought into contact with the gas sensor group 3. By doing this, the output value of the gas component that has passed through is obtained, which is taken into the measuring section 5, and a plurality of waste components can be detected and quantified in the same manner as in the above case.

この場合にはキャリヤーガスの流量を常に安定した状態
に保って測定することができるので、前述の場合よりも
安定した出力値を得ることができ、測定の操作も簡単に
することができる。
In this case, the flow rate of the carrier gas can be kept constant during measurement, so a more stable output value can be obtained than in the case described above, and the measurement operation can be simplified.

なお各ガスセンサ毎の各ガス成分単独に対する検出特性
値は、計測部5側の6方切換弁20bに取り付けた検量
管21bに既知濃度の単成分ガスを常圧まで入れ、これ
をジョインI−25C’、 25dを介してキャリヤー
ガス管22.23に接続し、前述の透過ガスの測定と同
じようにして検量管211〕内のガスを測定すれば求め
ることができる。
Note that the detection characteristic value for each gas component alone for each gas sensor is determined by filling a single component gas of a known concentration up to normal pressure into the calibration tube 21b attached to the six-way switching valve 20b on the measurement unit 5 side, and then connecting it to the join I-25C. It can be determined by connecting to the carrier gas pipes 22, 23 through 25d and measuring the gas in the calibration tube 211 in the same manner as the measurement of the permeated gas described above.

以」−の各実施例に使用するガスセンサ類としては、接
触燃焼式捷たは半導体式のものが使用できる。特に検出
を目的とした複数のガス成分に対して検出感度の高いガ
スセ/すを複数個選んでカスセンサ群3を構成し、ガス
濃度をマイコンによって演算処理するようにすればよく
、その組合わせは種々考えられる。しかし同一原理によ
る測定方式のガスセンサを組合わせて用いると、カスセ
ンサ用増幅器6が1個ですむので、同一原理による測定
方式のガスセンサを組合わせるのが望ましい。
As the gas sensors used in each of the following embodiments, catalytic combustion type or semiconductor type can be used. In particular, the gas sensor group 3 can be configured by selecting a plurality of gas sensors with high detection sensitivity for the plurality of gas components to be detected, and the gas concentration can be calculated and processed by a microcomputer. There are various possibilities. However, if gas sensors with measurement methods based on the same principle are used in combination, only one scum sensor amplifier 6 is required, so it is desirable to combine gas sensors with measurement methods based on the same principle.

この同一原理による測定方式のガスセンサを用いる場合
は、次に述べるようなガスセンサ群3の構成が考えられ
る。
When using a gas sensor of a measurement method based on the same principle, the following configuration of the gas sensor group 3 can be considered.

(1)同一素材のガスセンサを用いる場合。(1) When using gas sensors made of the same material.

ガスセンサを構成する素材が同じでもカスセンサのヒー
タ電圧によって各ガスに対する検出感度が変化してくる
ので、検出を目的としたガス成分が感度よく検出できる
ようなヒータ電圧を有するガスセンサ群3を構成する。
Even if the material constituting the gas sensor is the same, the detection sensitivity for each gas changes depending on the heater voltage of the gas sensor, so a gas sensor group 3 is constructed having a heater voltage that allows the gas component targeted for detection to be detected with high sensitivity.

(2)組成の異なるガスセンサを用いる場合。(2) When using gas sensors with different compositions.

ガスセンサを構成する素材が異なってくると各ガスに対
する検出感度は全く異な・つてくるので、検出を目的と
したガス成分が感度よく検出できるようなカスセンサを
選んで組合わせ、ガスセンサ群3を構成する。
Since the detection sensitivity for each gas will be completely different if the materials that make up the gas sensor are different, gas sensors that can detect the target gas component with high sensitivity are selected and combined to form the gas sensor group 3. .

(3)上記の(1)と(2)とを組合わせて、検出を目
的としたガス成分を感度よく検出できるようなガスセン
サ群3を構成する。
(3) By combining the above (1) and (2), a gas sensor group 3 is constructed which can detect the gas component for detection with high sensitivity.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は複数個のガスセンサを用いて複数
個のガス成分を検出するようにしたので、複数個のガス
センサで複数個のガス成分が検出できるようになって、
短時間にガス成分が検出できるようになシ、短時間に複
数個のガス成分の検出を可能とした油入機器の油中ガス
検出装置を得ることができる。
As described above, the present invention detects a plurality of gas components using a plurality of gas sensors, so that a plurality of gas components can be detected using a plurality of gas sensors.
It is possible to obtain a gas-in-oil detection device for oil-filled equipment that is capable of detecting a gas component in a short time, and is capable of detecting a plurality of gas components in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の油入機器の油中ガス検出装置の一実施
例のガス検出系統図、第2図は本発明の油入機器の油中
ガス検出装置の他の実施例のガス検出系統図、第3図は
第2図のガス検知部門りの縦断側面図、第4図4は本発
明の油入機器の油中ガス検出装置の更に他の実施例のガ
ス検出系統図である。 1・・・ガス透過材、2・・・ガス溜め部、3・・・ガ
スセンザ群、4・・・ガス検知部、5・・・計測部、6
・・・ガスセンサ用増幅器、7・・・演算装置、8・・
・表示装置、10・・・絶縁油、15・・・ガス溜め室
、16・・・ダイヤフラムポンプ、17・・・キャリヤ
ーガス管、20a。 20b・・・6方切換弁、21 a 、 ’2 l b
・・・検量管、第 1 口 贋 2 幻 〜
Fig. 1 is a gas detection system diagram of one embodiment of the gas-in-oil detection device for oil-filled equipment of the present invention, and Fig. 2 is a gas detection system diagram of another embodiment of the gas-in-oil detection device for oil-filled equipment of the present invention. System diagram, FIG. 3 is a vertical sectional side view of the gas detection section of FIG. 2, and FIG. 4 is a gas detection system diagram of still another embodiment of the gas-in-oil detection device for oil-immersed equipment of the present invention. . DESCRIPTION OF SYMBOLS 1... Gas permeable material, 2... Gas reservoir part, 3... Gas sensor group, 4... Gas detection part, 5... Measurement part, 6
... Gas sensor amplifier, 7... Arithmetic device, 8...
- Display device, 10... Insulating oil, 15... Gas reservoir chamber, 16... Diaphragm pump, 17... Carrier gas pipe, 20a. 20b...6-way switching valve, 21a, '2lb
... Calibration tube, 1st counterfeit 2 illusion ~

Claims (1)

【特許請求の範囲】 1、 油入機器内の絶縁油に溶存する複数個のガス成分
をガス透過材を用いて分離し、この分離した複数個のガ
ス成分を検出する油入機器の油中ガス検出装置において
、前記油中ガス検出装置を、前記ガス透過材で分離され
た前記複数個のガス成分を溜めておくガス溜め部と、こ
のガス溜め部に接続され、かつ前記ガス溜め部内の前記
複数個のガス成分を夫々検出する複数個のガスセンサを
設けたガス検知部と、このガス検知部に接続され、かつ
前記複数個のガス成分を測定した前記複数個のガスセン
サからの夫々の出力値と前記ガス検知部で予め測定し記
憶させておいた前記各ガスセンサ毎の前記各ガス成分単
独に対する夫々の検出特性値とから前記複数個のガス成
分を演算処理して表示するt1測部とから構成したこと
を特徴とする油入(表器の油中ガス検出装置。 2、  ’+)′lJ記計測部が、前記複数個のガスセ
ンサからの夫々の出力値および前記各ガスセンサ毎の前
記ガス成分単独に対する夫々の検出特性値を増幅するガ
スセ/す用増幅器と、このガスセンサ用増幅器に接続さ
れ、前記出力値および、検出特性値から前記複数個のガ
ス成分を演算処理する演算装置と、この演算装置の算出
結果を表示する表示装置とから構成されたものである特
許請求の範囲第1項記載の油入機器の油中ガス検出装置
[Claims] 1. A method for separating a plurality of gas components dissolved in the insulating oil in the oil-filled equipment using a gas permeable material, and detecting the separated gas components in the oil of the oil-filled equipment. In the gas detection device, the gas-in-oil detection device includes a gas reservoir portion for storing the plurality of gas components separated by the gas permeable material, and a gas reservoir portion connected to the gas reservoir portion and inside the gas reservoir portion. a gas detection section including a plurality of gas sensors that respectively detect the plurality of gas components; and respective outputs from the plurality of gas sensors connected to the gas detection section and measuring the plurality of gas components; a t1 measurement section that calculates and displays the plurality of gas components from the values and respective detection characteristic values for each of the gas components alone for each of the gas sensors, which have been measured and stored in advance by the gas detection section; An oil-filled gas-in-oil detection device characterized by comprising: 2.'+)'lJ measuring section, which measures output values from each of the plurality of gas sensors and the above-mentioned data for each of the gas sensors. a gas sensor amplifier that amplifies each detection characteristic value for each gas component alone; a calculation device that is connected to the gas sensor amplifier and processes the plurality of gas components from the output value and the detection characteristic value; A gas-in-oil detection device for oil-immersed equipment according to claim 1, comprising a display device for displaying calculation results of the calculation device.
JP3629383A 1983-03-04 1983-03-04 Detector for gas in oil in oil-immersed apparatus Pending JPS59160745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3629383A JPS59160745A (en) 1983-03-04 1983-03-04 Detector for gas in oil in oil-immersed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3629383A JPS59160745A (en) 1983-03-04 1983-03-04 Detector for gas in oil in oil-immersed apparatus

Publications (1)

Publication Number Publication Date
JPS59160745A true JPS59160745A (en) 1984-09-11

Family

ID=12465756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3629383A Pending JPS59160745A (en) 1983-03-04 1983-03-04 Detector for gas in oil in oil-immersed apparatus

Country Status (1)

Country Link
JP (1) JPS59160745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227965A (en) * 1985-03-30 1986-10-11 京セラ株式会社 Silicon carbide base sintered body and manufacture
JPH0224389U (en) * 1988-08-01 1990-02-19
JPH02189452A (en) * 1989-01-17 1990-07-25 New Cosmos Electric Corp Measurer of concentration of dissolved gas in oil
JP2018037563A (en) * 2016-09-01 2018-03-08 愛知電機株式会社 Internal abnormality diagnosis method of oil-filled transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227965A (en) * 1985-03-30 1986-10-11 京セラ株式会社 Silicon carbide base sintered body and manufacture
JPH0224389U (en) * 1988-08-01 1990-02-19
JPH02189452A (en) * 1989-01-17 1990-07-25 New Cosmos Electric Corp Measurer of concentration of dissolved gas in oil
JP2018037563A (en) * 2016-09-01 2018-03-08 愛知電機株式会社 Internal abnormality diagnosis method of oil-filled transformer

Similar Documents

Publication Publication Date Title
US4402211A (en) System for monitoring abnormality of oil-filled electric devices
US8968560B2 (en) Chromatography using multiple detectors
Pye et al. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus
US4650499A (en) Gas chromatographic apparatus and method
CN209471083U (en) A kind of non-methane total hydrocarbons content detection device
US3790348A (en) Apparatus for determining the carbon monoxide, methane and total hydrocarbons content in air
EP0069759A1 (en) Gas analysis instrument having flow rate compensation.
US4102648A (en) Measuring non-methane hydrocarbon contents in gases
US3638396A (en) Gas chromatograph interfacing system and method
US5265463A (en) Apparatus for measuring the transmission rate of volatile organic chemicals through a barrier material
US5339672A (en) Monitoring of gas dissolved in oil
US3211007A (en) Measurement of surface areas of solids
US4201550A (en) Process and apparatus for the determination of the total organic substance content of gases by a flame ionization detector
JPS59160745A (en) Detector for gas in oil in oil-immersed apparatus
US3357232A (en) Analyzing apparatus with pressure-actuated fluid valving system
TW550384B (en) Method and apparatus for analyzing impurities in gases
US3721065A (en) Barrier attachment for gas chromatograph
KR20210057743A (en) Analysis of dissolved gases in the insulating medium of high voltage devices
EP0501089A1 (en) Method and apparatus for determining specific thermal conductivity parameters of gases
JP2682882B2 (en) Method and apparatus for identifying gas type of combustible gas
CN104458936B (en) For single injection port gas chromatograph that insulating oil is analyzed
Murugan et al. Advancing the analysis of impurities in hydrogen by use of a novel tracer enrichment method
SU1045083A1 (en) Polymer membrane permeability determination method
Wang et al. An improved gas chromatography for rapid measurement of CO_2, CH_4 and N_2O
JP6596225B2 (en) Mixed gas preparation apparatus and mixed gas preparation method