JPS591606B2 - Hydrostatic power transmission equipment for hydraulic vehicles, etc. - Google Patents

Hydrostatic power transmission equipment for hydraulic vehicles, etc.

Info

Publication number
JPS591606B2
JPS591606B2 JP52096416A JP9641677A JPS591606B2 JP S591606 B2 JPS591606 B2 JP S591606B2 JP 52096416 A JP52096416 A JP 52096416A JP 9641677 A JP9641677 A JP 9641677A JP S591606 B2 JPS591606 B2 JP S591606B2
Authority
JP
Japan
Prior art keywords
orifice
valve
pump
pressure
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52096416A
Other languages
Japanese (ja)
Other versions
JPS5431130A (en
Inventor
洋 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP52096416A priority Critical patent/JPS591606B2/en
Publication of JPS5431130A publication Critical patent/JPS5431130A/en
Publication of JPS591606B2 publication Critical patent/JPS591606B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Control Of Fluid Gearings (AREA)

Description

【発明の詳細な説明】 本発明は、主に油圧走行車両の操縦性能向上を企画した
静油圧伝導装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrostatic power transmission system mainly designed to improve the maneuverability of a hydraulically driven vehicle.

一般に従来のこの種静油圧伝導装置は、第1図に示す如
く、可変容量形ポンプ1と油圧モータ2を結ぶ主管路3
、4間に、ブースト用リリーフ弁5で一定圧Pbに保持
されたブースト用補助ポンプ6の圧油をチェック弁7、
8を経て低圧側主管路にポンプ、モータ等の漏れ量だけ
補給するためのブースト用回路、バイパス弁9、高圧リ
リーフ弁10、11を並列介装している。
In general, this kind of conventional hydrostatic power transmission device has a main pipe 3 connecting a variable displacement pump 1 and a hydraulic motor 2, as shown in FIG.
, 4, the pressure oil of the boost auxiliary pump 6, which is maintained at a constant pressure Pb by the boost relief valve 5, is checked by the check valve 7,
A boost circuit for replenishing the amount of leakage from pumps, motors, etc., a bypass valve 9, and high-pressure relief valves 10 and 11 are installed in parallel in the low-pressure side main line via 8.

図示回路でバイパス弁9を設けているのは、これを欠如
すれば、ポンプ1の傾転レバー12の倒し角度と車両速
度の関係を示す第12図の理想線図で明らかな如<、車
両速度が零となる中立帯は一点のみとなり、傾転レバー
12を手動で操作するような場合、傾転レバー12のわ
ずかな中立位置の狂いにより車両は微少変動し(以下ク
リープと称す)、操縦性能が著しく悪くなるので、第1
3図に示す如き中立帯±αを確保するためである。
The reason why the bypass valve 9 is provided in the illustrated circuit is that if it were absent, the vehicle would be There is only one point in the neutral zone where the speed is zero, and when the tilting lever 12 is operated manually, the slight deviation of the neutral position of the tilting lever 12 causes the vehicle to fluctuate slightly (hereinafter referred to as creep), making it difficult to control the vehicle. The performance will deteriorate significantly, so
This is to ensure the neutral zone ±α as shown in FIG.

これを説明すると、主管路3、4の圧力をPA、PBと
し例えばPA<PBの場合、ポンプ1の吐出油量が微少
であるとPB−−PBとなりポンプ圧液は主管路3から
バイパス弁9のオリフィス13を経て主管路4側へバイ
パスするので、油圧モータ2は回転せず、従つて車両は
走行しない。即ち、中立帯にある幅をもたせ得ることに
なり、ポンプ1の中立点の狂いが多少あつても車両のク
リープ現象を防止できる。ところが、バイパス弁9のオ
リフィス開度は圧油がオリフィス13を通過する際に生
じるオリフィス前後の差圧力PA一PBとバイパス弁9
のばね14、15のばね力との釣合いによつて決まるの
で、中立帯におけるオリフィス前後の差圧力がばね14
、15の初期セツトカを越えるようなポンプ吐出量にな
ると、オリフィス13は絞られはじめ、それに伴い差圧
力が一層増大し、ポンプ吐出量増大に対して相乗的に差
圧力が増大し、オリフィス13は急速に絞られていく。
このため、車両速度は第13図に示す如く段階状に始動
し、大きいショックを伴うことになつて始動性は極端に
悪くなる。そこで本出願人は、前記の欠点を解消した静
油圧伝導装置(特願昭51−87525号(特開昭53
−20231号公報参照))を提案した。
To explain this, let us assume that the pressures in the main pipes 3 and 4 are PA and PB. For example, in the case of PA<PB, if the amount of oil discharged from the pump 1 is very small, it will become PB--PB, and the pump pressure liquid will flow from the main pipe 3 to the bypass valve. Since the hydraulic motor 2 is bypassed to the main pipe 4 side through the orifice 13 of 9, the hydraulic motor 2 does not rotate, and therefore the vehicle does not run. That is, the neutral zone can have a certain width, and even if the neutral point of the pump 1 is slightly out of alignment, the creep phenomenon of the vehicle can be prevented. However, the orifice opening degree of the bypass valve 9 is determined by the pressure difference PA-PB before and after the orifice that occurs when the pressure oil passes through the orifice 13, and the bypass valve 9.
The difference in pressure before and after the orifice in the neutral zone is determined by the balance between the spring forces of springs 14 and 15.
, 15, the orifice 13 begins to be constricted, and the differential pressure further increases accordingly. It's narrowing down rapidly.
For this reason, the vehicle speed starts in stages as shown in FIG. 13, and a large shock is generated, resulting in extremely poor starting performance. Therefore, the present applicant has proposed a hydrostatic power transmission device (Japanese Patent Application No. 51-87525 (Japanese Unexamined Patent Publication No. 53-87) that eliminates the above-mentioned drawbacks.
-20231)) was proposed.

このものは、例えば第2図に示す如く、油圧モータ2両
側の主管路3,4を結ぶバイパス管路161f−、第1
図図示のバイパス弁9に代え、オリフイス17とその前
後に圧力制御弁18,19を配設し、圧力制御弁18,
19はばね20により常時開となし、十流側の圧力制御
弁にはオリフイス17前後の正の差圧力を弁開力向に、
下流側の圧力制脚弁にはオリフイス17前後の正の差圧
力を弁閉方向に作用させている。かく構成すれは、主管
路3にポンプ1からの圧油が吐出され始めたとすると、
圧力制御弁18,19はばね20により開となつている
ので、圧油は圧力制御弁18、オリフイス17、圧力制
御弁19を通つて主管路3から4へバイパスし、ポンプ
吐出量が微少である間車両は停止することになる。この
場合、PA〉PBであるから、圧力制御弁18は自由流
れであり、圧力制御弁19においてはオリフイス前後の
差圧力PA−PBが一定になるよう圧力制御弁19の開
度が同弁内のはね20で自動的に制御される。オリフイ
ス17前後の差圧力が一定ということは、オリフイスの
通過流量が一定で、しかもそれは圧力補償されていると
いうことになる。このオリフイス17は第1図のオリフ
イス13と異なり、オリフイス前後の差圧力が一定であ
り、バイパス流量は車両の走行抵抗(ポンプ吐出圧力に
略等しい)の大小にかかわらず一定となるため、走行速
度を決める油圧モータ2の流入油量が急激に変わること
はなく、従つて、車両を滑らかに始動せしめ得て始動性
は向上することになる。ところが、このものはポンプ駆
動源の回転数が変わると中立帯の幅も変化する欠点があ
る。即ち、Jオリフイス17は固定であるからオリフイ
ス通過量は一定であり、中立帯の幅αは、オリフイス通
過油量をQ1ポンプ1の回転数をnとすれば、α=Q/
nで与えられるので、ポンプ回転数が変わると中立帯の
幅も変化することになる。特にこの4種の走行車両にお
いては、エンジンで1駆動されることが多く、その変速
域は例えば500〜3000r−p−mと広いため、中
立帯の幅はエンジンアイドル回転時は極めて広いがバイ
パス損失分が一定のため効率低下が大きく、エンジン高
速回転時は効率低下は少ないが極めて狭くなつてクリー
プ現象が出やすく、始動時の操縦性に難がある。また、
このものはポンプ1の傾転レバー12を最大にしても一
定量がオリフイスを経てバイパスするので、最大車両速
度が若干低下すると共に、効率低下もある。本発明は前
記の点に鑑み、油圧モータ両側の主管路を結ぶバイパス
管路に油圧モータ駆動用可変容量形ポンプと共通の変速
駆動源により駆動されるブースト用補助ポンプの吐出圧
をパイロツト圧にとるオリフイス付き切換弁とこのオリ
フイス付き切換弁の前後に第2図で説明した圧力制御弁
18,19と同様の機能を有する圧力制御弁を配設する
と共に、オリフイス付き切換弁はそのオリフイス開度を
ブースト用補助ポンプの吐出圧に比例させ、また可変容
量形ポンプの傾転角に逆比例させるようにオリフイス付
き切換弁のスプールと可変容量形ポンプの傾転軸とを回
転連動機構で連結することにより、前記の欠点を解消し
たものである。
For example, as shown in FIG. 2, the bypass pipe 161f-, the first
Instead of the bypass valve 9 shown in the figure, pressure control valves 18 and 19 are provided before and after the orifice 17, and the pressure control valves 18,
19 is kept open at all times by a spring 20, and a positive differential pressure before and after the orifice 17 is applied to the pressure control valve on the tenth flow side in the direction of the valve opening force.
A positive differential pressure across the orifice 17 is applied to the downstream pressure leg valve in the valve closing direction. Assuming that the pressure oil from the pump 1 starts to be discharged into the main pipe 3,
Since the pressure control valves 18 and 19 are kept open by the spring 20, the pressure oil bypasses the main pipes 3 to 4 through the pressure control valve 18, orifice 17, and pressure control valve 19, and the pump discharge amount is minute. The vehicle will be stopped for a while. In this case, since PA>PB, the pressure control valve 18 is a free flow, and the opening degree of the pressure control valve 19 is adjusted so that the differential pressure PA - PB before and after the orifice is constant. It is automatically controlled by Nohane 20. The fact that the differential pressure before and after the orifice 17 is constant means that the flow rate passing through the orifice is constant, and moreover, it is pressure compensated. This orifice 17 differs from the orifice 13 in FIG. 1 in that the differential pressure before and after the orifice is constant, and the bypass flow rate is constant regardless of the magnitude of the vehicle's running resistance (approximately equal to the pump discharge pressure), so the running speed The amount of oil flowing into the hydraulic motor 2, which determines the amount of oil flowing into the hydraulic motor 2, does not change suddenly. Therefore, the vehicle can be started smoothly and the starting performance is improved. However, this method has the disadvantage that the width of the neutral zone changes as the rotational speed of the pump drive source changes. That is, since the J orifice 17 is fixed, the amount of oil passing through the orifice is constant, and the width α of the neutral zone is α=Q/, where Q1 is the amount of oil passing through the orifice, and n is the rotation speed of the pump 1.
Since it is given by n, if the pump rotation speed changes, the width of the neutral zone will also change. In particular, these four types of vehicles are often driven by the engine, and the transmission range is wide, for example, 500 to 3000 rpm, so the width of the neutral zone is extremely wide when the engine is idling, but the bypass Since the loss is constant, the efficiency decreases greatly, and when the engine rotates at high speeds, the efficiency decrease is small, but it becomes extremely narrow and prone to creep, making it difficult to maneuver during startup. Also,
In this case, even if the tilting lever 12 of the pump 1 is set to the maximum, a certain amount bypasses through the orifice, so the maximum vehicle speed is slightly lowered and efficiency is also lowered. In view of the above points, the present invention has developed a system in which the discharge pressure of the auxiliary boost pump, which is driven by a variable speed drive source common to the variable displacement pump for driving the hydraulic motor, is set to the pilot pressure in the bypass pipe connecting the main pipes on both sides of the hydraulic motor. A switching valve with an orifice and a pressure control valve having the same function as the pressure control valves 18 and 19 explained in FIG. 2 are installed before and after this switching valve with an orifice. The spool of the switching valve with an orifice and the tilting shaft of the variable displacement pump are connected by a rotation interlocking mechanism so that the pressure is proportional to the discharge pressure of the auxiliary boost pump and inversely proportional to the tilting angle of the variable displacement pump. This eliminates the above-mentioned drawbacks.

以下本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図に}いて、可変容量形ポンプ1とブースト用補助
ポンプ6は1台のエンジン(図示せず)に接続されてい
る。可変容量形ポンプ1と油圧モータ2を結ぶ主管路3
,4間にはブースト用リリーフ弁5で設定されたブース
ト用補助ポンプ6の圧油をチエツク弁7,8を経て低圧
側主管路にポンプ、モータ、弁類の漏れ量だけ補給する
ためのブースト用回路、高圧リリーフ弁10,11を並
列介装し、主管路3,4を結ぶバイパス管路16にオリ
フイス付き切換弁21とその前後にはね20により常時
開となりオリフイス付き切換弁21のオリフイス22前
後の圧力をパイロツト圧にとる圧力制御弁23,24を
配設し、上流側の圧力制御弁にはオリフイス前後の正の
差圧力を弁開力向に、下流側の圧力制御弁にはオリフイ
ス前後の正の差圧力を弁閉方向に作用せしめ、オリフイ
ス付き切換弁21の圧力室25は管路26によりフース
ト用補助ポンプ6の吐出側管路27に連通してある。第
4図に示すいま一つの実施例は、第3図に示す圧力制御
弁23,24を1個の圧力制御弁28に置換したもので
、その他の構成は第3図に示すものと同じであり、機能
の面でも変らない。
In FIG. 3, the variable displacement pump 1 and the auxiliary boost pump 6 are connected to one engine (not shown). Main pipe line 3 connecting variable displacement pump 1 and hydraulic motor 2
, 4 is a boost valve for replenishing the pressure oil of the boost auxiliary pump 6 set by the boost relief valve 5 into the low-pressure side main pipe via check valves 7 and 8 in an amount equivalent to the amount of leakage from the pump, motor, and valves. High pressure relief valves 10 and 11 are installed in parallel, and a switching valve 21 with an orifice is installed in the bypass pipe 16 connecting the main pipes 3 and 4, and the orifice of the switching valve 21 with an orifice is always open by a spring 20 in front and behind it. Pressure control valves 23 and 24 are installed to take the pressure around 22 as the pilot pressure, and the upstream pressure control valve has a positive differential pressure across the orifice in the direction of the valve opening force, and the downstream pressure control valve has A positive differential pressure across the orifice is applied in the valve closing direction, and the pressure chamber 25 of the orifice-equipped switching valve 21 is communicated with the discharge side pipe 27 of the auxiliary pump 6 for the foist via a pipe 26. Another embodiment shown in FIG. 4 is one in which the pressure control valves 23 and 24 shown in FIG. 3 are replaced with one pressure control valve 28, and the other configuration is the same as that shown in FIG. Yes, there is no difference in terms of functionality.

前記オリフイス付き切換弁21は、第5図}よび第6図
に示す如く、弁本体29の弁孔30に油路31,32の
直径より大きい大径部に油路31,32を連通するため
のオリフイス22を穿設したスプール33を嵌挿し、ス
プール33の段部34と弁孔閉蓋用カバー35間に弾圧
介装せるばね36の弾撥力とスプール33の端部37と
弁本体29で形成される圧力室25に導くブースト用補
助ポンプ6のセツト圧とでスプール33を挾圧して、オ
リフイス22の開度を補助ポンプ6のセツト圧に比例さ
せると共に、スプール33の小径部39がカバー35よ
り突出する部分に、第10図}よび第11図に示す如く
プーリ40を取付け、無端ベルト41、プ一1J42を
介してスプール33を可変容量形ポンプ1の傾転軸43
に連結して、オリフイス22の開度を傾転軸43の傾転
角に逆比例させるように構成してある。な}、本実施例
の小径部39とプーリ40の連結構造は図示していない
が、スプライン、あるいはキーによる周知の連結構造を
採用している。な}また図中、44は可変容量形ポンプ
1、油圧モータ2、オリフイス付き切換弁21を取付け
るバルブケーシングである。次に本発明による動作につ
き説明する。
As shown in FIGS. 5 and 6, the orifice-equipped switching valve 21 communicates the oil passages 31 and 32 with a large diameter portion larger than the diameter of the oil passages 31 and 32 through the valve hole 30 of the valve body 29. A spool 33 having an orifice 22 drilled therein is inserted, and the elastic force of a spring 36 interposed between the step 34 of the spool 33 and the valve hole closing cover 35 and the end 37 of the spool 33 and the valve body 29 The spool 33 is clamped by the set pressure of the auxiliary boost pump 6 that leads to the pressure chamber 25 formed by the spool 33, and the opening degree of the orifice 22 is made proportional to the set pressure of the auxiliary pump 6. A pulley 40 is attached to the part protruding from the cover 35 as shown in FIGS.
The opening degree of the orifice 22 is made inversely proportional to the tilting angle of the tilting shaft 43. Although the connection structure between the small diameter portion 39 and the pulley 40 in this embodiment is not shown, a well-known connection structure using a spline or a key is employed. In the figure, 44 is a valve casing to which the variable displacement pump 1, hydraulic motor 2, and orifice-equipped switching valve 21 are mounted. Next, the operation according to the present invention will be explained.

第3図卦よび第5図に}いて、エンジンの停止または故
障、あるいはブースト用補助ポンプ6の故障時には、補
助ポンプ6の吐出圧は昇圧しないため、スプール33は
ばね36により上カへ押し上げられていてオリフイス2
2を弁孔30内に位置せしめ油路31,32の連通を断
つ。このことは、バイパス油量を零にして閉油圧回路の
最大の特徴の1つである油圧ブレーキ機能を発揮できる
ことになる。エンジンが始動し補助ポンプ6のセツト圧
が昇圧すると、スプール33はばね36に抗して下方へ
押し下げられ、油路31,32はオリフイス22を介し
て連通する。一方、圧力制御弁23,24はばね20に
より開となつているので、可変容量形ポンプ1から吐出
され始めた圧油は圧力制御弁23、オリフイス22、圧
力制御弁24を通つて主管路3から4へバイパスし、ポ
ンプ吐出量が微少である間、車両は停止し、ある幅の中
立帯をもつ。この場合、圧力制御弁23とオリフイス2
2間の油圧Pcはオリフイス22と圧力制御弁24間の
油圧Pdより大きいから、上流側である圧力制御弁23
は自由流れであり、下流側である圧力制御弁24はオリ
フイス22前後の差圧力(Pc−Pd)とはね20との
均衡によりオリフイスの開度に応じた通過油量を、圧力
(車両の走行抵抗から決まる圧力で、ポンプ吐出圧力に
略等しい)と無関係に制御する。また、オリフイス通過
油量は一般に温度変化による作動油の粘度変化の影響を
あまり受けないので、オリフイス22の通過油量は圧力
、温度に対して補償されているといえる。ところで、固
定容量形であるブースト用補助ポンプ6の容量はエンジ
ン回転数に比例して増減し、ブースト用リリーフ弁5は
一般にリリーフ油量に対して略直線的にリリーフセツト
圧が上昇する特性(オーバラード特性)を有しているの
で(第9図)、ブースト用リリーフ弁5のセツト圧はエ
ンジン回転数に依存することになり、オリフイス22の
開度はエンジン回転数によつて増減するリリーフセツト
圧とばね36の弾撥力との釣合いによつて定まる。
3 and 5, when the engine stops or breaks down, or when the auxiliary boost pump 6 breaks down, the discharge pressure of the auxiliary pump 6 does not increase, so the spool 33 is pushed upward by the spring 36. Orifice 2
2 in the valve hole 30 to cut off communication between the oil passages 31 and 32. This means that the hydraulic brake function, which is one of the greatest features of the closed hydraulic circuit, can be achieved with the amount of bypass oil being zero. When the engine starts and the set pressure of the auxiliary pump 6 increases, the spool 33 is pushed downward against the spring 36, and the oil passages 31 and 32 communicate with each other through the orifice 22. On the other hand, since the pressure control valves 23 and 24 are opened by the spring 20, the pressure oil that has begun to be discharged from the variable displacement pump 1 passes through the pressure control valve 23, the orifice 22, and the pressure control valve 24, and then passes through the main pipe 3. The vehicle is bypassed from 4 to 4, and while the pump discharge amount is very small, the vehicle stops and has a neutral zone of a certain width. In this case, the pressure control valve 23 and the orifice 2
Since the oil pressure Pc between the orifice 22 and the pressure control valve 24 is larger than the oil pressure Pd between the orifice 22 and the pressure control valve 24, the pressure control valve 23 on the upstream side
is a free flow, and the pressure control valve 24 on the downstream side controls the amount of passing oil according to the opening degree of the orifice by the balance between the differential pressure (Pc-Pd) before and after the orifice 22 and the spring 20, and the pressure (vehicle's The pressure is determined by the running resistance and is controlled regardless of the pump discharge pressure (approximately equal to the pump discharge pressure). Further, the amount of oil passing through the orifice 22 is generally not affected by changes in the viscosity of the hydraulic oil due to temperature changes, so it can be said that the amount of oil passing through the orifice 22 is compensated for pressure and temperature. Incidentally, the capacity of the boost auxiliary pump 6, which is a fixed capacity type, increases or decreases in proportion to the engine speed, and the boost relief valve 5 generally has a characteristic that the relief set pressure increases approximately linearly with the relief oil amount ( (overall characteristic) (Fig. 9), the set pressure of the boost relief valve 5 depends on the engine speed, and the opening degree of the orifice 22 is a relief valve that increases or decreases depending on the engine speed. It is determined by the balance between the set pressure and the elastic force of the spring 36.

第5図卦よび第6図はエンジン中速時のオリフイス開度
状態を示し、第7図}よび第8図はエンジン最高速時の
オリフイス開度状態を示す。即ち、本発明に}いては、
オリフイス通過油量Ql/Minはエンジン卦よびポン
プの回転数Nrev/Minに比例するので、次のよう
にあられされる。フ ここでql/Revは一定で、押しのけ容積となる。
5 and 6 show the orifice opening state at medium engine speed, and FIGS. 7 and 8 show the orifice opening state at the maximum engine speed. That is, according to the present invention,
Since the amount of oil passing through the orifice Ql/Min is proportional to the rotational speed Nrev/Min of the engine and pump, it can be expressed as follows. Here, ql/Rev is constant and becomes the displacement volume.

押しのけ容積qは周知のようはポンプ傾転角αに比例す
るので、ポンプ傾転角αが一定ということになる。この
ことは、一定のポンプ傾転角αの間ではエンジンおよび
ポンプの回転数と無関係に、オリフイス通過油量のため
バイパスし、車両はクリープ現象を生じることなく確実
に停止し、ポンプ傾転角の点で一定の中心幅が得られる
。つぎに第11図において、傾転レバー12を中立位置
より一方向へある角度回転させると、小径部39と一体
のスプール33は傾転軸43の回転角に対応した角度だ
け回転し、第5図}よび第6図に示すエンジン中速時の
オリフイス半開状態では、傾転レバー操作が開始される
と同時にオリフイス22の開度は減少し始め、ある回転
角度以上では開度零、即ちオリフイス通過油量は零の状
態となる。これに対して第7図}よび第8図に示すエン
ジン最高速度のオリフイス全開状態では、スプール33
がある角度回転して始めてオリフイス開度は減少する。
以上のことを操作レバー12の回転角に対する車両速度
の関係で示すと、エンジン中速度では第15図に示す如
く傾転レバー倒し角度がO〜±α,の間でオリフイスは
絞られ土α1で全閉となり、エンジン最高速時では第1
4図に示す如く傾転レバー倒し角度がO〜土α2間オリ
フイスは全開、±α2を越えるとオリフイス開度は絞ら
れ始め最大倒し角度で全閉となる〇な}、エンジンの故
障により停止する車両の移動に際し、スプール33をば
ね36の力に抗して引張り油路31と32を連通すれぱ
、車両けん弓時油圧モータ2は自由に回転するので、車
両の移動は容易となる。以上説明した如く本発明にあ一
いては、油圧モータ両側の主管路を結ぶバイパス管路に
設けるオリフイス付き切換弁のオリフイス開度は可変容
量形油圧ポンプと共通の変速駆動源で駆動されるブース
ト用補助ポンプの吐出圧に比例させているので、オリフ
イス通過油量は変速駆動源の回転数に比例し、その比例
定数は押しのけ容積でポンプ傾転角に比例するから、ポ
ンプ傾転角一定の間では変速 Z駆動源の回転数と無関
係に車両はクリープ現象を生じることなく停止し、一定
の中立帯の幅が得られる。
As is well known, the displacement q is proportional to the pump tilting angle α, which means that the pump tilting angle α is constant. This means that during a certain pump tilt angle α, the amount of oil passing through the orifice bypasses the oil flow regardless of the engine and pump rotation speeds, and the vehicle stops reliably without any creep phenomenon. A constant center width is obtained at the point. Next, in FIG. 11, when the tilting lever 12 is rotated by a certain angle in one direction from the neutral position, the spool 33 integrated with the small diameter portion 39 rotates by an angle corresponding to the rotation angle of the tilting shaft 43, and the fifth When the orifice 22 is half open at medium speed as shown in Figures 1 and 6, the opening of the orifice 22 begins to decrease as soon as the tilting lever operation is started, and at a certain rotation angle or more, the opening becomes zero, that is, the orifice passes through. The oil amount becomes zero. On the other hand, when the orifice is fully open at the maximum engine speed as shown in FIGS. 7 and 8, the spool 33
The opening degree of the orifice decreases only after it is rotated by a certain angle.
Expressing the above in terms of the relationship between the rotation angle of the operating lever 12 and the vehicle speed, at medium engine speed, the orifice is narrowed when the tilting lever angle is between O and ±α, as shown in Figure 15. It is fully closed and the first position is reached at the maximum engine speed.
As shown in Figure 4, when the tilting lever tilt angle is between O and α2, the orifice is fully open, and when it exceeds ±α2, the orifice opening starts to narrow and becomes fully closed at the maximum tilt angle.The engine will stop due to engine failure. When moving the vehicle, if the spool 33 is pulled against the force of the spring 36 and the oil passages 31 and 32 are communicated, the hydraulic motor 2 rotates freely when the vehicle is being towed, making it easy to move the vehicle. As explained above, in the present invention, the opening of the orifice of the switching valve with an orifice provided in the bypass pipe connecting the main pipes on both sides of the hydraulic motor is boosted by a variable speed drive source common to the variable displacement hydraulic pump. Since the amount of oil passing through the orifice is proportional to the discharge pressure of the auxiliary pump, the amount of oil passing through the orifice is proportional to the rotation speed of the variable speed drive source, and its proportionality constant is the displacement and is proportional to the pump tilting angle. In between, the vehicle stops without any creep phenomenon regardless of the rotational speed of the Z drive source, and a constant neutral zone width is obtained.

従つて、エンジンその他の変速1駆動源で駆動される油
圧走行車両の始動時の操縦性能を格段に向上させること
ができる。また、オリフイス付Jき切換弁のスプールと
可変容量形油圧ポンプの傾転軸とを回転連動機構により
連結してオリフイス開度をポンプ傾転角に逆比例させて
いるので、ポンプ最大出力時のバイパス量が零となりバ
イパスによる車両最高速度及び効率の低下を解消でき、
Jこの種の制御弁装置を持たない例えば第1図に示す
ような回路構成の場合と同様の効果を得ることができる
。また、エンジントラブルによる停止車両の緊急避難は
オリフイス付き切換弁のスプールを引張つて油路を連通
することにより簡単に施行できる。
Therefore, it is possible to significantly improve the maneuverability at the time of starting a hydraulic vehicle driven by an engine or other single-speed variable drive source. In addition, the spool of the J-type switching valve with orifice and the tilting shaft of the variable displacement hydraulic pump are connected by a rotation interlocking mechanism to make the orifice opening degree inversely proportional to the pump tilting angle, so that when the pump is at maximum output, The amount of bypass becomes zero, eliminating the reduction in maximum vehicle speed and efficiency caused by bypass.
It is possible to obtain the same effect as in the case of a circuit configuration shown in FIG. 1, for example, which does not have this type of control valve device. In addition, emergency evacuation of stopped vehicles due to engine trouble can be easily carried out by pulling the spool of the orifice-equipped switching valve to communicate the oil path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来装置の油圧系統図、
第3図}よび第4図はそれぞれ本発明の実施例を示す油
圧系統図、第5図はオリフイス半開時のオリフイス付き
切換弁縦断面図、第6図は同側面図、第7図はオリフイ
ス全開時のオリフイス付き切換弁縦断面図、第8図は同
側面図、第9図はブースト用リリーフ弁のリリーフ量と
リリーフ圧力との関係を示す図表第10図は油圧ユニツ
トの正面図、第11図は同側面図、第12図は第1図の
油圧回路に}いてバイパス弁を欠如したときの車両速度
とポンプ傾転レバー倒し角度との関係を示す図表、第1
3図は第1図の油圧回路における車両速度とポンプ傾転
レバー倒し角度との関係を示す図表、第14図}よび第
15図はそれぞれ本発明に卦ける車両速度とポンプ傾転
レバー倒し角度との関係を示す図表である。 1・・・・・・可変容量形油圧ポンプ、2・・・・・・
油圧モータ、3,4・・・・・・主管路、5・・・・・
・ブースト用リリーフ弁、6・・・・・・ブースト用補
助ポンプ、10,11・・・・・・高圧リリーフ弁、1
2・・・・・・傾転レバー 16・・・・・・バイパス
管路、20・・・・・・ばね、21・・・・・・オリフ
イス付き切換弁、22・・・・・・オリフイス、23,
24,28・・・・・・圧力制御弁、29・・・・・・
弁本体、31,32・・・・・・油路、33・・・・・
・スプール、36・・・・・・ばね、40,42・・・
・・・プーリ、41・・・・・・無端ベルト、43・・
・・・・傾転軸、44・・・・・・バルブケーシング。
Figures 1 and 2 are hydraulic system diagrams of conventional equipment, respectively.
Figures 3 and 4 are hydraulic system diagrams showing embodiments of the present invention, Figure 5 is a vertical sectional view of the switching valve with orifice when the orifice is half open, Figure 6 is a side view of the same, and Figure 7 is the orifice. FIG. 8 is a side view of the switching valve with an orifice when fully opened; FIG. 9 is a diagram showing the relationship between the relief amount and relief pressure of the boost relief valve; FIG. 10 is a front view of the hydraulic unit; Figure 11 is a side view of the same side, and Figure 12 is a chart showing the relationship between vehicle speed and pump tilting lever angle when the bypass valve is missing in the hydraulic circuit of Figure 1.
Figure 3 is a chart showing the relationship between vehicle speed and pump tilting lever tilting angle in the hydraulic circuit of Figure 1, and Figures 14 and 15 respectively show vehicle speed and pump tilting lever tilting angle according to the present invention. This is a chart showing the relationship between 1... Variable displacement hydraulic pump, 2...
Hydraulic motor, 3, 4... Main pipe line, 5...
・Boost relief valve, 6... Boost auxiliary pump, 10, 11... High pressure relief valve, 1
2...Tilt lever 16...Bypass pipe, 20...Spring, 21...Switching valve with orifice, 22...Orifice ,23,
24, 28...pressure control valve, 29...
Valve body, 31, 32... Oil passage, 33...
・Spool, 36... Spring, 40, 42...
...Pulley, 41... Endless belt, 43...
...Tilt axis, 44...Valve casing.

Claims (1)

【特許請求の範囲】[Claims] 1 共通の変速駆動源で駆動される可変容量形油圧ポン
プとブースト用補助ポンプ、ブースト用リリーフ弁、可
変容量形油圧ポンプで駆動される油圧モータを含む静油
圧伝導装置において、油圧モータ両側の主管路を結ぶバ
イパス管路にブースト用補助ポンプの吐出圧をパイロッ
ト圧にとりオリフィス開度をパイロット圧に比例させる
ようにしたオリフィス付き切換弁とこのオリフィス付き
切換弁の前後にばね力により常時弁開となる圧力制御弁
を配設し、この圧力制御弁はオリフィス付き切換弁上流
側ではオリフィス前後の差圧力を弁開方向に作用させ、
オリフィス付き切換弁下流側ではオリフィス前後の正の
差圧力を弁閉方向に作用させるパイロット回路を備え、
さらに、オリフィス付き切換弁のオリフィス開度が可変
容量形油圧ポンプの傾転角に逆比例するようにオリフィ
ス付き切換弁のスプールと可変容量形油圧ポンプの傾転
軸とを回転連動機構で連結したことを特徴とする油圧走
行車両等の静油圧伝導装置。
1 In a hydrostatic power transmission system that includes a variable displacement hydraulic pump driven by a common variable speed drive source, a boost auxiliary pump, a boost relief valve, and a hydraulic motor driven by the variable displacement hydraulic pump, the main pipes on both sides of the hydraulic motor A switching valve with an orifice that uses the discharge pressure of the auxiliary boost pump as pilot pressure and makes the opening of the orifice proportional to the pilot pressure is installed in the bypass pipe connecting the channels, and the switching valve with the orifice is always open by spring force before and after the switching valve. On the upstream side of the switching valve with an orifice, this pressure control valve causes the differential pressure before and after the orifice to act in the valve opening direction.
The downstream side of the switching valve with an orifice is equipped with a pilot circuit that applies positive differential pressure before and after the orifice in the valve closing direction.
Furthermore, the spool of the orifice-equipped switching valve and the tilting shaft of the variable displacement hydraulic pump are connected by a rotation interlocking mechanism so that the orifice opening degree of the orifice-equipped switching valve is inversely proportional to the tilting angle of the variable displacement hydraulic pump. A hydrostatic power transmission device for a hydraulic vehicle, etc., characterized by the following.
JP52096416A 1977-08-10 1977-08-10 Hydrostatic power transmission equipment for hydraulic vehicles, etc. Expired JPS591606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52096416A JPS591606B2 (en) 1977-08-10 1977-08-10 Hydrostatic power transmission equipment for hydraulic vehicles, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52096416A JPS591606B2 (en) 1977-08-10 1977-08-10 Hydrostatic power transmission equipment for hydraulic vehicles, etc.

Publications (2)

Publication Number Publication Date
JPS5431130A JPS5431130A (en) 1979-03-07
JPS591606B2 true JPS591606B2 (en) 1984-01-13

Family

ID=14164359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52096416A Expired JPS591606B2 (en) 1977-08-10 1977-08-10 Hydrostatic power transmission equipment for hydraulic vehicles, etc.

Country Status (1)

Country Link
JP (1) JPS591606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167014U (en) * 1984-10-08 1986-05-08
JPS63121517A (en) * 1986-11-11 1988-05-25 Kanto Auto Works Ltd Ventilating device for automobile
JPH01102010U (en) * 1987-12-28 1989-07-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100083U (en) * 1982-12-24 1984-07-06 小寺 博行 window opener

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141032A (en) * 1974-04-27 1975-11-12
JPS5126452U (en) * 1974-08-17 1976-02-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141032A (en) * 1974-04-27 1975-11-12
JPS5126452U (en) * 1974-08-17 1976-02-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167014U (en) * 1984-10-08 1986-05-08
JPS63121517A (en) * 1986-11-11 1988-05-25 Kanto Auto Works Ltd Ventilating device for automobile
JPH01102010U (en) * 1987-12-28 1989-07-10

Also Published As

Publication number Publication date
JPS5431130A (en) 1979-03-07

Similar Documents

Publication Publication Date Title
JP2002531795A (en) Hydraulic emergency control device for clutch located between internal combustion engine and transmission
JPS591606B2 (en) Hydrostatic power transmission equipment for hydraulic vehicles, etc.
EP0388876B1 (en) Hydraulic transmission coupling apparatus
JP3717146B2 (en) Hydraulic oil supply device
JP2555489B2 (en) Power transmission device for four-wheel drive vehicle
JP3660543B2 (en) Capacity switching type hydraulic oil supply device
JP2001219857A (en) Hydraulic power steering device for vehicle
US4332531A (en) Variable displacement pump with torque limiting control
JPS6314230B2 (en)
JP3237457B2 (en) Flow control device in power steering device
JPS6361508B2 (en)
JP2569367Y2 (en) Flow control valve
JP2653842B2 (en) Hydraulic transmission
JPH08270789A (en) Automobile type driving controller for hydraulic variable displacement type pump
JP4009455B2 (en) Variable displacement vane pump
US2829496A (en) Servo circuit with variable back-pressure return
JP3117036B2 (en) Fluid brake device
JPS6014949Y2 (en) pump equipment
JPS6131244Y2 (en)
US2962971A (en) Power transmission
JPS588965Y2 (en) Fluid motor control circuit with means for limiting overspeed
JP2752328B2 (en) Hydraulic drive control device
JP2617998B2 (en) Continuously variable transmission control device for hydraulic motor
JP3739217B2 (en) Variable displacement vane pump
US2829495A (en) Servo circuit with variable backpressure return