JPS59160524A - Continuous atomizing method of cationic surface active agent - Google Patents

Continuous atomizing method of cationic surface active agent

Info

Publication number
JPS59160524A
JPS59160524A JP3400383A JP3400383A JPS59160524A JP S59160524 A JPS59160524 A JP S59160524A JP 3400383 A JP3400383 A JP 3400383A JP 3400383 A JP3400383 A JP 3400383A JP S59160524 A JPS59160524 A JP S59160524A
Authority
JP
Japan
Prior art keywords
valve
water
active agent
surface active
cationic surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3400383A
Other languages
Japanese (ja)
Inventor
Norimichi Suzuki
鈴木 規道
Motosato Kishita
樹下 基学
Shoji Konishi
小西 詔二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP3400383A priority Critical patent/JPS59160524A/en
Publication of JPS59160524A publication Critical patent/JPS59160524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shear and atomize a cationic surface active agent by providing a valve which forms a very narrow slit by water pressure in a piping in which water flows and supplying continuously the cationec surface active agent from a nozzle provided in porximity on the upper stream side of the valve into the water. CONSTITUTION:A valve 6 which forms a very narrow slit by water pressure is disposed in a piping 1 in which water flows, and a cationic surface active agent is continuously supplied from a nozzle 2 provided in proximity on the upper stream side of said valve 6 into the water. More specifically, the cationic surface active agent is supplied in the position near the slit valve and therefore the cationic surface active agent contacts or mixes with the water prior to a dispersion treatment and forms a liquid crystal structure, by which the formation of viscous liquid is avoided as far as possible and since the uniform shearing is made possible by the valve 6, the atomized material having the grain size distribution smaller than that by a stirring blade is obtd.

Description

【発明の詳細な説明】 本発明は、カチオン界面活性剤を水中に連続的に供給し
て均一な微粒子を得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining uniform fine particles by continuously supplying a cationic surfactant into water.

一般に、カチオン界面活性剤は衣類の柔軟効果に優れ、
その中でも特に、第4級アンモニウム塩であるジオクタ
デシルジメチルアンモニウムクロリド及びこれを主成分
とするジ牛脂ジメチルアンモコ・ウムクロリドなどが衣
類用柔軟剤として広く用いられている。これら第4級ア
ンモニウム塩以外にも で表わされる7オス7オニウム塩や、一般式%式% で表わされるアミド・アミン塩等のカチオン界面活性剤
も柔軟効果が優れていることが知られている。
In general, cationic surfactants have excellent softening effects on clothing;
Among these, dioctadecyldimethylammonium chloride, which is a quaternary ammonium salt, and dimethylammonium chloride, which contains dioctadecyldimethylammonium chloride as a main component, are particularly widely used as fabric softeners. In addition to these quaternary ammonium salts, cationic surfactants such as 7-os, 7-onium salts represented by % and amide/amine salts represented by the general formula % are also known to have excellent softening effects. .

これらの界面活性剤は、疎水性の長鎖アルキル基をもつ
ため、衣類への吸着性“に優れているカ;、その疎水□
性のために多くは水に対して難溶性であシ、そこで、柔
軟剤として使用し易くするためζ二、それらの界面活性
剤の殆んどは水中に分散し、さらにゲル化防止剤として
非イオン界面活性剤あるいは有機塩、無機塩などを添加
し、低温安定性向上剤としてアルコール類等を加えて粘
度50〜300cp i:調整している。
These surfactants have hydrophobic long-chain alkyl groups, so they have excellent adsorption to clothing;
Due to their nature, many of these surfactants are poorly soluble in water, so in order to make them easier to use as softeners, most of these surfactants are dispersed in water and further added as anti-gelling agents. The viscosity is adjusted to 50 to 300 cpi by adding nonionic surfactants, organic salts, inorganic salts, etc., and alcohols as low temperature stability improvers.

このようなカチオン界面活性剤による衣類の柔軟効果は
、その界面活性剤の衣類等への吸着量に比例したものと
して得られ、またそのカチオン界面活性剤の衣類への吸
着量はその粒径が小さい程多くなシ、従って微細な粒子
は柔軟効果において優れていると結論することができる
The softening effect of cationic surfactants on clothing is proportional to the amount of surfactant adsorbed onto clothing, and the amount of cationic surfactant adsorbed onto clothing depends on its particle size. It can be concluded that the smaller the number, the more particles, and therefore the finer particles are better in the softening effect.

しかも、その場合、カチオン界面活性剤の粒子径が微細
且つ均一であると、吸着量は更に増大し、柔軟効果もよ
シ高くなる。
Moreover, in that case, if the particle size of the cationic surfactant is fine and uniform, the adsorption amount will further increase and the softening effect will be even higher.

しかるに、カチオン界面活性剤の多くは前記の如く水に
対して難溶性を示し、しかも、カチオン界面活性剤が水
と接触すると、その表面が液晶構造となるため表面の粘
性が増加して粘稠な液体とナル、微粒化が著しく困難に
なる。
However, as mentioned above, many cationic surfactants are poorly soluble in water, and when a cationic surfactant comes into contact with water, its surface becomes a liquid crystal structure, increasing its viscosity and becoming viscous. liquid and null, atomization becomes extremely difficult.

そこで、これらの問題を解決するために、従来よ)種々
の技術が提案されている。例えば、特開昭57−579
7号及び特開昭57−102226号においては、カチ
オン界面活性剤を攪拌翼の近傍に供給することによシ微
粒化している。しかしながら、この方法では、カチオン
界面活性剤を回転する翼で分散するため、翼の位置によ
って剪断力の分布が生じ、均一な分散が困難となって均
一な粘度分布を有する微粒化は困難である。従って、目
的とする柔軟効果を得るためには、カチオン界面活性剤
の添加量を増大することで対応せざるを得ない。
In order to solve these problems, various techniques have been proposed in the past. For example, JP-A-57-579
No. 7 and JP-A No. 57-102226, the cationic surfactant is atomized by supplying it near the stirring blade. However, in this method, the cationic surfactant is dispersed using rotating blades, which causes a distribution of shear force depending on the position of the blade, making uniform dispersion difficult and making it difficult to atomize particles with a uniform viscosity distribution. . Therefore, in order to obtain the desired softening effect, it is necessary to increase the amount of cationic surfactant added.

本発明は、これらの問題を解決すべく、更に鋭意研究し
た結果、微粒化部分の機構と・して、剪断力に分゛布を
もつ従来の回転具による微粒化を改良し、弁によシ一層
均−な剪断力を与えることのできる微粒化方法を見出し
、本発明を完成した。
In order to solve these problems, as a result of further intensive research, the present invention improves the atomization using a conventional rotary tool that has a distribution of shear force as the mechanism of the atomization part, and uses a valve to improve the atomization mechanism. The present invention was completed by discovering a method of atomization that can provide a more uniform shearing force.

即ち、本発明は、水が流通する配管内に水圧により微小
のスリットを形成する弁を配設し、該弁の上流側に近接
させて設けたノズルから水中にカチオン界面活性剤を連
続的に供給して、上記弁によシ剪断微粒化することを特
徴とするものである。
That is, in the present invention, a valve that forms a minute slit using water pressure is installed in a pipe through which water flows, and a cationic surfactant is continuously applied into the water from a nozzle installed close to the upstream side of the valve. It is characterized in that it is supplied and sheared and atomized by the above-mentioned valve.

以下、本発明の方法について図面を参照しながら更に詳
細に説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明を実施するための分散装置の一例を示し
たもので、熱交換器(図示せず)等によ、って予め分散
温度に昇温した水を矢印Aの方向へ流通させた配管1内
には、カチオン界面活性剤を供給するだめのノズル2の
供給口3を下流に向けて開口させ、配管1内を流れる水
に該供給口3を通じてカチオン界面活性剤を連続的に供
給する。
Figure 1 shows an example of a dispersion device for carrying out the present invention, in which water that has been heated to a dispersion temperature in advance by a heat exchanger (not shown) or the like is distributed in the direction of arrow A. In the pipe 1, a supply port 3 of a nozzle 2 for supplying a cationic surfactant is opened toward downstream, and the cationic surfactant is continuously supplied to the water flowing in the pipe 1 through the supply port 3. supply to.

上記カチオン界面活性剤の供給口3の下流側でそれに近
接する位置には、弁座5と台形状のシール部6αを備え
たスリット弁6とからなる静止型混合器4を配設し、こ
の混合器4は、弁座5の下流側にスリット弁6を配置し
て該スリット弁6とばね座7との間にそれを閉弁方向に
付勢するばね8を介装することによル、水圧で上記スリ
ット弁6が自動的に開弁して弁座5との間に微小のスリ
ットが開口するように構成したもので、水に添加された
カチオン界面活性剤が水圧によ多開口した上記スリット
を通る際、急激な速度変化及び衝突によシ剪断されて均
一に微粒化され、得られた分散水溶液が流出口9に流出
する。
A stationary mixer 4 consisting of a valve seat 5 and a slit valve 6 having a trapezoidal seal portion 6α is disposed downstream of and close to the cationic surfactant supply port 3. The mixer 4 is constructed by arranging a slit valve 6 on the downstream side of a valve seat 5 and interposing a spring 8 between the slit valve 6 and a spring seat 7 to bias it in the valve closing direction. The slit valve 6 is automatically opened by water pressure to open a minute slit between it and the valve seat 5, and the cationic surfactant added to the water opens the slit valve 6 automatically due to the water pressure. When passing through the slit, the particles are sheared due to rapid speed changes and collisions, and are uniformly atomized, and the resulting dispersion aqueous solution flows out to the outlet 9.

ζこで、本発明の好適な条件を説明すると、上記供給口
3とスリット弁6の間の距離は、カチオン界面活性剤が
水と接触して”からスリットによって分散されるまでの
時間、及びその間の流れの乱れによる混合度合によシ支
配されるが、通常は弁座5の直径dの100倍以下とす
るのが・(よく、好ましくは50 d以下、特に好まし
くは30d−0,1dの範囲である。一方、スリット弁
6の開口圧としてはb 2kIVm2以上に設定するの
がよく、好ましくは10 kt/aLz〜600 kV
cIL2の範囲である。
ζ Now, to explain the preferred conditions of the present invention, the distance between the supply port 3 and the slit valve 6 is determined by the time from when the cationic surfactant comes into contact with water until it is dispersed by the slits, and Although it is controlled by the degree of mixing caused by the turbulence of the flow between them, it is usually 100 times or less the diameter d of the valve seat 5 (well, preferably 50 d or less, particularly preferably 30 d-0.1 d). On the other hand, the opening pressure of the slit valve 6 is preferably set to 2 kIVm2 or more, preferably 10 kt/aLz to 600 kV.
cIL2 range.

このように、本発明の方法においては、カチオン界面活
性剤をスリット弁に近い位置において供給するため、分
散処理を行う前にカチオン界面活性剤が水と接触ないし
は混合して液晶構造をとることによシ粘稠な液体になる
のを可及的に避けることができ、また、スリット弁によ
シ均一な剪断が可能となるため、攪拌翼による分散より
も粒度分布の小さい微粒化物が得られ、その結果、衣類
に対する柔軟効果も、従来のものよシも少量で優れたも
のとすることができる。
As described above, in the method of the present invention, since the cationic surfactant is supplied at a position close to the slit valve, the cationic surfactant comes into contact with or mixes with water to form a liquid crystal structure before the dispersion treatment. It is possible to avoid becoming a very viscous liquid as much as possible, and the slit valve allows for uniform shearing, so it is possible to obtain an atomized product with a smaller particle size distribution than when dispersing with stirring blades. As a result, the softening effect on clothing can be improved even with a smaller amount than conventional ones.

第2図及び第3図はそれぞれスリット弁6の異種構造例
を示すもので、第2図においては、円錐状のシール部6
hを備えたスリット弁6を使用し、また、第3図におい
ては、平板状のスリット弁6を使用している。
2 and 3 respectively show examples of different structures of the slit valve 6. In FIG. 2, a conical seal portion 6 is shown.
In FIG. 3, a flat plate-shaped slit valve 6 is used.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

〔実施例1〕 第1図に示した装置において、25m屏φの配管1内に
静止型混合器4のスI) y )弁6 (d : 10
 mm)よpad離してノズル2の供給口3を開口させ
、予めゲル化防止剤であるポリオキシエチレンアルキル
フェニルエーテル(0,5%)、及び低温安定化剤とし
てのエチレングリコール(5%)を含む父℃に加熱され
た温水と、ω℃に加熱されたジ牛脂ジメチルアンモニウ
ムクロリド(5%)を、スリット弁の開口圧を10kV
ILzに設定した静止型混合器内に各々15 k17.
2の圧力で連続的に供給し、52℃のカチオン界面活性
剤分散液を毎時5001qPの割合で得た。その後分散
液を放置“し、怒℃の温度条件で微粒子粒度分布測定装
置を用いて粒度分布を測定した結果を第5図に実線で示
す。
[Example 1] In the apparatus shown in FIG. 1, a static mixer 4 (I) y) valve 6 (d: 10
mm), the supply port 3 of the nozzle 2 is opened, and polyoxyethylene alkyl phenyl ether (0.5%), which is an anti-gelling agent, and ethylene glycol (5%), which is a low-temperature stabilizer, are added in advance. The opening pressure of the slit valve was set to 10 kV.
15 k17. each in a static mixer set at ILz.
The cationic surfactant dispersion was supplied continuously at a pressure of 2° C. to obtain a cationic surfactant dispersion at a rate of 5001 qP/hour. Thereafter, the dispersion was allowed to stand, and the particle size distribution was measured using a particle size distribution measuring device at a temperature of 30° C. The results are shown by the solid line in FIG.

また、第1図に示す装置において、静止型混合器40代
シに第4図に示すようなプロペラ型攪拌翼10を設置し
、その他の条件は上記実施例と同様にして、毎分s 、
 ooo回転でプロペラ型攪拌翼10を回転させること
によシ52℃のカチオン界面活性剤分散液を毎時500
 ktの割合で得た。この分散液についても、上記実施
例と同様な条件で粒度分布を測定した結果を第5図に点
線で示す。
In addition, in the apparatus shown in FIG. 1, a propeller-type stirring blade 10 as shown in FIG.
By rotating the propeller-type stirring blade 10 at ooo rotation, the cationic surfactant dispersion at 52°C is heated at 500 rpm.
obtained at the rate of kt. The particle size distribution of this dispersion was also measured under the same conditions as in the above example, and the results are shown in FIG. 5 by dotted lines.

これらの結果から明らかなように、静止型混合器で得ら
れた微粒子の粒度分布の方が、プロペラ型攪拌翼で得ら
れたものの粒度分布よシ均一であることが確認された。
As is clear from these results, it was confirmed that the particle size distribution of the fine particles obtained using the static mixer was more uniform than that obtained using the propeller type stirring blade.

〔実施例2〕 第1図に示した装置において、50mmφの配管1内に
静止型混合器4のスリット弁6(d:20rILrIL
)よシ0.25 d離してノズル2の供給口3を開口さ
せ、予めゲル化防止剤であるポリオキシエチレンアルキ
ルフェニルエーテル(O,S%)、及ヒ低温安定化剤と
してエチレングリコール(5%)を含む30℃に加熱さ
れた温水C1ω℃に加熱されたジ牛脂ジメチルアンモニ
ウムクロ2イド(5%)をスリット弁6の開口圧20 
kVm2に設定した静止型混合器4内千各々251qI
/IL2の圧力で連続的に供給し、の割合で得た。その
後分散液を放置し、25℃の温度条件で微粒子粒度分布
測定装置を用いて、粒度分布を測定した結果を第6図に
示す。この場合にも、実施例1と同様に粒度分布の均一
なものが得られた。
[Example 2] In the apparatus shown in FIG.
), the supply port 3 of the nozzle 2 was opened at a distance of 0.25 d, and polyoxyethylene alkyl phenyl ether (O, S%) as a gelling inhibitor and ethylene glycol (5%) as a low-temperature stabilizer were added in advance. The opening pressure of the slit valve 6 is 20%.
251qI each in 4 static mixers set at kVm2
was continuously supplied at a pressure of /IL2, and obtained at a ratio of . Thereafter, the dispersion was left to stand, and the particle size distribution was measured using a particle size distribution measuring device at a temperature of 25° C. The results are shown in FIG. In this case, as in Example 1, a uniform particle size distribution was obtained.

〔実施例6〕 実施例1と同様の装置において、ジ牛脂ジメチルアンモ
ニウムクロリドの濃度のみを4.5%、4%と変化させ
て、柔軟性の効果をプロペラ型攪拌翼で得られたものと
比較した結果11、静止型混合器で得られたジ牛脂ジメ
チルアンモニウムクロリド4.5%のものは、プロペ2
型攪拌翼で得られたジ牛脂ジメチルアンモニウムクロリ
ド5%のもbと全く同等の柔軟性を示した。
[Example 6] In the same apparatus as in Example 1, only the concentration of dimethylammonium chloride was changed to 4.5% and 4%, and the flexibility effect was compared to that obtained with a propeller-type stirring blade. As a result of comparison 11, the 4.5% dimethylammonium chloride dimethylammonium chloride obtained with the static mixer was the same as Prope 2.
The 5% dimethylammonium chloride dimethylammonium chloride obtained with a type stirring blade exhibited exactly the same flexibility as b.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施1=使用される装置の断面図、第
2図及び第6図は静止型混合器の異種構造す断面図、第
5図及び第6図は実験結果を示す説明図である。 1・0配管、     2・・・ノズル、60・スリッ
ト弁。 特許出願人 ライオン株式会社 第 1 日 第2図  第30 第 牛 し m−==) 第 5 図 搦 Zに6 図
Fig. 1 is a sectional view of the apparatus used in the first embodiment of the present invention, Figs. 2 and 6 are sectional views of different structures of a static mixer, and Figs. 5 and 6 are explanations showing experimental results. It is a diagram. 1.0 piping, 2... nozzle, 60. slit valve. Patent applicant Lion Corporation Day 1 Figure 2 Figure 30 Figure 5 Figure Z and Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、 水が流通する配管内に水圧によシ微小のスリット
を形成する弁を配設し、該弁の上流側に近接させて設け
たノズルから水中にカチオン界面活性剤を連続的に供給
して、上記弁によシ剪断微粒化することを特徴とするカ
チオン界面活性剤の連続微粒化方法。
1. A valve that forms a minute slit using water pressure is installed in a pipe through which water flows, and a cationic surfactant is continuously supplied into the water from a nozzle installed close to the upstream side of the valve. A method for continuous atomization of a cationic surfactant, characterized by carrying out shear atomization using the above-mentioned valve.
JP3400383A 1983-03-02 1983-03-02 Continuous atomizing method of cationic surface active agent Pending JPS59160524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3400383A JPS59160524A (en) 1983-03-02 1983-03-02 Continuous atomizing method of cationic surface active agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3400383A JPS59160524A (en) 1983-03-02 1983-03-02 Continuous atomizing method of cationic surface active agent

Publications (1)

Publication Number Publication Date
JPS59160524A true JPS59160524A (en) 1984-09-11

Family

ID=12402262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3400383A Pending JPS59160524A (en) 1983-03-02 1983-03-02 Continuous atomizing method of cationic surface active agent

Country Status (1)

Country Link
JP (1) JPS59160524A (en)

Similar Documents

Publication Publication Date Title
JP2702956B2 (en) Bitumen emulsion
JP2003511522A5 (en)
JPH04187227A (en) Emulsifying method and device
Broniarz-Press et al. The atomization of water–oil emulsions
JP4335493B2 (en) Method for producing emulsified dispersion
JP2003103152A (en) Method and device for mixing liquid or solution
JPS621771B2 (en)
JPS59160524A (en) Continuous atomizing method of cationic surface active agent
US5188868A (en) Method for coating surfaces of a powdered material by directing coating material into coanda spiral flow of powdered material
JPS63274097A (en) Method and apparatus for spouting flow of fluid material to flow of high temperature gas
JPS5936732B2 (en) Manufacturing method of photographic material
CA2390107C (en) Storage-stable aerated gel composition and a process for producing it
US1992611A (en) Method of treating sulphur
US4871373A (en) Continuous preparation of solutions of low viscosity solvents and high viscosity, pasty products
JPS5870827A (en) Method and apparatus for forming nodule of spreadable material
US2536340A (en) Method and apparatus for making confectionery
US1790967A (en) auerbach
Baumgardner Asphalt emulsion manufacturing today and tomorrow
US3810765A (en) Process for preparing a cold-water soluble fat-containing powdered milk product
US3241908A (en) Monomolecular film formers for water surfaces
US6752843B1 (en) Asphalt emulsion producing and spraying process
JPS6033527B2 (en) Continuous atomization method for cationic surfactants
JP3318001B2 (en) Continuous production method of fine cellulose-based solidified particles
JP3118055B2 (en) Fine particle coating method and apparatus and spray nozzle
US1973274A (en) Method of mixing paint or the like