JPS59159949A - Electrical contact material - Google Patents

Electrical contact material

Info

Publication number
JPS59159949A
JPS59159949A JP58035072A JP3507283A JPS59159949A JP S59159949 A JPS59159949 A JP S59159949A JP 58035072 A JP58035072 A JP 58035072A JP 3507283 A JP3507283 A JP 3507283A JP S59159949 A JPS59159949 A JP S59159949A
Authority
JP
Japan
Prior art keywords
oxide
silver
weight
electrical contact
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58035072A
Other languages
Japanese (ja)
Other versions
JPS6261659B2 (en
Inventor
Shigeki Ochi
越智 茂樹
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58035072A priority Critical patent/JPS59159949A/en
Publication of JPS59159949A publication Critical patent/JPS59159949A/en
Publication of JPS6261659B2 publication Critical patent/JPS6261659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain an electrical contact material consisting essentially of silver, zinc oxide and tin oxide and having superior resistance to welding, arc and consumption as well as superior sinterability by mixing Ag with specified amounts of ZnO, SnO2, LiO2 and V2O5 and/or B2O3 and by sintering the mixture. CONSTITUTION:Ag powder is mixed with ZnO, SnO2, LiO2 and V2O5 and/or B2O3 so that 5-30wt% Zn, 0.2-5wt% Sn, 0.01-1.0wt% Li and 0.01-2.0wt% in total of V and/or B are contained. The mixture is molded, precalcined in the air, and sintered at 880-900 deg.C in vacuum. The sintered body is subjected to hot hydrostatic press working to obtain an electrical contact contg. uniformly and finely dispersed oxides and having superior characteristics.

Description

【発明の詳細な説明】 イ、技術分野 本発明は銀酸化物系接点材料、特(こ銀−酸化亜鉛一酸
化錫系電気接点材料(こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Technical Field The present invention relates to silver oxide-based contact materials, particularly (silver-zinc oxide and tin monoxide-based electrical contact materials).

口、従来技術とその問題点 接点材料としての要件は、■耐溶着性、■耐アーク性、
耐消耗性、■低接触抵抗があげられる。
Conventional technology and its problems Requirements for contact materials include ■welding resistance, ■arc resistance,
Abrasion resistance, ■Low contact resistance.

銀−酸化亜鉛系接点材料は接触抵抗特性にすぐれた接点
であるが、耐溶着性、耐消耗性など番こ難点があるため
電磁開閉器、ノーヒユーズ・ブレーカなどの中負荷用接
点材料として十分満足できる特性を得難い問題があった
dこの銀−酸化亜鉛系接点材料は内部酸化法、粉末法い
ずれでも製造可能である。内部酸化法)こよるものは銀
基地中に含有できる酸化亜鉛量は1気圧02雰囲気で内
部酸化する場合金属重量%Qこして約8重量%が限界で
ある。耐消耗、耐溶着性を向上するため、他の第6元素
を添加するとこの限界はさら(こ減少する。このため、
内部酸化法では耐消耗、耐溶着性を十分ニ改善・向上す
るに必要な酸化物及び酸化物量を銀基地中に含有するこ
とができない。又酸化物粒子が粗く、かつその分布も不
均一であるため耐溶着性、耐消耗性も劣る。
Silver-zinc oxide contact materials have excellent contact resistance characteristics, but have drawbacks such as welding resistance and wear resistance, so they are fully satisfactory as contact materials for medium loads such as electromagnetic switches and no-fuse breakers. This silver-zinc oxide contact material can be manufactured by either the internal oxidation method or the powder method. Internal oxidation method) The maximum amount of zinc oxide that can be contained in the silver base is about 8% by weight (metal weight %Q) when internal oxidation is carried out in an atmosphere of 1 atm. If other sixth elements are added to improve wear resistance and welding resistance, this limit will further decrease.
In the internal oxidation method, it is not possible to contain the oxide and the amount of oxide necessary to sufficiently improve the wear resistance and welding resistance in the silver base. Furthermore, since the oxide particles are coarse and their distribution is non-uniform, the welding resistance and abrasion resistance are also poor.

一方粉末法(こまって製造する場合(こは、内部酸化法
(こよる場合に発生する制約、合金組成の組合せ、量な
どは比較的自由であるが、焼結性が悪い。
On the other hand, when manufacturing using the powder method (in this case, the internal oxidation method), the combination of alloy compositions, amounts, etc. are relatively free, but the sinterability is poor.

すなわち焼結のみをこよってほぼ理論密度まで達成する
ことが難しく、空孔が残存する。この空孔残存や銀−酸
化物界面の不整合等により内部酸化製法によるものと比
較して消耗特性が劣り、また接点間の絶縁特性も一般に
劣っている。
That is, it is difficult to achieve almost the theoretical density by sintering alone, and pores remain. Due to the remaining vacancies and the mismatch at the silver-oxide interface, the wear characteristics are inferior to those produced by internal oxidation, and the insulation characteristics between contacts are also generally inferior.

このような理由から銀−酸化亜鉛系電気接点材料は現在
、小〜大負荷用接点材料として法尻に使用されていない
For these reasons, silver-zinc oxide based electrical contact materials are not currently used as contact materials for small to large loads.

ハ1発明の開示 本発明は銀−酸化亜鉛一酸化錫合金の性能向上を目的と
してなされたものである。本発明材は、粉末法)こよっ
て作られる銀−酸化亜鉛合金(こ関するものであり、銀
−酸化亜鉛合金に酸化錫を添加することによって耐溶着
性・耐アーク性・耐消耗性を著しく向上さすとともをこ
、さら(こ酸化リチウム・酸化バナジウム・酸化ボロン
を添加することQこよって銀−酸化亜鉛一酸化錫合金の
焼結性を改善した電気接点材料を提供するものである。
C.1 Disclosure of the Invention The present invention has been made for the purpose of improving the performance of a silver-zinc oxide tin monoxide alloy. The material of the present invention is a silver-zinc oxide alloy made by powder method, and by adding tin oxide to the silver-zinc oxide alloy, it has significantly improved welding resistance, arc resistance, and abrasion resistance. By adding lithium oxide, vanadium oxide, and boron oxide, the present invention provides an electrical contact material in which the sinterability of the silver-zinc oxide tin monoxide alloy is improved.

本発明は酸化亜鉛、酸化錫、酸化リチウム、および酸化
バナジウムと酸化ボロンのいずれか一方もしくは両方、
−残部銀からなる材料で−F記酸化物の金属割合が亜鉛
5〜60重量%錫0.2〜5重量%、リチウム0.01
〜1.0重量%、バナジウム・ボロンのいずれか一方も
しくは両方0.01〜2.0重量%であり、かつ銀基中
(こ酸化物が均一分散した組織をもつことを特徴とする
電気接点材料である。以下、本発明Qこついて詳細(こ
説明する。銀−酸化亜鉛合金に含有される酸化亜鉛は酸
化カドミウムと同じく比較的低温で昇華、揮発しやすい
ので接点開閉後接点表層(こ凝集しくこくい。そのため
低接触抵抗特性Qこ優れ通電性が良好である。しかしな
がら耐溶着性、耐アーク性は銀−酸化カドミウム合金、
銀−酸化錫合金と比較すると劣る。銀−酸化亜鉛一酸化
錫合金は酸化錫を加えることによって酸化亜鉛と酸化錫
が反応してZn25nQ4なる複合酸化物を生成する。
The present invention provides zinc oxide, tin oxide, lithium oxide, and either or both of vanadium oxide and boron oxide,
-Material with balance consisting of silver -The metal proportion of the F oxide is 5 to 60% by weight of zinc, 0.2 to 5% by weight of tin, and 0.01% of lithium.
~1.0% by weight, one or both of vanadium and boron 0.01 to 2.0% by weight, and an electrical contact characterized by having a structure in which sulfur oxide is uniformly dispersed in the silver base. The details of the present invention will be explained below. Like cadmium oxide, zinc oxide contained in the silver-zinc oxide alloy sublimates and evaporates easily at relatively low temperatures, so the surface layer of the contact (this material) is It is cohesive and thick. Therefore, it has low contact resistance characteristics Q and good conductivity. However, the welding resistance and arc resistance are better than silver-cadmium oxide alloy,
Inferior to silver-tin oxide alloy. When tin oxide is added to the silver-zinc oxide tin monoxide alloy, zinc oxide and tin oxide react to form a composite oxide called Zn25nQ4.

酸化錫はZn2SnO4なる化学量組成により酸化亜鉛
含有量が多い場合、多量(こ3有される酸化亜鉛と反応
して複合酸化物Zn2SnO4を生成し酸化錫はほとん
ど残らない。Zn2SnO4はZnOよりも熱的安定性
があるため耐消耗性、耐アーク性、耐溶着性を改善する
ものと考えられる。この場合、焼結特性をより改善する
ために予めZnOとSnO2を混合焼成してつくったZ
n2SnO4とZnOの混合粉末を銀粉へ添加してもよ
い。
Tin oxide has a stoichiometric composition of Zn2SnO4, so when the zinc oxide content is high, it reacts with a large amount of zinc oxide to form a composite oxide Zn2SnO4, leaving almost no tin oxide. It is thought that this improves abrasion resistance, arc resistance, and welding resistance because of its physical stability.
A mixed powder of n2SnO4 and ZnO may be added to the silver powder.

酸化リチウムは複合酸化物Zn2SnO4や酸化亜鉛と
反応し焼結温度(880°C〜920°C月こお(1て
酸化亜鉛の蒸発損失を防止して焼結。を促進する。
Lithium oxide reacts with the composite oxide Zn2SnO4 and zinc oxide to promote sintering at a sintering temperature of 880°C to 920°C (1) to prevent evaporation loss of zinc oxide and promote sintering.

また酸化リチウムは焼結時酸化亜鉛粒子を成長させ、そ
の形状を球状化して酸化物と銀との接触境界面を改善す
る。このため、合金の硬度は低下するが、冷間圧延性な
どの加工性は向上し、耐消耗性、耐アーク性は改善せら
れるものと考えられる。
In addition, lithium oxide causes zinc oxide particles to grow during sintering, making the shape spherical and improving the contact interface between the oxide and silver. For this reason, although the hardness of the alloy decreases, it is thought that workability such as cold rolling properties is improved, and wear resistance and arc resistance are improved.

リチウムの添加は炭酸リチウムなどの様(こ粉末状でも
又硝酸リチウム水溶液のように混合しやすし・よう(こ
適当な溶剤をこ溶して液状として加えてもよい。酸化バ
ナジウム、酸化ボロンは700°C以−りの焼結温度で
は複合酸化物Zn25n04と反応し、溶融v205・
B2O3ヘノZn2SnO4の溶解、析出、物質移動の
促進により、焼結特性を著しく改善するものである。以
上、詳述したようQこ酸化リチウム、酸化バナジウム、
酸化ボロンは焼結を促進する効果があり、酸化リチウム
は主4こ酸化亜鉛の焼結性を向上し、また酸化バナジウ
ム、酸化ボロン番よ複合酸化物Zn2SnO4と反応す
る。
Lithium can be added in the form of powder, such as lithium carbonate, or in a liquid form, such as an aqueous solution of lithium nitrate. At sintering temperatures above °C, it reacts with the composite oxide Zn25n04, resulting in molten v205.
By promoting the dissolution, precipitation, and mass transfer of B2O3henoZn2SnO4, the sintering properties are significantly improved. As detailed above, Q lithium oxide, vanadium oxide,
Boron oxide has the effect of promoting sintering, and lithium oxide mainly improves the sinterability of zinc oxide, and also reacts with vanadium oxide, boron oxide, and composite oxide Zn2SnO4.

酸化リチウムはZn25nO+とも反応して焼結促進を
行なうが、V2O5やB2O5&こ比較してその効果力
;すくない。酸化リチウム、酸化ノくナジウム、酸イヒ
ボロンを添加することで焼結を促進するため(こ、焼結
体の密度を向上するととも(こ、均一(こ酸化物を分散
した焼結体を得ることができる。なお本発明Qこおいて
合金元素の含有量を−り記範囲(こ限定した理由は次の
通りである。酸化非錯は金属重量%で一5重量%以下で
は耐溶着性を改善する効果力;すく □なく、また60
重量%を越えると耐消耗性力;悪イヒし、接触抵抗も増
大して接点材料として好ましくないからである。酸化錫
ぼ金属重量%で0.2重量%以下では酸化亜鉛と反応し
て生成する複合酸化物Zn25nO+の量がすくなく耐
アーク性、耐消耗性、耐溶着性の改善効果が小さい。ま
た5重量%以上になると接点材料の加工性が悪くなると
ともをこ接触抵抗の増加が顕著(こなってくる。酸化1
ノチウムは金属重量%で0.01重量%未満では焼結性
を改善される効果がすくない。リチウムは酸化リチウム
の形で存在するとすれば、吸湿性が甚しいので大気中か
ら水分を吸い、接点材料として好ましくない。又リチウ
ムは低い仕事関数の物質であるため、容易Qこ電子を放
出する。このため均一(こ接点表面Qこ分布していると
平均的Oこ接点が消耗するため、かえって耐消耗性は改
善されるが、多すぎると消耗は促進される。特に明確に
限定できないが、10重量%を越えると、接点の吸湿と
消耗が増大してくる。酸化バナジウム・酸化ボロンのい
ずれか一方もしくは両方は、金属重量%で0.01〜2
0口重量%含有していることが必要である。0.01重
量%未満では、焼結性を改善する効果が不充分であり、
2.0重量%を越えると酸化物の凝集・粗大化が顕著番
こなってくる。以上ρよう(こ本発明の電気接点材料は
酸化亜鉛・複合酸化物zn2SnO4を球状化して銀基
中Qこ均一かつ微細(こ分散しているので耐溶着性、耐
アーク性、耐消性(こおいてすぐれ、しかも加工性(こ
富んでいる。次に本発明の実施例(3ついて説明する。
Lithium oxide also reacts with Zn25nO+ to promote sintering, but its effectiveness is less compared to V2O5 and B2O5&. By adding lithium oxide, sodium oxide, and boron oxide, it is possible to accelerate sintering (to improve the density of the sintered body) and to obtain a sintered body in which the oxides are uniformly dispersed. In the present invention Q, the content of alloying elements is limited to the specified range (the reason for this limitation is as follows.If the oxidized non-complex is less than 15% by weight of the metal, the welding resistance will decrease. Effectiveness to improve; □Naku, again 60
This is because if it exceeds % by weight, the abrasion resistance deteriorates and the contact resistance increases, making it undesirable as a contact material. When the tin oxide metal weight percentage is 0.2% by weight or less, the amount of the composite oxide Zn25nO+ produced by reaction with zinc oxide is small, and the effect of improving arc resistance, wear resistance, and welding resistance is small. In addition, when the amount exceeds 5% by weight, the workability of the contact material deteriorates and the contact resistance increases significantly.
If the amount of notium is less than 0.01% by weight of the metal, the effect of improving sinterability will be small. If lithium were to exist in the form of lithium oxide, it would be highly hygroscopic and would absorb moisture from the atmosphere, making it undesirable as a contact material. Also, since lithium is a substance with a low work function, it easily releases Q electrons. For this reason, if the contact surface is uniformly distributed, the average contact will be worn out, and the wear resistance will be improved, but if there is too much, the wear will be accelerated. Although it cannot be specifically defined, If the amount exceeds 10% by weight, moisture absorption and wear and tear of the contacts will increase.Vanadium oxide and/or boron oxide should be contained in a metal weight% of 0.01 to 2.
It is necessary to contain 0% by weight. If it is less than 0.01% by weight, the effect of improving sinterability is insufficient,
When the amount exceeds 2.0% by weight, the oxides tend to aggregate and become coarse. As mentioned above, the electrical contact material of the present invention is made by spheroidizing the zinc oxide/composite oxide zn2SnO4 and uniformly and finely disperses the Q in the silver base. In addition, it has excellent processability.Next, three embodiments of the present invention will be described.

実施例1 電解Ag粉、市販の酸化亜鉛、酸化錫、酸化ノくナジウ
ムを81 :15:3:1の重量比で合計500g配合
した。これをボールミル中でI Q hr混合後、硝酸
リチウム水溶液へ浸漬処理すること(こよって酸化リチ
ウムを換算して0.2重量%を加λた。この粉末を2t
/Crfで型押、空気中Qこお(・て550°Cで30
分間予備焼結した。次(こ真空10 ” Torrで8
80℃〜900℃で1時間焼結した後、850’CX 
10. OMPa x 2時間の熱間静水圧加工をおこ
なって接点材料を得た。
Example 1 A total of 500 g of electrolytic Ag powder, commercially available zinc oxide, tin oxide, and sodium oxide were mixed in a weight ratio of 81:15:3:1. After mixing this powder in a ball mill for IQ hr, it was immersed in a lithium nitrate aqueous solution (thus, 0.2% by weight was added in terms of lithium oxide).
Embossed with /Crf, Q-cooled in air (・30 at 550°C)
Pre-sintered for minutes. Next (vacuum 10” Torr at 8
After sintering at 80℃~900℃ for 1 hour, 850'CX
10. A contact material was obtained by hot isostatic pressing at OMPa x 2 hours.

実施例2 市販の酸化亜鉛10’Og・酸化錫25gを混合し、1
600℃で2時間予備焼成してZnOとZn2SnO4
からなる混合粉末を得た。この混合粉末(こ電解銀粉8
68 gs酸化バナジウム2g1酸化ボロンろgを添加
し、乾式ボールミルでArガス中、48時間混合後、硝
酸リチウム水溶液へ浸漬処理すること(こよって酸化リ
チウム番こ換算して2gを加えた。この混合粉末を2t
/Crfで型押、空気中(こおいて550°C・60分
間予備焼結した。次※こ真空ホントブレスで90口°C
・1時間、焼結させて接点材料を得た。以上の実施例で
得られた電気接点材料を市販の30AF1500A速断
のブレーカ(こ組込み、第1表瘉こ示す条件で試験を行
ない耐溶着性を評価した。その結果を第2表警こ示す。
Example 2 10'Og of commercially available zinc oxide and 25g of tin oxide were mixed and 1
ZnO and Zn2SnO4 were pre-calcined at 600℃ for 2 hours.
A mixed powder consisting of was obtained. This mixed powder (electrolytic silver powder 8
Add 2 g of 68 gs vanadium oxide and 1 g of boron oxide, mix in Ar gas in a dry ball mill for 48 hours, and then immerse in a lithium nitrate aqueous solution (therefore, 2 g in terms of lithium oxide was added. This mixture 2t of powder
Embossed with /Crf, pre-sintered in air (at 550°C for 60 minutes).
- A contact material was obtained by sintering for 1 hour. The electrical contact materials obtained in the above examples were incorporated into a commercially available 30AF1500A fast-acting breaker and tested under the conditions shown in Table 1 to evaluate the welding resistance.The results are shown in Table 2.

比較のためくこ酸化リチウムなどの無添加材と銀−10
重量%酸化カドミニウムの結果を併記する。
For comparison, additive-free materials such as lithium oxide and silver-10
The results for weight percent cadmium oxide are also shown.

第1表 第2表 以上詳述した如く、本発明Qこよる電気接点材料は酸化
リチウ゛ム・酸化バナジウム・酸化ホロン添加(こより
従来の銀−酸化亜鉛一酸化錫系接点材料の性能をさら(
こ高めたものであり接点として優れた性能をもつもので
その工業的価値は大きいものである。
As detailed above in Table 1 and Table 2, the electrical contact material according to the present invention Q contains lithium oxide, vanadium oxide, and phoron oxide (which improves the performance of conventional silver-zinc oxide and tin monoxide-based contact materials).
It has improved performance as a contact point, and its industrial value is great.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化亜鉛、酸化錫、酸化リチウムおよび酸化バナ
ジウムと酸化ボロンのいずれか一方もしくは両方で残部
銀からなる電気接点材料で上記酸化物の金属割合が亜鉛
5〜60重量%、錫0.2〜5重量%、リチウム0.0
1〜1.0重量%、バナジウム゛・ボロンのいずれか一
方もしくは両方001〜2.0重量%であり、かつ銀基
地中を二酸化物が均一(こ分散した組織をもつことを特
徴とする電気接点材料。
(1) An electrical contact material consisting of zinc oxide, tin oxide, lithium oxide, vanadium oxide, and/or boron oxide, the balance being silver, in which the metal proportion of the oxides is 5 to 60% by weight of zinc and 0.2% of tin. ~5% by weight, 0.0 lithium
1 to 1.0% by weight, one or both of vanadium and boron, and 001 to 2.0% by weight, and has a structure in which the dioxide is uniformly dispersed in the silver base. Contact material.
JP58035072A 1983-03-03 1983-03-03 Electrical contact material Granted JPS59159949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035072A JPS59159949A (en) 1983-03-03 1983-03-03 Electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035072A JPS59159949A (en) 1983-03-03 1983-03-03 Electrical contact material

Publications (2)

Publication Number Publication Date
JPS59159949A true JPS59159949A (en) 1984-09-10
JPS6261659B2 JPS6261659B2 (en) 1987-12-22

Family

ID=12431791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035072A Granted JPS59159949A (en) 1983-03-03 1983-03-03 Electrical contact material

Country Status (1)

Country Link
JP (1) JPS59159949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871664B2 (en) 2006-03-23 2011-01-18 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
CN109360980A (en) * 2018-11-14 2019-02-19 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of positive electrode boric acid vanadium lithium and products thereof and application
CN112725652A (en) * 2020-12-24 2021-04-30 福达合金材料股份有限公司 Silver zinc oxide electric contact material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871664B2 (en) 2006-03-23 2011-01-18 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
US8303124B2 (en) 2006-03-23 2012-11-06 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
US8585225B2 (en) 2006-03-23 2013-11-19 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
CN109360980A (en) * 2018-11-14 2019-02-19 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of positive electrode boric acid vanadium lithium and products thereof and application
CN112725652A (en) * 2020-12-24 2021-04-30 福达合金材料股份有限公司 Silver zinc oxide electric contact material and preparation method thereof
CN112725652B (en) * 2020-12-24 2022-01-04 福达合金材料股份有限公司 Silver zinc oxide electric contact material and preparation method thereof

Also Published As

Publication number Publication date
JPS6261659B2 (en) 1987-12-22

Similar Documents

Publication Publication Date Title
US4764227A (en) Sintered electrical contact material for low voltage power switching
US4551301A (en) Sintered compound material for electrical contacts and method for its production
US4680162A (en) Method for preparing Ag-SnO system alloy electrical contact material
US4356101A (en) Iron active electrode and method of making same
JPS59159949A (en) Electrical contact material
KR960031028A (en) Silver-tin oxide base sintered material for electrical contacts and method of making same
US3969112A (en) Process for preparing silver-cadmium oxide alloys
JP2810162B2 (en) Sintered contact materials for power low-voltage switchgear
JP3441074B2 (en) Member for electrical contact based on silver-tin oxide or silver-zinc oxide and method for producing the same
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
JPS6048578B2 (en) electrical contact materials
JPS5825444A (en) Electric contact material
JPS631382B2 (en)
JPH02185938A (en) Sintered contact point material for low pressure switch-gear for electric power
US5258052A (en) Powder metallurgy silver-tin oxide electrical contact material
JPS6082646A (en) Sintered alloy and its manufacture
JPS5825447A (en) Electrical contact material
JPS5850304B2 (en) Denkisetsutenzairiyo
JPS6252022B2 (en)
JPH01252573A (en) Target material for forming superconducting film
JPS5825445A (en) Sintered electric contact material and its manufacture
JPS61272338A (en) Silver-zinc oxide-type electric contact point material
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JPS6021303A (en) Manufacture of electrical contact material
JPS5831683B2 (en) Denkisetsutenzairiyo