JPS59159699A - Operating system of synchronous motor - Google Patents
Operating system of synchronous motorInfo
- Publication number
- JPS59159699A JPS59159699A JP58032448A JP3244883A JPS59159699A JP S59159699 A JPS59159699 A JP S59159699A JP 58032448 A JP58032448 A JP 58032448A JP 3244883 A JP3244883 A JP 3244883A JP S59159699 A JPS59159699 A JP S59159699A
- Authority
- JP
- Japan
- Prior art keywords
- synchronous motor
- exciter
- motor
- turning
- rectifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/16—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
- H02P27/18—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc varying the frequency by omitting half waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
- H02P1/46—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
- H02P1/52—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は大容量同期電動機の励磁電力を得るだめの励磁
機として巻線形誘導電動機の原理を応用するシステムで
、大容量同期電動機を通常運転する直前にターニングを
必要とする同期電動機の運転方式に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is a system that applies the principle of a wound induction motor as an exciter for obtaining excitation power for a large-capacity synchronous motor. This relates to a method of operating a synchronous motor that requires turning immediately before turning.
本発明に類する同期電動機の制御装置としては種々の方
式があるが、従来技術の1例を第1図に示す。第1図の
システムは・Ill電動機を可変速運転するための回路
構成として公知であるサイリスタモータあるいは負荷転
流モータ(LCM )システムを示している。この図で
11は商用電源、12は周波数変換器、13は同期電動
機、14は周波数変換器12の制御回路、15は速度基
準、16は速度検出器、17は電流検出信号、18は電
圧検出信号、19は励磁制御器、111は商用電源、1
21は整流器、122は直流リアクトル、123はイン
・々−タ、131は同期電動機13の電機子、132は
同期電動]残13の界磁、133は回転整流器、134
は励磁機、14ノは整流器121の制御信号、142は
インバーター23の制御信号、143は励磁制御器19
の制御信号である。There are various systems for controlling a synchronous motor similar to the present invention, and one example of the prior art is shown in FIG. The system of FIG. 1 shows a thyristor motor or load commutator motor (LCM) system, which is a known circuit configuration for variable speed operation of an Ill motor. In this figure, 11 is a commercial power supply, 12 is a frequency converter, 13 is a synchronous motor, 14 is a control circuit for the frequency converter 12, 15 is a speed reference, 16 is a speed detector, 17 is a current detection signal, and 18 is a voltage detection signal, 19 is an excitation controller, 111 is a commercial power supply, 1
21 is a rectifier, 122 is a DC reactor, 123 is an inverter, 131 is an armature of the synchronous motor 13, 132 is a synchronous motor, the remaining 13 fields, 133 is a rotating rectifier, 134
14 is the control signal for the rectifier 121, 142 is the control signal for the inverter 23, and 143 is the excitation controller 19.
This is the control signal.
第1図のサイリスタモータシステムでは、商用電源11
の交流電力を周波数変換器12の整流器121でII流
定電力変換し、これを直流リアクトル122で平滑化し
て、この直流′電力をインバーター23で九なる周波数
の交流電力に削
変換して周期電動機13に供給し、同期電動機13を可
変速運転する。この時制御回路14は速度基準15の設
定値と速度検出器16の検出信号を比較し、電流検出信
号17及び電圧検出信号18を得て、同期電動機13に
入力する電力は制御信号141によって整流器121を
介して、また周波数は制御信号142によってインバー
ター23を介して制御する。また同期電動機13の電機
子131の電圧は制御回路14によって速度検出器16
の検出信号と電圧検出信号18を比較して、制御信号1
43によりて励磁制御器19を介して制御する。In the thyristor motor system shown in Figure 1, the commercial power supply 11
The rectifier 121 of the frequency converter 12 converts the AC power of 13, and the synchronous motor 13 is operated at variable speed. At this time, the control circuit 14 compares the set value of the speed reference 15 and the detection signal of the speed detector 16 to obtain a current detection signal 17 and a voltage detection signal 18. 121 and the frequency is controlled via an inverter 23 by a control signal 142. Further, the voltage of the armature 131 of the synchronous motor 13 is controlled by the speed detector 16 by the control circuit 14.
The detection signal of the control signal 1 is compared with the voltage detection signal 18.
43 via the excitation controller 19.
第1図に図示する励磁機134は巻線形誘導電動機の動
作原理を使用するもので、商用電源111の交流電圧を
励磁制御器19で電圧制御し、この制御された交流電圧
を励磁機134の1次巻線に加え、励磁機134の2次
巻線電圧を可変制御し、この電圧を回転整流器133で
整流して同期電動機13の界磁132に与えて、同期電
動機13の電機子131の電圧を制御する。The exciter 134 shown in FIG. 1 uses the operating principle of a wound induction motor. The AC voltage of the commercial power supply 111 is controlled by the excitation controller 19, and this controlled AC voltage is applied to the exciter 134. In addition to the primary winding, the secondary winding voltage of the exciter 134 is variably controlled, and this voltage is rectified by a rotary rectifier 133 and applied to the field 132 of the synchronous motor 13, thereby increasing the voltage of the armature 131 of the synchronous motor 13. Control voltage.
以上のように動作するサイリスタモータシステムでは、
同期電動機13を回転界磁形にし、界磁132に供給す
る直流電力は回転整流器133と励磁機134及び励磁
制御器19によって無ブラシ構造で制御でき、同期電動
機13の保守性を大幅に向上させ、また電動機設置上の
耐環境°性を大幅に向上させることができる特徴がある
。このため第1図で説明するサイリスタモータシステム
のみではなく一般の一定速度で運転される大容訃同期電
動機13の励磁制御方式としても励磁機134を巻線形
誘導電動機の原理を応用して構成する例も多い。In the thyristor motor system that operates as described above,
The synchronous motor 13 is made into a rotating field type, and the DC power supplied to the field 132 can be controlled with a brushless structure by the rotary rectifier 133, the exciter 134, and the excitation controller 19, and the maintainability of the synchronous motor 13 is greatly improved. It also has the feature of significantly improving the environmental resistance of motor installation. For this reason, the exciter 134 is configured by applying the principle of a wound induction motor not only to the thyristor motor system described in FIG. There are many examples.
他方第1図の同期電動機13の構成を第2図に示す。こ
の図で137は同期電動機13のステータ、138は同
期電動機13のロータ、139は同期電動機13の負荷
側カップリングである。同期電動機13の電機子131
の巻線はステータ137側に、界磁132の巻線はロー
タ138側に設けられているが、負荷側カップリング1
39の反対側には回転整流器133、励磁機134、速
度検出器16が直結されている。従って第2図の構成で
同期電動機13を運転することは通常問題ないが、同期
電動機13・が犬容)W化すると、同期電動機13のロ
ータ138が長くなり、運転停止中にロータ138が自
重でたわむ等の問題があり、このような状態で急速に高
速運転すると同期電動機13の機械振動が大幅に増加す
る等の問題がある。このため、このようた同期電動機1
3は高速運転する直前に低速で回転させて、前記ロータ
138のたわみを除去する必要があシ、このように低速
で回転させることをターニング運転と呼んでいる。On the other hand, the configuration of the synchronous motor 13 shown in FIG. 1 is shown in FIG. In this figure, 137 is a stator of the synchronous motor 13, 138 is a rotor of the synchronous motor 13, and 139 is a load side coupling of the synchronous motor 13. Armature 131 of synchronous motor 13
The winding of the field 132 is provided on the stator 137 side, and the winding of the field 132 is provided on the rotor 138 side.
On the opposite side of 39, a rotary rectifier 133, an exciter 134, and a speed detector 16 are directly connected. Therefore, there is normally no problem in operating the synchronous motor 13 with the configuration shown in Fig. 2, but if the synchronous motor 13 is changed to W (increased in size), the rotor 138 of the synchronous motor 13 becomes longer, and the rotor 138 loses its own weight when the motor is stopped. There are problems such as deflection, and if the motor is rapidly operated at high speed in such a state, there are problems such as a significant increase in mechanical vibration of the synchronous motor 13. For this reason, such a synchronous motor 1
3, it is necessary to rotate the rotor 138 at a low speed immediately before high-speed operation to remove the deflection of the rotor 138, and such low-speed rotation is called turning operation.
前記するターニング運転を行なうためには、従来ターニ
ング用の電動機を別に設はギヤを介して同期電動機13
のロータ138に直結するのが一般的であった。しかし
第2図の構成の如く同期電動機13の反負荷側に回転整
流器133゜励磁機134.速度検出器16が直結され
たシステムでは、前記するターニング用のギヤと電動機
を設けることが機械構造的に非常に困難である欠点が生
じる。またターニング用のギヤと電動機を設けたとして
も同期電動機13の設置スペースが非常に大きくなり、
また軸長が非常に長くなる欠点がある。In order to perform the above-mentioned turning operation, conventionally, a turning motor is separately provided, but a synchronous motor 13 is connected via a gear.
Generally, the rotor 138 was directly connected to the rotor 138 of the rotor 138. However, in the configuration shown in FIG. 2, a rotary rectifier 133 and an exciter 134 are placed on the opposite load side of the synchronous motor 13. A system in which the speed detector 16 is directly connected has the drawback that it is extremely difficult to provide the above-mentioned turning gear and electric motor in terms of mechanical structure. Furthermore, even if a turning gear and an electric motor are provided, the installation space for the synchronous motor 13 becomes very large.
Another drawback is that the axial length is extremely long.
本発明は、前記する従来方式の欠点に鑑みてなされたも
のであって、ターニング用のギヤと電動機を省略して、
ターニングと同様の効果をイ(Iることかできる同期電
動機の運転方式を提供することを目的としている。The present invention was made in view of the drawbacks of the conventional method described above, and the turning gear and electric motor are omitted.
The purpose of this invention is to provide a method of operating a synchronous motor that can achieve the same effect as turning.
本発明は、この目的を達成するために、励磁機をターニ
ング用の駆動電動(・幾として石川するととを特徴とし
たものである。In order to achieve this object, the present invention is characterized in that the exciter is a driving electric motor for turning.
本発明の一実施例を第3図に示す。この図で第1図と同
一番号を符した各構成要素は第1図と同一沃素である。An embodiment of the present invention is shown in FIG. In this figure, each component labeled with the same number as in FIG. 1 is the same iodine as in FIG.
また本図ではターニングのために使用される構成要素に
関連した物のみを図示している。この図で20は周波数
変換装置、2ノはスイッチ、Slは励磁制御器19側の
接点、S2は周波数変換装置20側の接点である。Also, this figure only shows components related to the components used for turning. In this figure, 20 is a frequency converter, 2 is a switch, Sl is a contact on the excitation controller 19 side, and S2 is a contact on the frequency converter 20 side.
第3図で、スイッチ21の接点S1を閉、接点S2を開
にして、励磁制御器19が使用されるのは、第1図で説
明するように同期電動機13の通常の運転時である。他
方同期電動機13のターニング運転時には、スイッチ2
1の接点S1を開、接点S2を閉にして、周波数変換装
置20によって低周波数の交流電力で励磁機134を駆
動する。すると励磁機134は巻線形誘導電動機の構造
であるために電動機として作用し、同期電動機13のロ
ータ138を回転させる回転トルクを発生させることが
できる。In FIG. 3, the excitation controller 19 is used with the contact S1 of the switch 21 closed and the contact S2 opened during normal operation of the synchronous motor 13, as explained in FIG. 1. On the other hand, during turning operation of the synchronous motor 13, the switch 2
The frequency converter 20 drives the exciter 134 with low-frequency AC power by opening the contact S1 and closing the contact S2. Then, since the exciter 134 has the structure of a wound induction motor, it acts as an electric motor and can generate rotational torque that rotates the rotor 138 of the synchronous motor 13.
従って周波数変換装置20の出力する周波数を調整する
と所望の回転数で同期電動機13をターニング運転させ
ることができる。この結果ターニング期間中のみ周波数
変換装置20を運転し、同期電動機13の通常運転中は
スイッチ21の接点S1を閉、接点S2を開にして、第
1図の説明と同様に運転すると、前記するターニング用
のギヤや電動機を設けなくとも大容量同期電動機を運転
できる効果が本発明によって得られる。Therefore, by adjusting the frequency output by the frequency converter 20, the synchronous motor 13 can be operated in turning at a desired rotation speed. As a result, if the frequency converter 20 is operated only during the turning period, and the contact S1 of the switch 21 is closed and the contact S2 is opened during the normal operation of the synchronous motor 13, and the operation is performed in the same manner as described in FIG. The present invention provides the effect that a large-capacity synchronous motor can be operated without providing a turning gear or an electric motor.
本発明の他の実施例を第4図に示す。この図に示す各構
成要素は第1図に示す構成要素と同一であるが、本発明
の説明を容易にするために図示法を変更している。との
図では、IGh磁制御器19に周波数制御器と、電圧制
御器との桧能を持たせて使用する場合の例である。1肋
磁制御器19に周波数制御器としての作用を行なわせる
時の波形を第5図に示す。第4図と第5図を使用して、
この実施例を以下説明する。Another embodiment of the invention is shown in FIG. Each component shown in this figure is the same as the component shown in FIG. 1, but the illustration method has been changed to facilitate explanation of the present invention. The figure shows an example in which the IGh magnetic controller 19 is used with the functions of a frequency controller and a voltage controller. FIG. 5 shows waveforms when the first magnetic field controller 19 is made to function as a frequency controller. Using Figures 4 and 5,
This embodiment will be explained below.
励磁制御器19は第1図で説明する通常運転中には電圧
制御器として作用し、との時図示する各スイッチ計6個
を商用電源111の1周期中に各々1回づつ動作させて
電圧制御する。他方励磁制御器19を周波数変換器とし
て作用さぜる時には前記各スイッチ計6個は第5図に示
すように商用電源111の数周期間だけ連続して動作さ
せ、商用電源111の交流4力より低周波数の交流電力
を得て励磁機134に供給1〜で、励磁機134に回転
トルクを発生させるものである。この時、第5図(、)
は商用電源111の1((]分の重圧を、(b) 、
(c) 、 (d)は励磁制御)器19の出力電圧波形
を示し、励磁制御器ノ9が商用’lTf源111の1/
9の周波数を出力した時の波形例を示している。以上の
ように励磁制御器19を周波数制御器として動作させる
ことはサイクロコンバータの、暇理より公知であり、詳
細説明は省くが、第3図の如く周波数変換装置20を別
に設けなくても同様にターニング用のギヤと電@機を省
略することができることが明らかである。The excitation controller 19 acts as a voltage controller during normal operation as explained in FIG. Control. On the other hand, when the excitation controller 19 is used as a frequency converter, the six switches in total are operated continuously for several cycles of the commercial power source 111 as shown in FIG. AC power of a lower frequency is obtained and supplied to the exciter 134 in steps 1 to 1 to cause the exciter 134 to generate rotational torque. At this time, Figure 5 (,)
is the heavy pressure of 1() of the commercial power supply 111, (b)
(c) and (d) show the output voltage waveforms of the excitation controller 19, where the excitation controller 9 is 1/1 of the commercial 'lTf source 111.
A waveform example is shown when a frequency of 9 is output. Operating the excitation controller 19 as a frequency controller as described above is well known from the principle of cycloconverters, and detailed explanation will be omitted, but the same operation can be achieved even without separately providing the frequency converter 20 as shown in FIG. It is clear that the turning gear and electric machine can be omitted.
本発明の更に他の実施例を第6図に示す。この図では、
励磁機134を極数切換の巻線形誘導電動機として構成
し、第1図と同様に運転でる時には電動機極数の小さい
巻線側のスイッチ21の接点S1を閉し、接点S2を開
し、商用電源111の交流電力を励磁制御器19で電圧
制御して接点S1を介しぞ励磁機134に供給する。他
方励磁機134に低速の回転トルクを得る時には、゛励
磁機134の仮数の大きい巻線側のスイッチ21の接点
S2を閉し、接点S1を開して、商用電源111の交流
電力を励磁制御器19を介して励磁機134に供給する
。この時励磁制御器19で電圧制御するか、周波数制御
するかは特に限定するものではなく所望の回転数によっ
て任意に選択できる。従って同様にターニング用のギヤ
や電動機を省略できる。Still another embodiment of the invention is shown in FIG. In this diagram,
The exciter 134 is configured as a wound induction motor with a switching number of poles, and when the motor is started to operate as shown in FIG. AC power from the power source 111 is voltage-controlled by the excitation controller 19 and supplied to the exciter 134 via the contact S1. On the other hand, when obtaining low-speed rotational torque in the exciter 134, 'close the contact S2 of the switch 21 on the side of the winding with a larger mantissa of the exciter 134, open the contact S1, and control the excitation of the AC power of the commercial power supply 111. It is supplied to an exciter 134 via a device 19. At this time, whether the excitation controller 19 performs voltage control or frequency control is not particularly limited and can be arbitrarily selected depending on the desired rotation speed. Therefore, turning gears and electric motors can also be omitted.
また本発明は可変速運転しない同期電動機にも適用でき
ることが明らかである。It is also clear that the present invention can be applied to synchronous motors that do not operate at variable speeds.
その他本発明の要旨を変更し彦い範囲において、各種の
変形例や構成例を実現できることが明らかである。It is clear that various modifications and configurations can be realized within the scope of changing the gist of the present invention.
本発明によれば、従来の如くターニング用のギヤと電動
機を設けなくても、励磁機をターニング用電動機として
共用でき、この結果同期電動機の設置スは−スの縮小、
経世化、低コスト化を実現できる。According to the present invention, the exciter can be shared as a turning motor without providing a gear and a motor for turning as in the past, and as a result, the installation space of a synchronous motor can be reduced.
It is possible to realize modernization and cost reduction.
第1図は従来のサイリスタモータシステムの構成図、第
2図は第1図の同期電動機の構成図、第3図は本発明の
一実施例を示す構成図、第4図は本発明の他の実施例を
示す構成図、第5図は第4図の説明用の電圧波形図、第
6図は本5発明の更に他の実施例を示す構成図である。
11・・・商用電源、12・・・周波数変換器、13・
・・同期電動機、14制御回路、15・・・速度基準、
16・・・速度検出器、17・・・電流検出信号、18
・・・電圧検出信号、19・・・励磁制御器、20・・
・周波数変換装置、21・・°スイッチ、111・・・
商用電源、121・・・整流器、122・・・直流リア
クトル、123・・・インバータ、131・・・電機子
、132・・・界磁、133・・・回転整流器、134
・・・励磁機、137・・・同期電動機13のステータ
、138・・・同期電動機13のロータ、139・・・
同期電動機13の負荷側カップリング、141゜142
.143・・・制御信号、S1+82・・・接点。
出願人代理人 弁理士 鈴 江 武 彦第 l 図
第2図
第 3 図Fig. 1 is a block diagram of a conventional thyristor motor system, Fig. 2 is a block diagram of the synchronous motor shown in Fig. 1, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram of a conventional thyristor motor system. FIG. 5 is a voltage waveform diagram for explaining FIG. 4, and FIG. 6 is a configuration diagram showing still another embodiment of the present invention. 11...Commercial power supply, 12...Frequency converter, 13.
...Synchronous motor, 14 control circuit, 15...speed reference,
16... Speed detector, 17... Current detection signal, 18
...Voltage detection signal, 19... Excitation controller, 20...
・Frequency converter, 21...° switch, 111...
Commercial power supply, 121... Rectifier, 122... DC reactor, 123... Inverter, 131... Armature, 132... Field, 133... Rotating rectifier, 134
...Exciter, 137...Stator of synchronous motor 13, 138...Rotor of synchronous motor 13, 139...
Load side coupling of synchronous motor 13, 141°142
.. 143...Control signal, S1+82...Contact. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3
Claims (3)
に励磁制御器が接続される励磁機を有し、前記回転整流
器の直流出力によシ界磁巻線が励磁される同期電動機に
おいて、前記電動機ング電動機として利用し前記同期電
動機をターニング運転することを特徴とする同期電動機
の運転方式−0(1) It has an excitation machine in which a rotating rectifier is connected to the rotor winding and an excitation controller is connected to the stator winding, and the field winding is excited by the DC output of the rotary rectifier. In the electric motor, a synchronous motor operation method-0 characterized in that the synchronous motor is used as the electric motor and the synchronous motor is operated in a turning operation.
付勢するだめの交流は、前記励磁制御器又は独立して設
けられる周波数変換器から得るようにしたことを特徴と
する特許請求の範囲第1項記載の同期電動機の運転方式
。(2) A patent characterized in that the alternating current for energizing the stator winding of the exciter with an alternating current of a desired frequency is obtained from the excitation controller or an independently provided frequency converter. An operating method for a synchronous motor according to claim 1.
で異るように極致切換可能とした励磁機としたことを特
徴とする特許請求の範囲第1項或いは第2項記載の同期
電動機の運転方式。(3) The synchronous motor according to claim 1 or 2, characterized in that the number of poles of the exciter is switchable between poles in turning operation and normal operation. driving method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58032448A JPS59159699A (en) | 1983-02-28 | 1983-02-28 | Operating system of synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58032448A JPS59159699A (en) | 1983-02-28 | 1983-02-28 | Operating system of synchronous motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59159699A true JPS59159699A (en) | 1984-09-10 |
Family
ID=12359241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58032448A Pending JPS59159699A (en) | 1983-02-28 | 1983-02-28 | Operating system of synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59159699A (en) |
-
1983
- 1983-02-28 JP JP58032448A patent/JPS59159699A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5029263A (en) | Electric start control of a VSCF system | |
US6121749A (en) | Variable-speed drive for single-phase motors | |
US5166591A (en) | Current chopping strategy for generating action in switched reluctance machines | |
CN100414833C (en) | Apparatus for controlling speed of fan motor of air-conditioner | |
JPH03502398A (en) | Variable speed constant frequency starter with selectable input power limit | |
EP0868771B1 (en) | Variable reluctance motor systems | |
US5734248A (en) | Current modulation motor controller | |
JPH08223963A (en) | Circuit device for controlling motor commutated electronically | |
JPS5917632B2 (en) | Zero rotation and zero torque detection method and device | |
US3678353A (en) | Electronic device for electrically braking induction motors, particularly three-phase motors | |
US5378952A (en) | Machine drive system and method | |
JPS59159699A (en) | Operating system of synchronous motor | |
US2585392A (en) | Monopolyphase frequency converter group | |
JP3248270B2 (en) | Induction motor braking method | |
JPH07308092A (en) | Synchronous starting device for d.c. motor | |
JP3203947B2 (en) | Turbocharger control device with rotating electric machine | |
CA2267035C (en) | Current modulation motor controller | |
JP2657643B2 (en) | Speed control method of AC motor | |
JPH06113548A (en) | Inverter | |
SU828353A1 (en) | Ac electric drive | |
JPH11113281A (en) | Driving method of dc brushless motor | |
EP0664601B1 (en) | Pulsed synchronous reluctance motor | |
JPS609393A (en) | Sinusoidal wave drive thyristor motor | |
JPS60134783A (en) | Start controller of reciprocating machine driving motor | |
SU1713073A1 (en) | Double-motor electric drive with electromechanical frequency changer |